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Probing electron-hole weights of an Andreev bound state by transient currents
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Andreev bound states (ABSs) are localized quantum states that contain both electron and hole components.
They ubiquitously reside in inhomogeneous superconducting systems. Following theoretical analysis, we pro-
pose to probe the electron-hole weights of an ABS via a local tunneling measurement that detects the transient
current under a steplike pulse bias. With our protocol, the ABS energy level can also be obtained from peaks of
the Fourier spectrum of the transient current. Our protocol can be applied to detect robust zero-energy Majorana
bound states (MBSs), which have equal electron-hole weights, in candidate platforms where local tunneling
spectroscopy measurement is possible. In the one-dimensional Majorana nanowire model, we numerically
calculate the electron-hole weights for different types of low-energy bound states, including ABSs, quasi-MBSs,
and MBSs.
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I. INTRODUCTION

Andreev reflection [1] is a unique transport mechanism that
occurs at normal metal–superconductor interfaces. It converts
incoming electrons (holes) into reflected holes (electrons),
and generates Andreev bound states (ABSs) [2] in inhomoge-
neous superconducting systems. ABSs widely exist in normal
metal–superconductor tunnel junctions separated by single
[3–6] or double [7–11] quantum dots, Josephson junctions
[12–15], vortex cores in type-II superconductors [16–19],
surfaces of unconventional superconductors [20–22], etc. As
ABSs arise from Andreev reflections, they generically contain
both electron and hole components [23,24], indicated by the
corresponding weights we and wh, respectively. Especially,
these two weights equal (we = wh) for an exotic zero-energy
ABS, i.e., the Majorana bound state (MBS) [25–27] at the
edges of topological superconductors [28]. The electron-hole
superposition of both ABSs and MBSs uniquely distinguishes
them from most other quasiparticle states.

It is of general interest to detect and control ABSs in
different systems with tuning knobs such as gate voltages
and external magnetic fields. In experiments, one can rou-
tinely obtain discrete energy levels of ABSs via the local
tunneling spectroscopy measurement realized by a metallic
probe with a dc bias voltage. This simple spectroscopy mea-
surement, however, detects the product wewh of an ABS
[29], and is thus unable to reveal the individual values of
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we and wh. The existing protocols of measuring we and
wh of an ABS rely on the Coulomb-blockade conductance
peaks in superconducting islands [30] or the nonlocal conduc-
tance in three-terminal setups [31]. Recently, both protocols
have been applied to detect MBSs (owning we = wh) that
are believed to exist in semiconductor-superconductor hy-
brid nanowire devices [32–35]. Though these two protocols
are well designed for nanowire devices, their implementa-
tions could be potentially rather complicated and difficult
in other possible MBS-hosting systems, e.g., topological
insulator-superconductor heterostructures [36,37] and iron-
based superconductors [38,39]. It is thus rewarding to design
a feasible protocol that can probe we and wh of an ABS in
general systems. As aforementioned, local tunneling spec-
troscopy is a widely used technique, and it can be easily
applied to most superconducting systems. Is it possible to
design an extended version of the local tunneling spectroscopy
that can detect the values of we and wh?

In this work we propose that we and wh of an ABS are
experimentally accessible via a local tunneling current mea-
surement using a steplike pulse bias. More specifically, we and
wh of an ABS can be extracted from the time evolution of the
transient current; the ABS energy level can be obtained from
the characteristic peak positions of the Fourier spectrum of the
transient current. The knowledge of the electron-hole weights
and energy level of an ABS can be applied to distinguishing
among zero-energy ABSs, quasi-MBSs [40–47], and MBSs,
which is yet highly demanded in the current research of
MBSs [27,48]. Based on the one-dimensional (1D) Majorana
nanowire model [49,50], we numerically calculate the spatial
profiles of the wave functions and electron-hole weights we,
wh for ABSs, quasi-MBSs, and MBSs. We want to point out
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that the obtained distinct features suffice to distinguish MBSs
from ABSs and quasi-MBSs. Importantly, we anticipate those
features as experimentally accessible, following recent ad-
vances in ultrafast electronic transport techniques [51–53].

The remainder of this paper is organized as follows. In
Sec. II we introduce the model Hamiltonian, explain our pro-
tocol by a simple semiclassical method, and establish an exact
time-dependent current formula. In Sec. III we first show
the numerical results of time-dependent current mediated by
ABSs with different electron-hole weights. We further present
the calculated energy spectra, wave functions, and electron-
hole weights of different types of bound states in the 1D
Majorana nanowire model. Finally, we give a brief summary
in Sec. IV. Calculation details are included in the Appendixes.

II. MODEL AND FORMALISM

A. Effective Hamiltonian

The system we consider can be modeled by the effective
Hamiltonian

H = HP + HB + HT , (1)

HP =
∑
kσ

[εk + U (t )]c†
kσ

ckσ , (2)

HB = εBc†
BcB, (3)

HT = λ
∑
kσ

c†
kσ

(uσ cB + vσ c†
B) + H.c. (4)

Here HP describes a metallic probe with energy dispersion εk

under a time-dependent bias voltage U (t ) [54,55]. The probe,
which can be an electrode or a STM tip, is assumed to be
a metal with a constant density of states ρ. HB describes an
ABS with energy εB smaller than the superconducting gap. We
choose the Fermi level μS of the superconductor as the refer-
ence energy. The wave function of the ABS is characterized
by the position (x) and spin (σ ) dependent Bogoliubov–de
Gennes (BdG) amplitudes uσ (x) and vσ (x). The position-
dependent electron and hole weights of the ABS can be
defined as we(x) = ∑

σ |uσ (x)|2 and wh(x) = ∑
σ |vσ (x)|2,

respectively. The tunneling Hamiltonian HT describes the lo-
cal coupling between the probe and the ABS with a constant
tunneling amplitude λ [30,56]. The coupling induced level
broadening is � = 2πρ|λ|2. In HT we use uσ and vσ (with
x being omitted) to denote the local BdG amplitudes at the
position nearest to the probe. For simplicity one can redefine
the parameter λ in HT to impose a normalization condition∑

σ (|uσ |2 + |vσ |2) = 1, i.e., we + wh = 1. We also assume
εB � 0 throughout the work, as the results of εB > 0 cases can
be immediately obtained via a particle-hole transformation.

B. Semiclassical rate equation analysis

Our protocol of probing we and wh of an ABS via a local
tunneling current measurement is established by the semi-
classical rate equation (RE) approach [57–61]. Briefly, the
time-dependent occupation [P1(t )] and inoccupation [P0(t )]
probabilities of an ABS obey the normalization requirement

FIG. 1. Schematics of normal [(a) and (b)] and Andreev [(c) and
(d)] sequential tunnelings between a metallic probe (blue rectangle)
and an ABS with energy εB across a tunneling barrier (gray rectan-
gle). The two electrons enclosed in an ellipse represent a Cooper pair
condensed at the Fermi level μS of the superconductor. See text for
the description of these tunneling processes.

