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Thermal bias induced charge current in a Josephson junction: From ballistic to disordered
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It is known that Josephson junction (JJ) hosting scattering centers with energy-dependent scattering ampli-
tudes, which breaks the ω → −ω symmetry (where ω is the excitation energy of electron about the Fermi level)
exhibits finite thermoelectric response. In contrast, here we show that even in a ballistic JJ this symmetry is
broken and it leads to a nonzero thermal-bias induced charge current above the gap, when the junction length is
of the order of coherence length of the superconductor and the corresponding response confirms to the universal
sinusoidal dependence on φ12, where φ12 is the superconducting phase bias. In presence of multiple scatterers in
the junction region, we have numerically shown that the sign of the even-in-φ12 part of the this response fluctuates
violently from one disorder configuration to another hence averaging to vanishingly small values while the odd
part tends towards the universal sinusoidal dependence on φ12 as we approach the large disorder limit under
disorder averaging.
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I. INTRODUCTION

Thermoelectric response of a hybrid junction between
two normal metals in the mesoscopic regime has been
discussed extensively both theoretically and experimentally
[1–15]. Analogous situation comprising of a junction of su-
perconductors is a less explored topic although discussion
of thermoelectric response of superconductor has a long his-
tory. Such set-ups are of great importance because of the
possibility of their applications in improving the efficiency
of thermoelectric generator by strongly suppressing Ohmic
losses [16–21].

In 1944, Ginzberg [22,23] showed that a temperature
gradient in a bulk superconductor leads to a finite normal
current response, although this current gets completely can-
celed by a counter flow of supercurrent in a homogeneous
isotropic superconductor, which makes it impossible to de-
tect the thermoelectric response in isolation. This fact led
him to theoretically explore the possibilities of anisotropic
and inhomogeneous superconductor for the detection of
the thermoelectric effect. Since then, various theoretical
studies [24–29] has been conducted exploring possibilities
of detection of thermoelectric response of superconductors
in anisotropic and inhomogeneous situations. Experimental
study in this direction goes back all the way to 1920s [30–38]
and this topic has been revisited in the recent past in an inter-
esting paper by Shelly et al. [39]. The discovery of Josephson
effect [40] in 1962 provided a natural setting for exploring
thermoelectric response for a inhomogeneous superconductor.
Later in 1997, Guttman and Bergman made an attempt to the-
oretically explore the thermoelectric response of a Josephson
junction (JJ) in a tunnel Hamiltonian approach [41].
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Pershoguba and Glazman [42] have carried out an
elaborate study on the possibility of generating thermometric
current across a junction between two quasi-one-dimensional
superconductors, which goes beyond the tunneling limit and
also discussed the relevance of the odd and the even part of
the Josephson current as a function of the superconducting
phase bias φ12 owing to scattering in junction region, which
breaks the ω → −ω symmetry. In this regard, the helical
edge state of two dimensional topological insulators pose
an interesting and clean testing ground for such theoretical
study, which hosts one-dimensional Josephson junction [43].
It should be noted, the constraint that the ω → −ω symmetry
(sometimes also referred to as particle-hole symmetry) needs
to be broken for inducing a finite thermoelectric response is
valid only within the linear response limit, and no more holds
in the nonlinear regime [44,45].

Thermal response of quantum Hall edge has already been
studied in experiment [46] and hence a similar experimental
set-up involving the spin Hall edge may not be far in the
future. Recent theoretical studies have explored the possibility
of inducing thermoelectric effect in helical edge state-based
Josephson junction involving either an anisotropic ferromag-
netic barrier [47,48] or a three-terminal geometry [49–51]. In
this paper we study a linear response coefficient, defined as the
thermal-bias induced charge current per unit temperature gra-
dient flowing above the superconducting gap solely due to ap-
plication of a thermal bias across a Josephson junction, which
we refer to as “thermocurrent coefficient” and we refrain from
calling it a conventional thermoelectric effect due to subtle
difference between the two, which will be discussed later. We
show that the thermocurrent effect can exist in the helical edge
state (HES) of quantum spin Hall (QSH) insulator even in a
simplest case of two terminal ballistic JJ owing to breaking
of the ω → −ω symmetry of the quasiparticle transmission
probabilities across the junction at finite length. We argue that
this is generic to ballistic JJ and is not specific to HES. Lastly,
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FIG. 1. Schematic of a finite-length Josephson junction set-up
based on helical edge state of a 2D quantum spin Hall insulator.
Superconducting leads (S1 and S2) are kept at different temperatures.
Also there is a superconducting phase bias between S1 and S2. The
up and down arrows indicate the direction of spin-polarization of the
corresponding edge states.

it is worth noting that the use of thermal transport for probing
quantum states has been much in pursuit in contemporary
science [52] and hence such a discussion is quite timely.

The paper is organized as follows. In Sec. II we described
the JJ based on HES of a 2D QSH state and in Sec. III we
discussed how a long ballistic JJ can break the ω → −ω sym-
metry and hence resulting in thermocurrent response, which
also survives in presence of disorder. In Sec. IV we extend our
discussion to the odd-in-φ12 and even-in-φ12 part of the and
shown that minimal breaking of the ω → −ω symmetry is not
enough to induce an even-in-φ12 contribution. We have also
argued that the presence of thermoelectric response through
the breaking of ω → −ω symmetry is not unique to HES,
rather it is a generic property of a JJ.

II. BALLISTIC JOSEPHSON JUNCTION IN HELICAL
EDGE STATE

We first consider a JJ based on 1D Dirac fermions in
proximity to a s-wave superconductor, realized in a HES of
QSH insulator [53–55] because of its algebraic simplicity.
Later we will also explore the case of quadratic dispersion.
The junction is considered to be of length L laying over the
region |x| < L/2. The proximitized region of the edge are
described by the Bogoliubov-de Gennes (BdG) Hamiltonian
in the Nambu basis [53,54] ([(ψ↑, ψ↓), (ψ†

↓,−ψ
†
↑ )]) as

H = (−ih̄vF ∂xσz − μ)τz + �(x)(cos φrτx − sin φrτy), (1)

where σ and τ are the Pauli matrices representing spin and
particle-hole degrees of freedom respectively. The supercon-
ducting pairing potential is given by �(x) = �0[	(−x −
L/2) + θ (x − L/2)] such that it defines a superconductor-
normal-superconductor junction (SNS). Superconducting
leads (Sr) are identified as r ∈ {1, 2} (left lead being r =
1 and the right being r = 2) and φr are the correspond-
ing superconducting phases (see Fig. 1); μ is the chemical
potential throughout the edge and vF is the corresponding
Fermi velocity. We also consider the doping (i.e., the value
of chemical potential μ) to be finite (μ �= 0) and the length
of the junction L to be comparable to the superconducting
coherence length ξ = h̄vF /�0 such that (pe − ph)L/h̄ can be
of the order of unity for energies ��0, where pe,h = h̄ke,h are

the quasiparticle and the corresponding quasihole momenta
for particles in the junction region. Note that, in general, for
highly doped superconductor with quadratic dispersion pe ≈
ph and hence such phases are generally neglected. On the
other hand, if such phase accumulation becomes of the order
of unity, it naturally leads to breaking of ω → −ω symmetry
of the excited Bogoliubov quasielectron and quasihole trans-
mission probabilities individually across the junction leading
to finite thermocurrent effect, although the sum of the two
does respect the symmetry.

III. ω → −ω SYMMETRY BREAKING AND ANDREEV
BOUND STATE OF BALLISTIC JOSEPHSON JUNCTION

Let us consider a right moving electron-like quasiparticle,
which starts its journey at x = −L/2 and propagates through
the normal region and reaches at x = L/2. It Andreev reflects
back as a hole with an unimodular amplitude by creating a
Cooper pair in the superconducting lead 2 (S2). The reflected
hole then travels through the normal region and reaches back
to x = −L/2. It then suffers a second Andreev reflection
hence annihilating a Cooper pair at superconducting lead 1
(S1) and completing a closed loop journey resulting in shut-
tling of a single Copper pair from S1 to S2 [see Fig. 2(a)]. This
process involving a right-moving electron and a left-moving
hole can be directly related to formation of a Andreev bound
state (ABS) at the JJ where the ABS energy is given by

ω21
0 = ±�0| cos( ke(ω21

0 )−kh (ω21
0 )

2 L − φ12

2 )| where φ12 = φ2 − φ1

and ke,h(ω0) = (μ ± ω0)/(h̄vF ) (see Appendix B). Similarly,
if a right-moving hole-like quasiparticle starts from x = −L/2
and completes the cycle after two Andreev reflections, it will
transfer a Cooper pair from S2 to S1 [see Fig. 2(a)] and
the corresponding ABS will be formed at energies ω12

0 =
±�0| cos( ke(ω12

0 )−kh (ω12
0 )

2 L + φ12

2 )| (see Appendix B). Note that
the ω21

0 and ω12
0 transform into one another as φ12 → −φ12.

The ABS energies ω21
0 and ω12

0 are shown as a function of
φ12 for different values of the junction length L in Fig. 2(b).
The important point to note here is the fact that, for finite
L, the degeneracy between ω21

0 and ω12
0 is lifted whenever

φ12 �= 0, π and this fact leads to an asymmetry between the
transmission probability of electron (hole)-like BdG quasipar-
ticle above the gap, incident on the junction from the left and
right hence leading to finite thermocurrent response. Also, it
should be noted that the ABS energies are defined through
self-consistent transcendental equations, leading to a possibil-
ity of having a multivalued solutions, such as for L = 2ξ in
Fig. 2(b) and the solutions are independent of the value of μ

owing to linear dispersion.
Now, for analyzing the implication of degeneracy lift-

ing of ABS on the thermocurrent effect of the junction, we
start by calculating the scattering amplitude for Bogoliubov
quasiparticle above the gap (ω > �0) across the JJ. It is
straightforward to match the plane wave solutions of the BdG
equation to obtain the transmission probabilities across the
JJ (from S1 to S2) as described by Eq. (1) are given by (see
Appendix B)

T 21
ee = T 12

hh = ω2 − �2
0

ω2 − �2
0 cos2

( ke−kh
2 L − φ12

2

) , (2)
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FIG. 2. (a) Pictorial representation of below the gap (ω < �0) tunneling of Cooper pairs (CP) form left (right) to right (left) via two
different Andreev bound states ω21

0 (indicated by blue lines) and ω12
0 (indicated by orange lines). The dotted lines represent the fact that

tunneling of the quasielectrons (quasiholes) above the gap (ω > �0 ) across the junction are in correspondence with distinct bound states, as
can be noted from the poles of the quasielectron (quasihole) transmission probabilities T 21

ee and T 12
ee (or T 12

hh and T 21
hh ). (b) Two types of Andreev

bound states as a function of superconducting phase difference φ12 are plotted for different values of junction lengths where ξ = h̄vF /�0 is
the superconducting coherence length. (c) Density plot for the thermocurrent coefficient κ21

e of a ballistic JJ based on the edge states of a
quantum spin Hall insulator in proximity to a s-wave superconductor, as a function of superconducting phase bias φ12 and junction length L.
The average temperature of the junction is considered to be kBTavg = 0.5�0 where the effective superconducting gap at this temperature is
taken to be �Tavg ∼ 0.56�0. Both the plots (b) and (c) are valid for any value of the chemical potential μ.