P0(t ) + P1(t ) = 1 and the RE

dP1(t )

dt
= −γ1→0(t )P1(t ) + γ0→1(t )P0(t ), (5)

where γ1→0 (γ0→1) refers to the transition rate from the oc-
cupied (unoccupied) to the unoccupied (occupied) state. As
an ABS consists of electron and hole components, its com-
munication with the probe contains both the normal (N) and
Andreev (A) sequential tunnelings, as illustrated in Fig. 1.
Specifically, when the ABS is unoccupied and εB < U (t ),
an electron with energy εB in the probe can tunnel into the
ABS with a rate γ N

0→1(t ) [Fig. 1(a)]. Inversely, an electron
can tunnel from the ABS into the probe with a transition rate
γ N

1→0(t ) if the ABS is occupied and εB > U (t ) [Fig. 1(b)].
When the ABS is occupied and U (t ) > −εB, an Andreev
tunneling with a transition rate γ A

1→0(t ) could convert an
electron with energy −εB in the probe and the electron on
the ABS into a Cooper pair [Fig. 1(c)]. Similarly, the oppo-
site process, i.e., Cooper pair splitting, with a transition rate
γ A

0→1(t ) is energetically allowed if the ABS is unoccupied
and U (t ) < −εB [Fig. 1(d)]. As a result, the rates in the RE
are γ0→1(t ) = γ N

0→1(t ) + γ A
0→1(t ) and γ1→0(t ) = γ N

1→0(t ) +
γ A

1→0(t ). Following Fermi’s golden rule [61],

γ N
0→1(t ) = �

h̄
f [εB − U (t )]we, (6)

γ N
1→0(t ) = �

h̄
{1 − f [εB − U (t )]}we, (7)

γ A
0→1(t ) = �

h̄
{1 − f [−εB − U (t )]}wh, (8)

γ A
1→0(t ) = �

h̄
f [−εB − U (t )]wh, (9)

where f (ε) = 1/(eε/kBT + 1) is the Fermi-Dirac distribution
function. The RE method can capture the major features of
our system at high enough temperatures (kBT � �).
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For the simplest situation, we consider a steplike
pulse bias U (t ) = 	(t )V , which has been widely studied
for transient transports in normal [54,55,62–71] and
superconducting [72–74] systems. Before applying the bias,
the ABS has the equilibrium occupation P1(t � 0) = f (εB),
which is obtained by setting dP1(t )/dt = 0 in the RE.
After the sudden switch-on of a constant bias, the
solution of the RE instead becomes P1(t > 0) = f (εB −
V )we + f (εB + V )wh + (δ fewe − δ fhwh)e−�t/h̄, where
δ fe(h) = f (±εB) − f (±εB − V ) refers to the nonequilibrium
bias induced modification of the distribution. The local
tunneling current I (t ) = −e[γ N

1→0(t ) − γ A
1→0(t )]P1(t ) +

e[γ N
0→1(t ) − γ A

0→1(t )][1 − P1(t )] then equals

I (t ) = 	(t )[Ist + Itrans(t )], (10)

Ist = 2e
�

h̄
[ f (εB − V ) − f (εB + V )]wewh, (11)

Itrans(t ) = −e
�

h̄
(we − wh)(δ fewe − δ fhwh)e−�t/h̄, (12)

where Ist and Itrans(t ) are steady-state and transient currents,
respectively.

Equations (10)–(12) lead to one of our major conclusions:
the individual values of we and wh, which are inaccessible
from the steady-state current Ist, can be obtained by measuring
the transient current Itrans(t ) at temperatures kBT � �. Specif-
ically, the values of we (or wh = 1 − we) and � can be readily
obtained by fitting the measured time evolution of the tran-
sient current with our theoretical expressions Eqs. (10)–(12),
after knowing V , T , and εB. The former two (V and T ) are
experimental knob parameters that can be directly read out.
The value of εB can be obtained from the Fourier spectrum
of the transient current at temperatures kBT < �, as will be
shown in Sec. III.

C. Nonequilibrium Green’s function formalism

To support the RE analysis, we calculate the current with
the exact nonequilibrium Green’s function (NEGF) technique

[54,75]. With our chosen steplike pulse bias, the exact steady-
state current is (see Appendix A)

Ist = e

2h

∫
dε[ f (ε − V ) − f (ε + V )]T (ε), (13)

with the transmission probability

T (ε) =
∑
η=e,h

Tr[�ηGr (ε)�η̄Ga(ε)], (14)

where Gr(a)(ε) = 1/(ε − Hr(a)
S ) is the dressed Green’s func-

tion of the ABS with Hr(a)
S = εBσz ∓ i(�e + �h)/2 (σz is the

Pauli matrix in Nambu space) and

�e = �

(
we weh

w∗
eh wh

)
, �h = �

(
wh weh

w∗
eh we

)
, (15)

with weight weh = ∑
σ u∗

σvσ , which is irrelevant in the RE
analysis. Clearly Ist and the differential conductance G ≡
dIst/dV obey the symmetries Ist(V ) = −Ist(−V ) and G(V ) =
G(−V ), which has been explained by the particle-hole sym-
metry and the unitarity of the scattering matrix of a normal
metal–superconductor junction [76]. The explicit expression
of the transmission probability in Eq. (14) is

T (ε) = 16�2
[
4ε2 p+ + p−

(
�2q− + 4ε2

B

)]
�4q2− + 16

(
ε2

B − ε2
)2 + 8�2

(
ε2q+ + ε2

Bq−
) , (16)

where p± = wewh ± |weh|2 and q± = 1 ± 4|weh|2. When
V � kBT, �, |εB|, the steady-state current in Eq. (13) be-
comes Ist = 2e�wewh/h̄, consistent with Eq. (11) of the
RE analysis. As only the product of we and wh appear in
Eq. (16), their individual values are inaccessible from Ist(V )
and G(V ). At zero temperature, for a zero-energy MBS own-
ing u↑/v↑ = u↓/v↓ = eiφ (φ is an arbitrary real number), i.e.,
εB = 0 and we = wh = |weh| = 0.5, Eqs. (13) and (16) lead to
the well-known quantized zero-bias conductance, i.e., G(0) =
2e2/h [77,78].

The exact transient current Itrans(t ) is a sum of the following
two parts (see Appendix A):

I1(t ) = e

2h

∑
η=e,h

∫
dε f (sηε)Tr[isηV �ηei(ε+sηV −Hr

S )t Gr (ε)Gr (ε + sηV ) + H.c.], (17)

I2(t ) = e

2h

∑
η=e,h

∫
dε f (ε)Tr

{[−sηV (�e − �h)ei(ε+sηV −Hr
S )t Gr (ε)Bη(ε) + H.c.