T 21
hh = T 12

ee = ω2 − �2
0

ω2 − �2
0 cos2

( ke−kh
2 L + φ12

2

) , (3)

while T 21
he = T 21

eh = T 12
he = T 12

eh = 0. Quasiparticle transmis-
sion probabilities through a ballistic JJ is shown in Fig. 3
for two different lengths of the junction. Here T ji

q′q denote
the transmission probability of an q-like QP (q = e, h) from
lead Si to a q′-like QP in lead S j . Note that the tunneling
of an electron (hole)-like QP from S1 to S2 (S2 to S1) is in
correspondence with the ABS having energy ω21

0 while the
tunneling of a hole (electron)-like QP from S1 to S2 (S2 to S1)
is in correspondence with the ABS having energy ω12

0 [see
Fig. 2(a)], which is apparent from the fact that the poles of
the transmission amplitudes for these two processes coincides

with the corresponding ABS energies. Within linear response
theory, thermocurrent coefficient of a JJ can be defined in
terms of the transmission probabilities as [42]

κ21
e =

[
e

h

∫ ∞

�

dω
ω√

ω2 − �2

[
i21
e − i21

h

]df(ω, T )

dT

]
T =Tavg

(4)

where i21
e = (T 21

ee − T 21
he ), i21

h = (T 21
hh − T 21

eh ), e is the elec-
tronic charge, f(ω, T) is the Fermi distribution function at
temperature T , df(ω, T )/dT = ωsech2(ω/(2kBT ))/(4kBT 2),
and Tavg is the average temperature of the junction. Note that,
in the limit L → 0, κ21

e is zero.
The integration in Eq. (4) can be done numerically and

κ21
e can be obtained as a function of superconducting phase

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Different transmission probabilities of the quasiparticles through a ballistic Josephson junction based on the helical edge state of a
quantum spin Hall insulator, in the space of energy (ω) and superconducting phase difference (φ12) for different values of junction length (L).
A clear asymmetry between the electron and hole transmission probability from left (right) to right (left) develops as we increase the length of
the junction. The plot in energy window (|ω| < �0) signifies the evolution of the pole (location of Andreev bound states) of the transmission
amplitude as a function of φ12. The plots are valid for any value of the chemical potential μ.
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difference φ12 and junction length L, which is plotted as a
density plot in Fig. 2(c). In case of HES, owing to its linear
dispersion, the value of the overall chemical potential μ does
not effect the calculations for the ballistic case.

To obtain an estimate of the extremum values of ther-
mocurrent coefficient for a single channel ballistic junction,
we perform a numerical scan over the parameter space of
φ12 and L for a given temperature of kBTavg = 0.5�0. It is
important to note that, if the average temperature Tavg is
comparable to the critical temperature of the superconductor
(TC ), then the temperature dependence of the superconduct-
ing gap should be taken into consideration and the value
of the superconducting pairing potential has to be modified
accordingly. At temperature Tavg = 0.5�0/kB, BCS theory
(Berdeen-Cooper-Schrieffer theory) predicts �Tavg ∼ 0.56�0

[56,57]. After taking this into consideration we found that
the maximum of (minimum of) |κ21

e | ≈ 0.241391 ekB/h (≈
0.8nA/K ), obtained for a junction length of L ≈ 0.861ξ for
φ12 ≈ 0.307π (minimum at φ12 ≈ 1.693π ). It is important to
note that this maximum value of the thermocurrent coefficient
is much larger than some of the existing experimentally mea-
sured values in the context of thermoelectric materials [58] or
some of the theoretical predictions in the context of Andreev
interferometers [51]. This value is obtained by simultaneously
optimizing the superconducting phase difference φ12, opacity
of the junction τ , and length of the junction L. Moreover, a
number of assumptions have been considered, e.g., (i) liner
response limit is valid, (ii) the bandwidth of the edge state
is large enough such that at the given temperature, the edge
state remains robust and do not hybridize with the bulk of the
2D QSH insulator, and (iii) the bandwidth of the edge state is
much larger than the superconducting gap.

As we can see from Fig. 3, for a ballistic JJ, in general for
any given value of φ12 and at an energy ω > �0 the quasipar-

ticle transmission probabilities T 21
ee and T 21

hh are different if the
length of the junction L is comparable to the superconducting
coherence length (i.e., when we are not in the short junction
limit). Note that the difference between these quantities at a
given ω is maximum in the neighborhood of ω = �0 and it
decreases as we go higher in ω, although nonmonotonically.
Additionally, one must notice that the thermocurrent effect
identically vanishes both at φ12 = 0 and π , which are the time
reversal symmetric points [see Fig. 2(c)].

IV. EVEN-IN-φ12 AND ODD-IN-φ12 PART OF
THE THERMOCURRENT RESPONSE

AND THE EFFECT OF DISORDER

Presence of scatter within the junction region, which
breaks the ω → −ω symmetry, not only leads to a finite
thermo-current effect, but also results in deviation from ther-
mocurrent coefficient being odd in φ12 [42]. As discussed
above, a JJ of finite length also breaks the ω → −ω symmetry
hence it is curious if this minimal symmetry breaking can
result in such a deviation, i.e., the thermocurrent response
can be written as a liner sum of an even-in-φ12 part and an
odd-in-φ12 part.

It is straightforward to check that the expression for ther-
mocurrent coefficient in the ballistic limit, obtained from
Eqs. (2)–(4) is an odd function of φ12, independent of the
length of the junction. This implies that the breaking of
ω → −ω symmetry via ke �= kh (as discussed in the previous
section) does not lead to any contribution to the thermocurrent
response, which is even in φ12. Further, we calculate the
thermocurrent coefficient in presence of a single localized
scatterer, which is positioned at an arbitrary point within the
junction region and we assume that the scattering matrix cor-
responding to the scatterer has no energy dependence. The
expression for the thermocurrent coefficient in this case is
given below,

κ21
e =

[
e

h

∫ ∞

�

dω
ω√

ω2 − �2

[
4τ ((1 − τ ) sin ((ke − kh)L(m − n)) + sin ((ke − kh)L)) sin φ12 sinh 2θ

��∗

]
df(ω, T )

dT

]
T =Tavg

, (5)

where, � = (1 − τ ) cos ((ke − kh)L(m − n)) + cos((ke − kh)
L − 2iθ ) − τ cos φ12, θ = arccoshω/�0, τ is the normal state
transmission probability across the scatterer and the position
of the scattering center divides the junction region in the
ratio m : n (m, n � 1 and m + n = 1). All other notations have
their usual meanings as discussed before. Equation (5) clearly
shows that the thermocurrent response, in this case also, is
odd in φ12. Hence, our study establishes the fact that the
minimal breaking of ω → −ω symmetry for a finite length
ballistic junction (or in presence of a single scatterer, which
does not break the ω → −ω symmetry) is sufficient to induce
thermocurrent response across the JJ, although it is not enough
to induce an even-in-φ12 contribution to the thermocurrent
coefficient.

Now, if we consider a situation comprising of more than
one such scatterer, then the effective scattering matrix describ-
ing the collection of scatterers will become energy dependent

and in general will also break the ω → −ω symmetry, re-
sulting in an even-in-φ12 contribution to the thermocurrent
coefficient as expected [42]. The even-in-φ12 part of the ther-
mocurrent coefficient is proportional to (τω − τ−ω ), where τω

is the normal state transmission probability across the junc-
tion at an energy ω, and thus can vary drastically (both in
amplitude and in sign) for different disorder configurations
for a given φ12. Hence, averaging over random configura-
tions results in vanishingly small values of the even part.
Next we perform a numerical calculation to analyze the
effect of averaging over a large number of disorder configu-
rations in presence of multiple scatterers. To begin with, we
consider four scattering centers represented by four energy-
independent scattering matrices placed at random positions
inside the junction region. Transmission probabilities of the
scattering matrices are chosen randomly from a one-sided
Gaussian distribution with a mean of 95% and standard
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FIG. 4. Thermocurrent coefficient of a Josephson junction based on helical edge state of quantum spin Hall insulator in presence of four
random scattering centers. (a) Total thermocurrent coefficient (b) the part of thermal conductance that is even in φ12 (c) the part of conductance
that is odd in φ12, for single random configuration of scattering centers and after averaging over different numbers of random configurations.
The average temperature of the junction is considered to be kBTavg = 0.5�0, where the effective superconducting gap at this temperature is
taken to be �Tavg ∼ 0.56�0, and the overall chemical potential to be μ = 10�0. Length of the junction is considered to be L = 0.87ξ where ξ

is the superconducting coherence length.

deviation of 5%. All the phase freedom of the disorders have
been chosen randomly from a Gaussian distribution with a
mean of 0 and standard deviation 0.05π . We have fixed the
length of the junction to be L ∼ 0.87ξ , the value at which
we get maximum thermocurrent coefficient (which occurs for
φ ∼ 0.31π ) for a ballistic JJ. It can be seen clearly from
Fig. 4 that averaging over as-small-as 10 configurations al-
ready shows a convergence towards an odd-in-φ12 behavior
while the even-in-φ12 part is strongly suppressed. It is interest-
ing to note that, in absence of an averaging (corresponding to
a fixed quenched disorder configuration), for certain range of
values of φ12, the even part can be the dominant contribution
in the net thermocurrent coefficient (see Fig. 4).

Now we extend the numerical analysis to a larger number
of scattering centers. The scattering centers are modeled as
before and the length of the junction is fixed at L = 0.87ξ . For
a given number of scattering centers, disorder average is done
over 500 configurations where we have checked that beyond
this, there is negligible variation of the result. The mean and
the variance of the thermocurrent coefficients are plotted as a
function of the superconducting phase difference φ12 in Fig. 5.
Note that, in presence of a single scatterer, the variance of
the thermocurrent coefficient is smallest because in this case
there is no even-in-φ12 part of the thermocurrent coefficient.
We have also observed that, in general, the variance is rel-
atively lower in the neighborhood of φ12 = π rather than in
the neighborhood of φ12 = 0 or 2π . To conclude, the plot
for thermocurrent coefficient after averaging tend to reduce to

the universal sinusoidal dependence of φ12 as the number of
scatterers within the junction region increases (see the middle
panel of Fig. 5). This is due to the fact that, with increasing
opacity of the JJ, the φ12 sensitivity of the thermocurrent
coefficients via the poles of the quasiparticle transmission
probabilities decreases and the major contribution comes from
the explicit sin (φ12) factor in the numerator.