]
−V 2(�e − �h)e−iHr

St Gr (ε)Bη(ε)Ga(ε)eiHa
St
}
, (18)

where se(h) = ±1 and Bη(ε) = Gr (ε + sηV )�ηGa(ε + sηV ).
The matrix Hr(a)

S is non-Hermitian with eigenvalues

Er
1,2 = ±

√
ε2

B − w2
eh�

2 − i�/2, Ea
1,2 = Er∗

1,2. (19)

The traces in Eqs. (14), (17), and (18) are evaluated based
on the eigenbasis of Hr(a)

S (see Appendix A). As ImEr
1,2 �

0 and ImEa
1,2 � 0, the exponential factors exp(−iHr

St ) and
exp(iHa

St ) of I1(t ) and I2(t ) die out in the long-time limit
t � h̄/�, in agreement with their transient feature obtained
from the RE analysis. Additionally, the transient current

I1 + I2 breaks the symmetry respected by Ist, i.e., I (t,V ) 	=
−I (t,−V ). In effect, it is this particle-hole asymmetry in the
nonequilibrium transient dynamics that enables the measure-
ment of we and wh of an ABS using the transient transport.

III. NUMERICAL RESULTS

A. Time-dependent current mediated by an ABS

Figure 2 compares the time evolution of current I (t ) calcu-
lated with the RE (red dashed lines) and the NEGF (blue solid

075416-3



ZHAN CAO et al. PHYSICAL REVIEW B 106, 075416 (2022)

FIG. 2. Time evolution of the tunneling current at kBT = 8 �

under a steplike pulse bias U (t ) = 	(t )V . The blue solid and red
dashed curves are obtained respectively using the NEGF and the
RE methods. The bias voltage V = 30 � in (a), (c), and (d), while
V = −30 � in (b). Different ABS energy levels εB and electron
weights we have been considered. We choose weh = 0 in the NEGF
calculation.

lines), respectively, at high temperatures (kBT � �). Different
parameter sets are considered for three regimes, i.e., � <

kBT < |εB| [Figs. 2(a) and 2(b)], � < |εB| < kBT [Fig. 2(c)],
and |εB| < � < kBT [Fig. 2(d)], as given in the corresponding
panels in Fig. 2. We keep |V | as the largest energy scale
to enable the ABS-mediated sequential tunnelings mentioned
in Sec. II A. In Fig. 2 we observe remarkable agreement of
the I (t ) from the two methods, except for the initial weak
current oscillations, for all three regimes under considera-
tion. Note that, the coherent current oscillations captured by
the NEGF is completely ignored by the RE as it involves
only incoherent sequential tunnelings. In Fig. 2(a) (V = 30 �

and εB = −15 �) the currents flowing into ABSs with dif-
ferent electron weights we = 0.75 and we = 0.25, which
represent particle-hole conjugate situations, evolve oppositely
(upward/downward) and exponentially (at a rate �/h̄) into
the identical steady-state value. When the bias reverses its
sign [Fig. 2(b)], the currents instead becomes I (t,V,we) =
−I (t,−V, 1 − we), which is evident from Eqs. (10)–(12).
This modified symmetry, which becomes now weight depen-
dent, is indeed the reason one can extract we and wh from the
transient current.

The current evolution also depends on the ABS energy
level. For εB = −5 � [Fig. 2(c)] and εB = 0 [Fig. 2(d)], the
current curves of we = 0.25 and we = 0.75 both show a
downward trend, in contrast to those in Figs. 2(a) and 2(b).
Moreover, we highlight that the difference between current
curves of we = 0.75 and we = 0.25 decreases with reducing
|εB|. The difference finally disappears for εB = 0, as the sys-
tem becomes perfectly particle-hole symmetric. As another
important feature, in all four panels, current curves of we =
0.5 arrive at their steady-state values immediately after the
switch-on of the pulse bias, due to the absence of transient
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FIG. 3. (a)–(c) Time evolution of the tunneling current at kBT =
0 under a steplike pulse bias U (t ) = 	(t )V with V = 30 �. Current
curves are obtained with the NEGF method for ABSs with different
energy levels εB and electron weights we. (d)–(f) The corresponding
modulus of the Fourier spectrum of the transient current in the left
panel. The finite-frequency spectrum peaks locate at |ω±| ≈ |V | ±
|εB|. The zero-frequency peak is absent if we = 0.5, for all values
of εB. Note that the lines of we = 0.75 and we = 0.25 coincide in
(c) and (f), where εB = 0. We choose weh = 0 as in Fig. 2.

current component as addressed by Eq. (12). By contrast, the
current curves of we = 0.75 and we = 0.25 have an apparent
exponential evolution in time. We want to stress that, as MBSs
have we = 0.5 following its definition, the distinguishing fea-
ture of the we = 0.5 current curves is potentially a strong
signature to identify MBSs.

The ABS energy level εB can be obtained from the Fourier
spectrum of the transient current I (ω) = ∫ ∞

0 dtItrans(t )eiωt at
relatively low temperatures kBT < �. In this limit we choose
T = 0 in numerical calculations for simplicity. As shown in
Figs. 3(a)–3(c), I (t ) displays oscillating and decaying features
that originate from the imaginary and real parts, respectively,
of the exponential factors in I1(t ) and I2(t ) [see Eqs. (17) and
(18)]. The current oscillations induced by quantum coherence
are suppressed at high temperatures (see Fig. 2). The mod-
ulus of the corresponding Fourier spectra |I (ω)| are shown
in Figs. 3(d)–3(f). The spectra have two types of charac-
teristic peak: a Lorentzian peak at ω0 = 0 with a width �

and four logarithmic-type peaks at |ω±| = |V | ± ReEr
1 (see

Appendix B). Physically, the zero-frequency peak originates
from the exponential current evolution captured by both the
RE and the I2(t ) from the NEGF, while the finite-frequency
peaks are associated with current oscillations induced by co-
herent electron tunnelings between the probe and the ABS.
For a weak coupling strength �, ReEr

1 approximately equals
−εB [see Eq. (19)]. As a result, the ABS energy level εB
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can then be obtained from the finite-frequency peaks of the
spectrum, following εB = |V | − |ω+|.

Notably, in Figs. 3(d)–3(f) the zero-frequency peak is ab-
sent if we = 0.5, for all chosen values of εB. Indeed, we have
�e = �h when we = 0.5, leading to a vanishing current I2(t )
[see Eq. (18)]. Thus, the zero-frequency peak in the Fourier
spectrum that depends on the exponential suppression of I2(t )
disappears. Correspondingly, at low temperatures (kBT < �),
I (t ) oscillates around the steady-state value as shown by the
red lines in Figs. 3(a)–3(c); at high temperatures (kBT � �),
I (t ) jumps immediately to its steady-state value when the bias
is suddenly switched on [see Figs. 2(a)–2(d) for we = 0.5].