V. DISCUSSION

Occurrence of thermocurrent effect through the breaking
of ω → −ω symmetry for a ballistic long JJ is not specific
to the HES. 1D JJ with quadratic dispersion and with s-wave
or p-wave superconductivity should also demonstrate such
a response. Of course, in the high doping limit, the ther-
mocurrent coefficient should reduce to the results obtained in
the paper when linearized about the Fermi energy. Thus, the
thermocurrent response is a generic property of any ballistic
JJ with junction length of the order of the superconducting
coherence length. However, with the increasing opacity of the
JJ for junction length less than the superconducting coher-
ence length, the ABS energies tend to move towards the zero
energy for p-wave superconductivity due to the presence of
Majorana fermions. Whereas, for a JJ with s-wave supercon-
ductivity within the same limit, the ABS energies tend to move
towards the continuum with increasing opacity of the junction.
This fact manifests itself in the thermocurrent coefficient via
the poles of the quasiparticle transmission probabilities. Also,

0.5 1.0 1.5 2.0

- 0.2
- 0.1

0.1
0.2

0.5 1.0 1.5 2.0
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0.015
0.020

0.5 1.0 1.5 2.0

- 0.10
- 0.05

0.05
0.10

FIG. 5. Disordered averaged mean value (left) and the variance (right) of the thermocurrent coefficient κ21
e of a Josephson junction based on

the helical edge states of a quantum spin Hall insulator with proximity to a s-wave superconductor, are plotted as a function of superconducting
phase difference φ12. The average temperature of the junction is considered to be kBTavg = 0.5�0, where the effective superconducting gap at
this temperature is taken to be �Tavg ∼ 0.56�0, and the overall chemical potential to be μ = 10�0. Length of the junction is considered to be
L = 0.87ξ where ξ is the superconducting coherence length. Average is done over 500 disorder configurations. The middle plot shows that,
as we increase the number of scatterers, the curves for thermocurrent coefficients tend to a sin (φ12) curves (solid lines) with an amplitude
(max(κ12

e )-min(κ21
e ))/2.
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FIG. 6. The maximum possible thermocurrent coefficient of a JJ with (left) s-wave and (right) p-wave superconductivity for a given
junction length and normal state reflection probability r (as calculated with the analytic approximation μ  �0, kBT ). Note that the scatterer is
assumed to be energy independent and is placed at the middle of the junction. The parameters are assumed to be μ = 100�0 and kBTavg = 0.5�0

where the effective superconducting gap at this temperature is taken to be �Tavg ∼ 0.56�0.

for JJ with junction length longer than the superconducting
coherence length, the states from the continuum spectrum tend
to leak into the superconducting gap, thereby changing the
details of the thermocurrent coefficient.

Further, to check if the s-wave or the p-wave leads to a
larger thermocurrent coefficient for a given junction length
we perform an analysis where we have placed an energy-
independent scatterer at the middle of a JJ, and plotted the
maximum possible thermocurrent coefficient (scanned over
all values of φ12) for a given junction length L and given
transparency of the scatterer (normal state transmission prob-
ability τ ) as shown in Fig. 6. We have performed this study
within the approximation μ  �0, kBT (see Appendix D and
Appendix E). From these results we can conclude that in gen-
eral, there is no distinguishable pattern in the thermocurrent
coefficient for the case of s-wave and p-wave superconductiv-
ity.

Lastly we want to mention that in general, the transport
phenomenon, which is happening above the gap is expected
to be purely dissipative and hence may be related to entropy
generation. On the other hand we should note that the quasi-
particle excitations of the BdG equation are good eigenstates
of the system asymptotically away from the junction but in
the junction area they are no more good eigenstates and hence
lead to coherent mixing (interference) between the scattering
states above the gap and the Andreev bound states inside
the gap. It is straightforward to identify such an interference
term in the weak tunneling limit of the Josephson junction,
as discussed in Ref. [41] (and in Refs. [59–61]), where it is
shown that the total current Itot due to thermal bias can be
written as a sum of normal current of quasiparticles tunneling
(Iqp), the quasiparticle-pair interference current (Iqp−pair ) and
the nondissipative Josephson pair current (Ipair ) i.e., Itot =
Iqp + Iqp−pair + Ipair. Presence of such an interference term is
the reason behind the obstruction to the clear identification of
a conventional thermoelectric coefficient and its connection
to entropy generation in the case of a Josephson junction.

This situation gets even worse in the strong coupling limit or
the ballistic limit (which is exactly opposite to the tunneling
limit) where such interference terms are expected to have
larger contributions to the current. This fact motivated us to
define and study the thermocurrent coefficient rather than a
conventional thermoelectric coefficient in this paper.