As discussed above, there are two relevant timescales of
the transient current: the exponential decaying timescale τ1 =
h̄/� and the period of the coherent oscillation τ2 = h̄/(|V | +
|εB|). Briefly, τ1 and τ2 refer to the timescales in which the
weights and the energy level of the ABS become experimen-
tally accessible, respectively. To estimate the typical values
of τ1 and τ2, we take � = 0.3 meV for the commonly used
conventional superconductor Al. Within our protocol, |εB| <

|V | < � is required, allowing for only sequential tunnelings
mediated by the ABS. We thus assume � = 0.01 meV, |εB| =
0.05 meV, and |V | = 0.1 meV, and obtain τ1 = 66 ps and
τ2 = 4.4 ps. The associated tunneling current is of the order of
1 nA, which is large enough to be measured in experiments.
Experimentally, the smallness of τ2 might pose a challenge
for obtaining |εB| from the coherent oscillation of the current
evolution. However, the value of |εB| can alternatively be ob-
tained by the standard tunneling spectroscopy measurement.
In realistic experiments, the value of � can be further reduced
by one order or more. In addition, the bias V can also be
smaller when detecting a near-zero-energy ABS with a small
εB, as long as |V | > |εB|. In these cases, the values of τ1 and
τ2 become larger, making the detection of ABS features more
feasible. Therefore, we anticipate the experimental accessi-
bility of the current evolution features displayed in Figs. 2
and 3 by the subpicosecond measurement techniques, which
have been achieved recently in ultrafast electronic transport
measurements [51–53].

B. Numerical simulations of the 1D Majorana nanowire model

For a generic ABS, its electron weight we and energy
level εB are normally unrelated. By contrast, an exotic MBS
requires both zero energy (εB = 0) and specific weights
(we = wh = |weh| = 0.5 as mentioned in Sec. II C). In our
protocol, the weight |weh| is inaccessible as it is absent
in Eqs. (10)–(12). Strictly, the value of |weh| can be ob-
tained from the heights and line shapes of conductance peaks
[see Eqs. (13) and (16)]. It is however much more com-
plicated than the readouts of we and wh from the transient
current [see Eq. (12)]. Nevertheless, we infer that |weh| =
0.5 is implicit when both we = wh = 0.5 and εB = 0 per-
sist under a continuous tuning of experimental knobs, e.g.,
magnetic field and various gate voltages, as MBSs are pre-
dicted to be topologically protected from perturbations. On
the contrary, we, wh, and εB of an ABS are anticipated to
change when tuning experimental knobs. A natural question
is whether we = wh = |weh| = 0.5 and εB = 0 can simulta-
neously occur by accident. Our answer is negative, based on

FIG. 4. (a) and (b) Profiles of two possible nonuniform elec-
trostatic potential Vpot(x) of a Majorana nanowire with a length
of L = 2.5 μm. (c)–(e) Energy spectra of the Majorana nanowire
in three cases: (I) α = 20 meV nm and μ = Vpot(x) = 0; (II) α =
30 meV nm, μ = 1.5 meV, and Vpot(x) shown in (a); and (III)
α = 40 meV nm, μ = 1.5 meV, and Vpot(x) shown in (b). The B-
dependent LBSs traced in red are ABSs, quasi-MBSs, or MBSs,
as highlighted by the background color of gray, yellow, or cyan,
respectively. A few zero-energy and finite-energy LBSs are marked
by black and blue dashed lines, respectively. (f)–(h) Spatial profiles
of the squared modulus of the two wave functions in Majorana basis
ψA and ψB [see Eqs. (20) and (21)] of the LBSs at the magnetic fields
indicated by the colored markers in (c)–(e). The spatial profiles of
|ψA|2 and |ψB|2 shown in (f)–(h) are representative of MBSs, ABSs,
and quasi-MBSs, respectively. Other parameters used for calcula-
tions are m∗ = 0.026 me, � = 0.25 meV, and geff = 15.

numerical simulations of the 1D Majorana nanowire model
[49,50]: Hwire = ∫ L

0 dx�†(x)H�(x) with H = [p2
x/2m∗ −

μ + Vpot(x) − ασy px/h̄]τz + VZσx + �τx. Here L, m∗, μ, and
px = −ih̄∂x, α, � are the wire length, effective electron mass,
chemical potential, momentum operator, Rashba spin-orbit
coupling strength, and superconducting pairing potential, re-
spectively. VZ = geffμBB/2 is the Zeeman energy induced by
a magnetic field B, with geff the effective Landé factor and μB

the Bohr magneton. Vpot(x) denotes the possible nonuniform
electrostatic potential along the nanowire. With given param-
eters, diagonalizing Hwire on a 1D lattice directly gives the
energy spectrum and wave functions.

We consider three nanowires with different electrostatic
potentials: Vpot(x) = 0 (case I), a steplike Vpot(x) shown in
Fig. 4(a) (case II), and a linear Vpot(x) shown in Fig. 4(b) (case
III). The numerically calculated B-dependent low-energy BdG
spectra of these cases are presented in Figs. 4(c)–4(e), re-
spectively. As B increases, a topological phase transition
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occurs at the boundary of the cyan region (where V c
Z =√

�2 + max{[μ − Vpot(x)]2} [79]), together with a gap close-
and-reopen feature at V c

Z in the spectra. The red lines in
the spectra label the lowest-energy BdG states (LBSs) that
are generally well separated from the bulk states. For a
given B, the negative E in the red lines corresponds to
the parameter εB in Eq. (3). Following the red lines, LBSs
with robust or accidental zero energy can be found. The
nature of a subgap bound state can be identified by visualiz-
ing the corresponding spatial profiles of the wave functions
in the Majorana basis. Specifically, with the wave func-
tions of the positive- and negative-energy LBS ψ±(x) =
{u±,↑(x), u±,↓(x), v±,↓(x),−v±,↑(x)}, we can construct the
wave functions in the Majorana basis, i.e., the linear combina-
tions [41]

ψA(x) = 1√
2

[ψ+(x) + ψ−(x)], (20)

ψB(x) = i√
2

[ψ+(x) − ψ−(x)], (21)

for the real Hamiltonian Hwire. In Figs. 4(f)–4(h) we present
the spatial profiles of |ψA|2 and |ψB|2 for the corresponding
LBSs at the magnetic fields indicated by the colored markers
in Figs. 4(c)–4(e), respectively. These profiles show the results
of three representative cases: (i) |ψA|2 and |ψB|2 are well
separated and localized at the opposite wire ends [Fig. 4(f)];
(ii) |ψA|2 and |ψB|2 extensively overlap and localize at the
same wire end [Fig. 4(g)]; and (iii) |ψA|2 and |ψB|2 are spa-
tially separated by a length that is larger than the peak widths,
and only one of them is localized at the wire end [Fig. 4(h)].
The subgap bound states with these three characteristic spatial
profiles of |ψA|2 and |ψB|2 are respectively referred to as
MBS, ABS, and quasi-MBS [40] (or partially separated ABS
[41–44]). In the spectra shown in Figs. 4(c)–4(e), we highlight
the regions where the LBSs belong to ABSs, quasi-MBSs,
or MBSs with a background color of gray, yellow, or cyan,
respectively. Notice that the three regions are not strictly sep-
arated as the LBSs experience crossovers near the boundaries
[80].

Now we proceed to discuss the electron-hole weights of
ABSs, quasi-MBSs, and MBSs in Majorana nanowires. With
the wave function ψ−(x), one can calculate the normalized
weights

we(x) = 1

�(x)

∑
σ

|u−,σ (x)|2, (22)

wh(x) = 1

�(x)

∑
σ

|v−,σ (x)|2, (23)

weh(x) = 1

�(x)

∑
σ

u∗
−,σ (x)v−,σ (x), (24)

where we choose �(x) = ∑
σ (|u−,σ (x)|2 + |v−,σ (x)|2) as the

normalization factor to reflect the relative electron and hole
weights at all positions x. This renormalization is especially
useful when the weights are small at some positions. In
Figs. 5(a)–5(c) we show the B-dependent electron and hole
weights at the leftmost site (x = 0) of the nanowire, for the
LBSs shown in red lines in Figs. 4(c)–4(e), respectively. These
weights are relevant to the tunneling conductance measured in
hybrid semiconductor-superconductor nanowire experiments

FIG. 5. (a)–(c) Normalized weights we, wh, and weh of the
negative-energy branch LBS shown by the red lines in Figs. 4(c)–
4(e). The weights are calculated at the leftmost site (x = 0) of the
nanowire. The same background colors and vertical dashed lines
are also shown in Figs. 4(c)–4(e). In the cyan region of (a) and
yellow region of (c), we = wh = |weh| = 0.5 persist over a sizable
range of B, the corresponding LBSs are robust zero-energy MBSs
and quasi-MBSs, respectively, shown in Figs. 4(c) and 4(e). In
Figs. 4(c)–4(e) and (a)–(c), at some fine-tuned B values the LBSs
have we = wh = |weh| = 0.5 and εB 	= 0 (marked blue dashed lines)
or we 	= wh 	= |weh| and εB = 0 (marked by black dashed lines).
(d)–(f) Spatial distributions of the normalized weights we and wh for
the zero-energy MBS, ABS, and quasi-MBS indicated by the colored
markers in Figs. 4(c)–4(e).

(see, e.g., Refs. [81–88]), in which the electrode is tunnel
coupled to one end (say the left end) of the nanowire. In the
cyan regions of Figs. 4(c) and 5(a) where MBSs exist and in
the yellow regions of Figs. 4(e) and 5(c) where quasi-MBSs
exist, one finds that we = wh = |weh| = 0.5 and εB = 0 are
robust over a sizable range of B. In all three nanowire cases,
the energy level of the MBS remarkably oscillates at large B
[the cyan regions of Figs. 4(c)–4(e)]. The oscillation arises
from the inter-MBS hybridization of a finite-size nanowire
[89,90]. As shown in the cyan regions of Figs. 5(a)–5(c), this
finite-size effect also leads to oscillations of the electron-hole
weights of MBSs at large B. Particularly, for certain values of
B, MBSs have either (i) we = wh = |weh| = 0.5 and εB 	= 0
(marked by blue dotted lines) or (ii) we 	= wh 	= |weh| and
εB = 0 (marked by black dotted lines). MBSs of both cases,
however, dramatically deviate from the aforementioned ro-
bust zero-energy MBSs with equal electron-hole weights. In
nanowire case II, ABSs and quasi-MBSs with accidental zero
energy are shown to own we 	= wh 	= |weh|, as indicated by the
black dashed lines in the gray and yellow regions in Figs. 4(d)
and 5(b). These results imply that as long as the zero-energy
LBS persists owning both εB = 0 and we = wh = 0.5 when
continuously varying B, the value of |weh| can be inferred to be
0.5 and the LBS can be identified as a robust zero-energy MBS
or quasi-MBS, both of which are applicable in topological
quantum computation [40,91].
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As shown above, robust zero-energy MBSs and quasi-
MBSs share an identical feature, i.e., we = wh = |weh| =
0.5, at the leftmost site of the nanowires, which have zero
or nonuniform electrostatic potentials near the left wire
end. However, their spatial distributions of the electron-hole
weights are quite different, as shown in Figs. 5(d)–5(f), which
correspond to the zero-energy LBSs indicated by the colored
markers in Fig. 4. Specifically, in Fig. 5(d), the zero-energy
MBS owns we = wh = 0.5 everywhere except for in the mid-
dle of the nanowire, which is due to the finite-size effect
for a nanowire with a moderate length. For an ideal MBS
in the vortex core at the surface of an iron-based supercon-
ductor, the electron-hole weights have also been predicted
to be equal anywhere away from the vortex core [92]. In
Fig. 5(f), for a zero-energy quasi-MBS, we = wh = 0.5 only
shows up within the range 0 < x < 0.35 μm, where |ψA|2
and |ψB|2 have a negligible overlap as shown in Fig. 4(h).
By contrast, in Fig. 5(e), for a zero-energy ABS, the as-
sociated we and wh obviously unequal near the left wire
end where most of its wave function weights are distributed
[see Fig. 4(g)], and oscillate quickly elsewhere. We infer
that the characteristic spatial distributions of electron-hole
weights shown in Figs. 5(d)–5(f) can also exist in other
candidate platforms supporting MBSs, such as topological
insulator-superconductor heterostructures [36,37] and iron-
based superconductors [38,39]. If the time-dependent current
in such systems can be measured by ultrafast STM techniques
[93,94], the spatial distributions of electron-hole weights of
the subgap bound states therein can be probed by our protocol
and thus enables the identification of zero-energy MBSs.

IV. SUMMARY

To access the electron-hole weights we and wh of an ABS
in general superconducting systems, we have proposed to
measure and fit the time-dependent local tunneling current
induced by a steplike pulse bias. A direct application of our
protocol is to detect MBSs in all candidate platforms where
local tunneling spectroscopy can be measured. To elaborate
this point for the Majorana nanowire system, we have numer-
ically studied the energies, wave functions, and electron-hole
weights of ABSs, quasi-MBSs, and MBSs therein. Interest-
ingly, at the leftmost (or rightmost) site of the nanowire,
where most of the wave functions of a bound state are
distributed, the electron-hole weights are found unequal for
accidental zero-energy ABSs and quasi-MBSs, but equal for
zero-energy MBSs and quasi-MBSs that are robust against the
tuning of magnetic field. These zero-energy bound states also
exhibit quite different spatial distributions of electron-hole
weight over the nanowire. While accidental zero-energy ABSs
own generally unequal electron-hole distributions along the
nanowire, robust zero-energy MBSs and quasi-MBSs have
equal electron-hole weights in the whole wire and a sizable
region near one end of the wire, respectively. These remark-
ably distinct features of the electron-hole weights of different
low-energy bound states in superconducting systems might be
probed by our protocol with the recent advances in ultrafast
electronic transports [51–53], thus is of timely importance in
the experimental searching of topological MBSs.
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APPENDIX A: DERIVATION OF THE TIME-DEPENDENT
CURRENT MEDIATED BY AN ABS