As far as the possible strategy for the measurement of
the thermocurrent current is concerned, it cannot be mea-
sured in isolation as it will always be accompanied by the
finite temperature Josephson current. However, there may be
ways to measure the thermocurrent coefficient indirectly. For
example, consider a situation where a JJ is initially main-
tained at an equilibrium temperature T . The current that is
obtained, is totally the Josephson current S(T,T ) = IJ , where
the first (second) subscript corresponds to the temperature
of the left (right) lead S1 (S2). Now, if S1 is raised to tem-
perature T + δT , then the corresponding total current will
be a sum of the Josephson current and the thermocurrent
S(T +δT,T ) = IJ − δIJ + κ21

e δT , where δIJ is the variation in the
Josephson current due temperature bias. Next, consider the
situation where S1 is kept at temperature T while S2 is raised
to temperature T + δT , then the corresponding total cur-
rent will be S(T,T +δT ) = IJ − δIJ − κ21

e δT . Now if, (2S(T,T ) −
(S(T +δT,T ) + S(T,T +δT ) ))/2S(T,T ) � 1 then a measurement of
the ratio (S(T +δT,T ) − S(T,T +δT ) )/2δT will provide the ther-
mocurrent coefficient. Note that a similar strategy involving
φ12 → −φ12 rather than involving δT → −δT is difficult to
implement due to the presence of even-in-φ12 part of the
thermocurrent coefficient.
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APPENDIX A: MATRIX FORMALISM

To have a clear physical insight into different semiclas-
sical paths that give rise to degeneracy-lifted ABS and the
thermocurrent response of a JJ, we shall be using the matrix
method as discussed by Kundu et. al. [60].

Let �
e+(−)
qp[N] and �

h+(−)
qp[N] denote forward (backward) moving

electron-like QP and forward (backward) moving hole-like
QP respectively within the superconducting lead Si having
superconducting phase φi (i ∈ {1, 2}) [within the normal re-
gion]. These wave functions can be explicitly calculated
using the BdG Hamiltonian (1) in the main text or the BdG

Hamiltonian with quadratic dispersion and with s-wave or
p-wave superconductivity,

Hη =
(

− h̄2

2m

∂2

∂x2
− μ

)
τz + �η(x)(cos φrτx − sin φrτy),

(A1)

where �η(x) = �0[	(−x − L/2) + 	(x − L/2)] f (η),
f (η) = (−i∂x/kF )(1−η)/2, η = ±1 for s-wave and p-wave
superconductivity respectively and pF = h̄kF = √

2mμ is the
Fermi momentum.

We first consider two reflection matrices Rγ , γ ∈ {1, 2},
which describe both Andreev and normal reflections at the
normal-superconducting junctions,

R1�e+
N = r1

Ahe�
h−
N + r1

Nee�
e−
N ,

R1�h−
N = r1

Aeh�
e+
N + r1

Nhh�
h+
N ,

R2�e−
N = r2

Ahe�
h+
N + r2

Nee�
e+
N ,

R2�h+
N = r2

Aeh�
e−
N + r2

Nhh�
h−
N ,

R1�e−
N = R1�h+

N = R2�e+
N = R2�h−

N = 0,

where rγ

Aqq′ and rγ

Nqq′ respectively describe the amplitudes of different Andreev reflections and normal reflections.
To consider the propagation of the wave functions through a length l within the normal region, we consider two propagation

matrices, T γ (γ ∈ {1, 2}), such that

T 1(l )�e+
N

∣∣
x = �e+

N

∣∣
x+l ,

T 1(l )�h−
N

∣∣
x = �h−

N

∣∣
x−l ,

T 2(l )�e−
N

∣∣
x = �e−

N

∣∣
x−l ,

T 2(l )�h+
N

∣∣
x = �h+

N

∣∣
x+l ,

T 1(l )�e−
N = T 1(l )�h+

N = T 2(l )�e+
N = T 2(l )�h−

N = 0.

For energies above the superconducting gap, two tunneling matrices at the two boundaries T L,R
B are defined as

T L
B �e+

qp [φ1] = te�
e+
N + tAe�

h+
N ,

T L
B �h+

qp [φ1] = th�
h+
N + tAh�

e+
N ,

TR
B �e+

N = t qp
e �e+

qp [φ2] + t qp
Ae �h+

qp [φ2],

TR
B �h+

N = t qp
h �h+

qp [φ2] + t qp
Ah�e+

qp [φ2],

T L
B �e−

qp = T L
B �h−

qp

= TR
B �e−

N = TR
B �h−

N = 0.

We also consider scattering matrices within the normal
region to account for the disorders,

T e

[
�e+|−x

�e−|+x

]
=

[
�e+|+x

�e−|−x

]
T h

[
�h−|+x

�h+|−x

]
=

[
�h−|−x

�h+|+x

]

Note that the matrices T e and T h are related by the particle-
hole symmetry of the corresponding BdG Hamiltonian.

Explicit expressions of the reflection matrices Rγ and
tunneling matrices T L,R

B can be obtained by demanding the
continuity of the wave functions across the boundaries in
case of JJ based on HES or by using the following boundary
conditions in case of JJ with quadratic dispersion [61]:

h̄2

2m
τz

[
∂ (β )

x �±
S − ∂ (β )

x �±
N

] + iβ

(
1 − η

2

)
�0

kF

× [cos φ±τx − sin φ±τy]�±
S = 0 (A2)

where β ∈ {0, 1}; η = 1 for s-wave and η = −1 for p-wave
superconductivity; φ+ = φ2 and φ− = φ1; �S and �N are the
wave functions in the superconducting and normal regions
respectively.

APPENDIX B: CLEAN JUNCTION

Andreev bound states are the result of multiple Andreev
reflections. There are two ways in which Andreev bound state
can be formed as discussed in the main text. We shall describe

the same processes here with the help of matrix formalism
discussed in Appendix A.