Beyond the effective Hamiltonian (1)–(4) studied in the
main text, we begin with the general case where a metallic
probe is coupled to a mesoscopic superconductor such as an
atomic chain or ring, which can be described by a lattice
model with N sites

HS =
N∑

i, j=1

∑
σσ ′

(wi jσσ ′b†
iσ b jσ ′ + �i jσσ ′biσ b jσ ′ + H.c.). (A1)

General physics could be included by properly setting the
parameters wi jσσ ′ and �i jσσ ′ . Specifically, the first term can
describe the on-site energy, intersite hopping, Zeeman split-
ting, spin-orbit coupling, and orbital effects of magnetic field,
while the second term can describe superconducting pairing
with an arbitrary symmetry. Correspondingly, the tunnel cou-
pling between the probe and the superconductor is

HT =
N∑

i=1

∑
kσ

(λic
†
kσ

biσ + H.c.), (A2)

where λi represents the electron tunneling amplitude between
the probe and site i. As we restrict to the subgap transport,
i.e., the bias voltage smaller than the superconducting energy
gap, the substrate supporting the mesoscopic superconductor
is not modeled as its details are irrelevant.

The charge current flowing out of the probe, described
by HP in the main text, can be calculated from the time
evolution of the occupation number operator of the probe:
I (t ) = −e〈ṄL〉 = − e

ih̄ 〈[NP, H]〉 with NP = ∑
kσ c†

kσ
ckσ . In

the Nambu representation [95,96] where the Hamiltonian,
Green’s functions (GFs), and self-energies are expressed in
matrix form and denoted by boldface letters below, the charge
current can be formally expressed as

I<(t ) = e

h̄

∑
k

Tr[seWG<
Sk (t, t ) − seG<

kS (t, t )W†], (A3)

I>(t ) = e

h̄

∑
k

Tr[shG>
kS (t, t )W† − shWG>

Sk (t, t )], (A4)

where W = [w1, . . . , wi, . . . , wN ] is a 4 × 4N matrix with
wi = diag{λi, λi,−λ∗

i ,−λ∗
i }, se = diag{1, 1, 0, 0}, and sh =

diag{0, 0, 1, 1}. Note that I<(t ) = I>(t ) and the superscript
< (>) indicates that the current is expressed in terms of
the lesser (greater) GF G<

Sk (G>
kS). We derive both I<(t ) and

I>(t ) for the reason that some interesting properties man-
ifest themselves in the symmetric current formula I (t ) =
1
2 [I<(t ) + I>(t )].
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Using the equation-of-motion technique and analytic continuation rules [75] one has

G〈,〉
Sk (t, t ) =

∫
dt1

[
Gr

SS (t, t1)W†g〈,〉
kk (t1, t ) + G〈,〉

SS (t, t1)W†ga
kk (t1, t )

]
, (A5)

G〈,〉
kS (t, t ) =

∫
dt1

[
gr

kk (t, t1)WG〈,〉
SS (t1, t ) + g〈,〉

kk (t, t1)WGa
SS (t1, t )

]
, (A6)

with the bare GFs of the probe

gr,a
kk (t, t1) = ∓i	(±t ∓ t1)[eiφ(t,t1 )se + e−iφ(t,t1 )sh], (A7)

g〈,〉
kk (t, t1) = ±i[ f (±εk )eiφ(t,t1 )se + f (∓εk )e−iφ(t,t1 )sh], (A8)

where 	(t ) is the Heaviside step function, f (εk ) is the Fermi-Dirac distribution function, and φk (t, t1) = ∫ t1
t dt ′[εk + U (t ′)].

Inserting Eqs. (A5)–(A8) into Eqs. (A3) and (A4) yields

I<(t ) = e

h̄

∫
dt1Tr

[
Gr

SS (t, t1)�<
e (t1, t ) + G<

SS (t, t1)�a
e (t1, t ) − �r

e(t, t1)G<
SS (t1, t ) − �<

e (t, t1)Ga
SS (t1, t )

]
, (A9)

I>(t ) = e

h̄

∫
dt1Tr

[
�r

h(t, t1)G>
SS (t1, t ) + �>

h (t, t1)Ga
SS (t1, t ) − Gr

SS (t, t1)�>
h (t1, t ) − G>

SS (t, t1)�a
h (t1, t )

]
, (A10)

with

�
r,a,〈,〉
e(h) (t, t1) =

∑
k

W†gr,a,〈,〉
kk (t, t1)se(h)W, (A11)

where GSS are the dressed GFs of the superconductor and �e(h) are the embedded self-energies arising from the coupling between
the probe and the superconductor. For simplicity we shall drop the subscript of GSS hereafter. The dressed retarded (advanced)
GF Gr,a(t, t1) and the lesser (greater) GF G〈,〉(t, t1) of the superconductor can be obtained through the Dyson and Keldysh
equations, respectively [75],

Gr,a(t, t1) = gr,a(t, t1) +
∑
η=e,h

∫∫
dt ′dt ′′gr,a(t, t ′)�r,a

η (t ′, t ′′)Gr,a(t ′′, t1), (A12)

G〈,〉(t, t1) =
∑
η=e,h

∫∫
dt ′dt ′′Gr (t, t ′)�〈,〉

η (t ′, t ′′)Ga(t ′′, t1), (A13)

with the bare GFs of the superconductor gr,a(t, t1) = ∓i	(±t ∓ t1)e−iHS (t−t1 ). It follows from Eqs. (A7) and (A11) that

�r,a
e(h)(t, t1) =

∫
dε

2π
e−iε(t−t1 )

[
�e(h)(ε) ∓ i

2
�e(h)(ε)

]
e±iψ (t,t1 ), (A14)

where ψ (t, t1) = ∫ t1
t dt ′U (t ′), �e(h)(ω) = P

∫
dε′
2π

�e(h) (ε′ )
ε−ε′ , and �e(h)(ε) = 2π

∑
k W†se(h)Wδ(ε − εk ).

Solving integral Eqs. (A12) and (A13) with double time arguments is a nontrivial assignment [55,97], but can be readily
accomplished in the so-called wide-band limit [98]. To be specific, assuming a constant density of states ρ of the probe gives
�e(h)(ε) ≈ �e(h) = 2πρW†se(h)W, therefore,

�r,a
e(h)(t, t1) = ∓i

1

2
�e(h)δ(t − t1), (A15)

�<
e(h)(t, t1) = i

∫
dε

2π
f (ε)ei

∫ t1
t dt ′[ε±U (t ′ )]�e(h), (A16)

�>
e(h)(t, t1) = −i

∫
dε

2π
f (−ε)ei

∫ t1
t dt ′[ε±U (t ′ )]�e(h). (A17)

Inserting Eq. (A15) into Eq. (A12) yields

Gr,a(t, t1) = Gr,a(t − t1) = ∓i	(±t ∓ t1)e−iHr,a
S (t−t1 ), (A18)

and its Fourier transformation is

Gr,a(ε) =
∫

dtGr,a(t − t1)eiε(t−t1 ) = (
ε − Hr,a

S

)−1
, (A19)

where Hr,a
S = HS ∓ i

2 (�e + �h) and Ha
S

† = Hr
S . While the Hamiltonian matrix HS is Hermitian, Hr,a

S is non-Hermitian owning
4N complex eigenenergies Er,a

m (m = 1, 2, . . . , 4N), with Ea∗
m = Er

m and ImEr
m � 0. The δ function in �r,a

e(h)(t, t1) renders the
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involved lesser and greater GFs in Eqs. (A9) and (A10), respectively, being with equal time arguments

G〈,〉(t, t ) = ±i
∑
η=e,h

∫
dε

2π
f (±ε)Ar

η(ε, t )�ηAa
η(ε, t ), (A20)

with

Ar
η(ε, t ) =

∫
dt1Gr (t − t1)ei

∫ t
t1

dt ′[ε+sηU (t ′ )]
, (A21)

Aa
η(ε, t ) =

∫
dt1Ga(t1 − t )e−i

∫ t
t1

dt ′[ε+sηU (t ′ )]
, (A22)

where sη = 1 for η = e and sη = −1 for η = h. Clearly, in the time-independent case Ar,a
η (ε, t ) is the Fourier transform of

Gr,a(±t ∓ t1).
Inserting Eqs. (A15)–(A22) into Eqs. (A9) and (A10) yields the charge current induced by an arbitrary time-dependent bias

voltage

I<(t ) = e

h

∫
dε f (ε)Tr

{
i�e

[
Ar

e(ε, t ) − Aa
e (ε, t )

] − �e

∑
η=e,h

Ar
η(ε, t )�ηAa

η(ε, t )

}
, (A23)

I>(t ) = e

h

∫
dε f (−ε)Tr

{
i�h

[
Ar

h(ε, t ) − Aa
h(ε, t )

] − �h

∑
η=e,h

Ar
η(ε, t )�ηAa

η(ε, t )

}
. (A24)

The symmetric current formula is

I (t ) = 1

2
[I<(t ) + I>(t )]

= e

2h

∫
dεTr

{
i
∑
η=e,h

f (sηε)�η

[
Ar

η(ε, t ) − Aa
η(ε, t )

] − [�e f (ε) + �h f (−ε)]
∑
η=e,h

Ar
η(ε, t )�ηAa

η(ε, t )

}
. (A25)

This is a formally exact current formula applicable to systems comprising a metallic probe, applied with an arbitrary time-
dependent bias voltage, coupled to general mesoscopic superconductors described by the lattice model Eq. (A1).

Under the steplike pulse bias U (t ) = 	(t )V , Eq. (A21) is recast as

Ar
η(ε, t ) = 	(−t )Gr (ε) + 	(t )

∫
dt1Gr (t − t1)ei(ε+sηV )t [	(t1)e−i(ε+sηV )t1 + 	(−t1)e−iεt1 ]

= 	(−t )Gr (ε) + 	(t )

{
Gr (ε + sηV ) + ei(ε+sηV )t

∫
dt1	(−t1)Gr (t − t1)[−e−i(ε+sηV )t1 + e−iεt1 ]

}
. (A26)

With Eqs. (A18) and (A19), the integral in Eq. (A26) is analytically evaluated as

ie−iHr
St

∫ 0

−∞
dt1

[
e−i(ε+sηV −Hr

S )t1 − e−i(ε−Hr
S )t1

] = e−iHr
St

(
1

ε − Hr
S

− 1

ε + sηV − Hr
S

)

= sηVe−iHr
St Gr (ε)Gr (ε + sηV ), (A27)

where the fact e−iHr
S×(−∞) = 0 is used. Inserting Eq. (A27) into Eq. (A26) yields

Ar
η(ε, t ) = 	(−t )Gr (ε) + 	(t )

[
Gr (ε + sηV ) + sηVei(ε+sηV −Hr

S )t Gr (ε)Gr (ε + sηV )
]
. (A28)

The advanced function Aa
η(ε, t ) can be obtained by the relation Aa

η(ε, t ) = [Ar
η(ε, t )]†. As Gr,a(ε) = (ε − Hr,a

S )−1, we have
sηV Gr,a(ε)Gr,a(ε + sηV ) = Gr,a(ε) − Gr,a(ε + sηV ), thus it can be readily checked that the functions Ar,a

η (ε, t ) are continuous
at t = 0. Inserting Eq. (A28) into Eq. (A25) we arrive at

I (t ) = 	(t )[Ist + Itrans(t )], (A29)

with the steady-state current

Ist = e

2h

∑
η=e,h

∫
dε[ f (ε − V ) − f (ε + V )]Tr

[
�ηGr (ε)�η̄Ga(ε)

]
, (A30)

and the transient current Itrans(t ) = I1(t ) + I2(t ) with

I1(t ) = e

2h

∑
η=e,h

∫
dε f (sηε)Tr

[
isηV �ηei(ε+sηV −Hr

S )t Gr (ε)Gr (ε + sηV ) + H.c.
]
, (A31)
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I2(t ) = e

2h

∑
η=e,h

∫
dεTr

{[−sηV [ f (ε)�e + f (−ε)�h]ei(ε+sηV −Hr
S )t Gr (ε)Gr (ε + sηV )�ηGa(ε + sηV ) + H.c.

]
−V 2[ f (ε)�e + f (−ε)�h]e−iHr

St Gr (ε)Gr (ε + sηV )�ηGa(ε + sηV )Ga(ε)eiHa
St
}
. (A32)

In numerical calculations, the trace operations in Eqs. (A30)–(A32) can be implemented in the eigenbasis of the Hamiltonian
Hr,a

S . Specifically, there exists a similarity transformation Ur,a−1Hr,a
S Ur,a = Er,a, where Er,a is a diagonal matrix comprising the

eigenenergies Er,a
m (m = 1, 2, . . . , 4N) of Hr,a

S and Ur,a consists of the eigenvectors of Hr,a
S . Inserting the identity Ur,aUr,a−1 = 1

into proper positions in Eq. (A30) yields

Ist = e

2h

∑
η=e,h

∫
dε[ f (ε − V ) − f (ε + V )]Tr

[
�ηUrUr−1Gr (ε)UrUr−1�η̄UaUa−1Ga(ε)UaUa−1]

= e

2h

∑
η=e,h

∫
dε[ f (ε − V ) − f (ε + V )]

∑
mn

�ar
η;mn�

ra
η̄;nm(

ε − Er
n

)(
ε − Ea

m

) , (A33)

Similarly, one can obtain

I1(t ) = e

2h

∑
η=e,h

∫
dε f (sηε)

∑
n

[
isηV �rr

η;nnei(ε+sηV −Er
n )t(

ε − Er
n

)(
ε + sηV − Er

n

) + −isηV �aa
η;nne−i(ε+sηV −Ea

n )t(
ε − Ea

n

)(
ε + sηV − Ea

n

)
]
, (A34)