(i) Tunneling of a Cooper pair from left to right.
An electron-like quasiparticle starts at x = −L/2 (i.e.,
�e+

N |x=−L/2) and propagates through the normal region and
reaches at x = L/2 (i.e., �e+

N |x=L/2 = T 1�e+
N |x=−L/2). It An-

dreev reflects back as a hole with unimodular amplitude r1
Ahe

(i.e., r1
Ahe�

h−
N = R1

A�e+
N ) by creating a Cooper pair in the

superconducting lead 2 (S2). The reflected hole then travels
through the normal region and reaches at x = −L/2 (i.e.
�h−

N |x=−L/2 = T 1�h−
N |x=L/2). It then again Andreev reflects

as an electron with unimodular amplitude r1
Aeh (i.e., r1

Aeh�
e+
N =

R1
A�h−

N ) by annihilating a Cooper pair in the superconducting
lead 1 (S1). Now for ω � �0, matrices Rγ and T γ are unitary,
so it must be

�e+
N |x=−L/2 = (

R1T 1R1T 1
)
�e+

N |x=−L/2. (B1)

The corresponding Andreev bound state energy can be ob-
tained by solving the determinant condition

det(I4×4 − R1T 1R1T 1) = 0, (B2)

which gives the ABS energy ω21
0 .

(ii) Tunneling of a Cooper pair from right to left. If a
right-moving hole-like quasiparticle starts from x = −L/2
(i.e. �h+

N |x=−L/2) and completes the cycle after two Andreev
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reflections, it can transfer a Cooper pair from S2 to S1,

�h+
N |x=−L/2 = (

R2T 2R2T 2
)
�h+

N |x=−L/2. (B3)

The corresponding Andreev bound state energy can be ob-
tained by solving the equation

det(I4×4 − R2T 2R2T 2) = 0, (B4)

which gives the ABS energy ω12
0 .

Now, tunneling of a quasiparticle with energy ω > �0

from S1 to S2 can be understood in terms of the matrices Rγ ,
T γ and T (L,R)

B .
(i) Tunneling of an electron (hole)-like quasiparticle from

left (right) to right (left). For a clean junction, an incident
electron-like quasiparticle in S1 (i.e., �e+

qp [φ1]) can tunnel
into S2 as a electron-like quasiparticle (i.e., �e+

qp [φ2]) either
directly or by any even number of Andreev reflections. Math-
ematically,

χ21
ee �e+

qp [φ2] = TR
B (T 1 + T 1R1T 1R1T 1 + ...)T L

B �e+
qp [φ1]

= TR
B T

1(I − R1T 1R1T 1)−1T L
B �e+

qp [φ1]. (B5)

It is clear from Eqs. (B5) and (B1) that the tunneling of an
electron-like quasiparticle from S1 to S2 is in correspondence
with the Andreev bound state having energy ω21

0 . Solving
Eq. (B5) we can calculate χ21

ee and hence T 21
ee .

(ii) Tunneling of an hole (electron)-like quasiparticle from
left (right) to right (left). Similarly, tunneling of a hole-like
quasiparticle from S1 to S2 can be mathematically expressed
as

χ21
hh �h+

qp [φ2] = TR
B (T 2 + T 2R2T 2R2T 2 + ...)T L

B �h+
qp [φ1]

= TR
B T

2(I − R2T 2R2T 2)−1T L
B �h+

qp [φ1]. (B6)

A comparison between Eqs. (B6) and (B3) clearly indicates
the fact that the tunneling of a hole-like quasiparticle from
S1 to S2 is in correspondence with the Andreev bound state
having energy ω12

0 . Solving Eq. (B6) we can calculate χ21
hh and

hence T 21
hh .

APPENDIX C: SIGNIFICANCE OF THE
QUANTITY (ke − kh)L/2

We have assumed the doping of the junction is sufficiently
high, so let us retain the expressions of ke and kh up to the first
order of ω/μ for quadratic dispersion relation,

ke =
√

2m

h̄

√
μ + ω ≈

√
2mμ

h̄

(
1 + ω

2μ

)
;

kh =
√

2m

h̄

√
μ − ω ≈

√
2mμ

h̄

(
1 − ω

2μ

)
. (C1)

Now, we shall consider the length of the junction L to be
finite compare to the superconducting coherence length ξ =
h̄
√

2μ/m/�0 so let L = xξ . Now

ke − kh

2
L ≈ 1

2

√
2mμ

h̄

[(
1 + ω

2μ

)
−

(
1 − ω

2μ

)]
xξ

≈ 1

2

√
2mμ

h̄

ω

μ

(
x

h̄

�0

√
2μ

m

)
≈ x

ω

�0
. (C2)

Thus, even for large enough doping, the quantity (ke − kh)L/2
is of the order of ω/�0, and thus cannot be neglected.

For linear dispersion relation, ke = μ+ω

h̄vF
and kh = μ−ω

h̄vF
,

hence, here also ke−kh
2 L ≈ x ω

�0
.