I2(t ) = e

2h

∑
η=e,h

∫
dε

∑
mn

[
f (ε)�ar

e;mn + f (−ε)�ar
h;mn

]
�ra

η;nm

[ −sηVei(ε+sηV −Er
n )t(

ε − Er
n

)(
ε + sηV − Er

n

)(
ε + sηV − Ea

m

)
+ −sηVe−i(ε+sηV −Ea

m )t(
ε − Ea

m

)(
ε + sηV − Ea

m

)(
ε + sηV − Er

n

) + −V 2e−i(Er
n −Ea

m )t(
ε − Er

n

)(
ε + sηV − Er

n

)(
ε + sηV − Ea

m

)(
ε − Ea

m

)]
, (A35)

where �rr
η = Ur−1�ηUr , �ra

η = Ur−1�ηUa, and �ar
η = Ua−1�ηUr . By contour integration, it is readily to verify that the integra-

tion of the terms within the brackets in Eq. (A35) over ε are zeros, therefore, noting that f (ε) + f (−ε) = 1, Eq. (A35) can be
recast as

I2(t ) = e

2h

∑
η=e,h

∫
dε f (ε)

∑
mn

(
�ar

e;mn − �ar
h;mn

)
�ra

η;nm

[ −sηVei(ε+sηV −Er
n )t(

ε − Er
n

)(
ε + sηV − Er

n

)(
ε + sηV − Ea

m

)
+ −sηVe−i(ε+sηV −Ea

m )t(
ε − Ea

m

)(
ε + sηV − Ea

m

)(
ε + sηV − Er

n

) + −V 2e−i(Er
n −Ea

m )t(
ε − Er

n

)(
ε + sηV − Er

n

)(
ε + sηV − Ea

m

)(
ε − Ea

m

)]
, (A36)

which can be reexpressed with a trace operator as

I2(t ) = e

2h

∑
η=e,h

∫
dε f (ε)Tr

{[−sηV (�e − �h)ei(ε+sηV −Hr
S )t Gr (ε)Gr (ε + sηV )�ηGa(ε + sηV ) + H.c.

]
−V 2(�e − �h)e−iHr

St Gr (ε)Gr (ε + sηV )�ηGa(ε + sηV )Ga(ε)eiHa
St
}
. (A37)

Equations (A30), (A31), and (A37) are applicable to the effective Hamiltonian (1)–(4) and they are presented as Eqs. (13),
(17), and (18) in the main text, together with the corresponding expressions of �e, �h, Hr(a)

S , and Gr,a(ε).

APPENDIX B: FOURIER SPECTRUM OF THE TRANSIENT CURRENT MEDIATED BY AN ABS

The Fourier spectrum of the transient current is I (ω) = I1(ω) + I2(ω) with

I1/2(ω) =
∫ ∞

0
dtI1/2(t )eiωt . (B1)

Inserting Eqs. (A34) and (A36) into Eq. (B1), respectively, and integrating analytically over the time argument yields

I1(ω) = e

2h

∑
η=e,h

∑
n

∫
dε f (sηε)

[
−sηV �rr

η;nn(
ε + ω + sηV − Er

n

)(
ε − Er

n

)(
ε + sηV − Er

n

)

+ −sηV �aa
η;nn(

ε − ω + sηV − Ea
n

)(
ε − Ea

n

)(
ε + sηV − Ea

n

)
]
, (B2)
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I2(ω) = e

2h

∑
η=e,h

∑
mn

∫
dε f (ε)

[
�ar

e;mn − �ar
h;mn

]
�ra

η;nm

[
−isηV(

ε + ω + sηV − Er
n

)(
ε − Er

n

)(
ε + sηV − Er

n

)(
ε + sηV − Ea

m

)
+ isηV(

ε − ω + sηV − Ea
m

)(
ε − Ea

m

)(
ε + sηV − Ea

m

)(
ε + sηV − Er

n

)
+ −iV 2(

ω − Er
n + Ea

m

)(
ε − Er

n

)(
ε + sηV − Er

n

)(
ε − Ea

m

)(
ε + sηV − Ea

m

)
]
. (B3)

At zero temperature, the integrals over the energy argument in Eqs. (B2) and (B3) can be analytically evaluated,

I1(ω) = e

2h

∑
η=e,h

∑
n

{
sη�

rr
η;nn

[
− ln Er

n − ln
(
Er

n − ω − sηV
)

ω + sηV
+ ln

(
Er

n − sηV
) − ln

(
Er

n − sηV − ω
)

ω

]

+ sη�
aa
η;nn

[
− ln Ea

n − ln
(
Ea

n + ω − sηV
)

−ω + sηV
+ ln

(
Ea

n − sηV
) − ln

(
Ea

n − sηV + ω
)

−ω

]}
, (B4)

I2(ω) = ie

2h

∑
η=e,h

∑
mn

�ar
e;mn − �ar

h;mn

ω − (
Er

n − Ea
m

)�ra
η;nm

[
ln Er

n − ln
(
Er

n − ω − sηV
)

ω + sηV
− ln

(
Er

n − sηV
) − ln

(
Er

n − sηV − ω
)

ω

+ ln Ea
m − ln

(
Ea

m + ω − sηV
)

−ω + sηV
− ln

(
Ea

m − sηV
) − ln

(
Ea

m − sηV + ω
)

−ω

+ ln
(
Er

n − sηV
) − ln Er

n − ln
(
Ea

m − sηV
) + ln Ea

m

Er
n − Ea

m

]
. (B5)

It is clear that characteristic peaks emerge at ω = |V ± ReEr
n |

in I1(ω) and I2(ω) with logarithmic line shapes, and at
ω = |ReEr

n − ReEa
m| in I2(ω) with Lorentzian line shapes.

Equations (B4) and (B5) reveal three transport processes con-
tributing to the transient current. (i) The coherent electron
transitions between the probe and the nth eigenstate of the
dressed superconductor, i.e., Hr

S , result in an oscillating de-
caying current component with frequencies |ω| = |V ± ReEr

n |
and a damping rate ImEr

n . (ii) The coherent electron tran-
sitions between the mth and nth eigenstates of the dressed
superconductor result in an oscillating decaying current com-

ponent with frequencies |ω| = |ReEr
n − ReEa

m| and a damping
rate |ImEr

n − ImEa
m|. (iii) After the sudden switch-on of the

bias, the time evolution of the occupation probability of the
nth eigenstate of the dressed superconductor results in an
exponentially decaying current component with a damping
rate 2|ImEr

n |, which is just captured by our RE analysis in the
main text.

For the effective Hamiltonian H (1)–(4) studied in the main
text, m, n = {1, 2} and process (ii) is absent due to that �ar

e;12 =
�ar

h;12 and �ar
e;21 = �ar

h;21 render the associated coefficients in
Eq. (B5) being zeros.
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