APPENDIX D: PRESENCE OF A SCATTERER
IN THE MIDDLE OF THE JUNCTION

Starting with an initial state ((�e+
N |x=−L/2), (�e−

N |x=L/2))T ,
it will come back to the same state after a electron scattering
followed by an Andreev reflection, a hole scattering and an-
other Andreev reflection. For ω < �0, these matrices all being
unitary, it must be[

�e+
N |x=−L/2

�e−
N |x=L/2

]
= RA

PT h
P RA

PT e
P

[
�e+

N |x=−L/2

�e−
N |x=L/2

]
(D1)

where we have defined MP = MTP. Note that, in the absence
of barrier, i.e., at T e = T h = I, all the matrices TP, RA, T e

and T h are block diagonal and the aforesaid two types of ABS
(ω21

0 and ω12
0 ) do not interfere. In presence of barrier, finite

backscattering (off-diagonal blocks of T e and T h) gives rise
to the interference between the two types of ABS (ω21

0 and
ω12

0 ).
ABS energies, in presence of barrier can be obtained by

solving the equation

det
(
I4×4 − RA

PT h
P RA

PT e
P

) = 0. (D2)

Note that, if we had started with the initial state
((�h−|x=L/2), (�h+|x=−L/2))T then Eq. (D2) would have
looked like

det
(
I4×4 − RA

PT e
P R

A
PT h

P

) = 0. (D3)

It turns out, the ABS energies, as obtained from (D2) or (D3)
are same.

For energies ω > �0, we define the following matrices:

T L =
[
T L

B 0
0 T L

B

]
TR

e =
[
TR

B 0
0 0

]
TR

h =
[

0 0
0 TR

B

]
.

With this, tunneling of a QP from S1 to S2 can be understood
as follows:

(i) An incident electron-like QP in S1 ((�e+
qp [φ1]), (0))T

can tunnel into S2 as an electron-like QP ((�e+
qp [φ2]), (0))T

either directly or by any even number of Andreev reflections
whereas tunneling of an electron-like QP from S1 to S2 as an
hole-like QP ((0), (�h+

qp [φ2]))T must be mediated by an odd
number of Andreev reflections,

χ21
ee

[
�e+

qp [φ2]
0

]
= TR

e T
PT e

P (Be)−1T L

[
�e+

qp [φ1]
0

]
,

χ21
he

[
0

�h+
qp [φ2]

]
= TR

h T
PT h

P RA
PT e

P (Be)−1T L

[
�e+

qp [φ1]
0

]

where Be = I4×4 − RA
PT h

P RA
PT e

P . Solving above equa-
tions we can calculate χ21

ee and χ21
he and hence we T 21

ee and
T 21

he .
(ii) Similarly, tunneling of a hole-like QP from

S1 ((0), (�h+
qp [φ1]))T into S2 as an hole-like QP
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((0), (�h+
qp [φ2]))T can be mediated directly or by any

even number of Andreev reflections whereas tunneling
of a hole-like QP from S1 to S2 as an electron-like QP
((�e+

qp [φ2]), (0))T must be mediated by an odd number of
Andreev reflections,

χ21
hh

[
0

�h+
qp [φ2]

]
= TR

h T
PT h

P (Bh)−1T L

[
0

�h+
qp [φ1]

]
,

χ21
eh

[
�e+

qp [φ2]
0

]
= TR

e T
PT e

P R
A
PT h

P (Bh)−1T L

[
0

�h+
qp [φ1]

]

where Bh = I4×4 − RA
PT e

P R
A
PT h

P . Solving above equa-
tions we can calculate T 21

hh and T 21
eh .

APPENDIX E: MAXIMUM POSSIBLE
THERMO-CURRENT COEFFICIENT WITH THE

SCATTERER AT THE MIDDLE OF THE JUNCTION

We have used the formalism as discussed in Appendix D
to calculate the quantities T 21

ee , T 21
he , T 21

hh , and T 21
eh . We have

assumed the doping to be high enough so that the quasipar-
ticle momenta pi ≈ pF , where pF is the Fermi momentum,
leading to perfect Andreev reflections at the normal metal-
superconductor boundaries but (pe − ph)L/h̄ �= 0, within the
normal region, due to the finite length of the junction. With

this assumption, different transmission probabilities turns out
to be

T 21,η
ee = 2τ sinh2 α( cosh 2α − cos[(ke − kh)L + φ12])

�(η)�∗(η)
,

(E1)

T 21,η

hh = 2τ sinh2 α( cosh 2α − cos[(ke − kh)L − φ12])
�(η)�∗(η)

,

(E2)

T 21,η

he = 2τ (1 − τ ) sinh2 α(1 − η cos φ12)

�(η)�∗(η)
= T 21,η

eh , (E3)

where �(η) = (1 − η cos[(ke − kh)L + 2iα] − τ (1 −
η cos φ12)), α = arccosh(ω/�0), τ is the the transmission
probability of the scatterer placed at the middle of the junction
and η = ±1 for s-wave and p-wave superconductivity
respectively.

We have used the above expressions and Eq. (4) of the main
text to calculate the thermocurrent coefficient of a JJ with
either s-wave or p-wave superconductivity. Now for a fixed
value of the length of the junction L and for a fixed value of
the transmission probability τ of the scatterer at the middle of
the junction, we have calculated the thermocurrent coefficient
for different values of the superconducting phase different φ12

within 0 � φ12 � 2π in steps of 0.01π and we recorded only
the maximum value κ21

e in this process.
Now, we have varied τ within 1 � τ � 0 in steps of 0.01

and L within 0 � L � 5ξ in steps of 0.01ξ . For each set
of values of {L, τ } we have repeated the previous process
to obtain the maximum possible value of κ21

e . Lastly we
have plotted this maximum possible value of κ21

e , scanned
over φ12, as a function of L and τ . This is shown in
Fig. 6.
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