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Weyl semimetals exhibit a myriad of exotic transport responses, among which, the Goos-Hänchen (GH)
and Imbert-Fedorov (IF) effects have recently garnered substantial attention. Besides the usual parametric
dependence inherited from the underlying Hamiltonian to describe a Weyl system, the IF shift particularly carries
a topological identity—it depends on the chirality of the Weyl cones. Observing such signatures following the
trail of theoretical predictions applied to clean systems can be severely obfuscated by surface potentials induced
by localized impurities that are naturally present in real materials hosting the semimetallic phase. Classifying
these potentials, we study their effects on GH and IF shifts to provide useful guidance to experiments that
are tuned to the objective of characterizing Weyl semimetals and leveraging them to provide the basis for
future technological advances. A transfer matrix-based approach is proposed to study the profile of Weyl wave
functions scattering from the impurity potentials. As we unfold, the presence of such potentials can lead to
several remarkable effects such as the complete nullification of the IF shift and valley inversion.
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I. INTRODUCTION

The Goos-Hänchen [1–3] (GH) and Imbert-Fedorov [4–6]
(IF) shifts, first discovered in the context of wave optics,
have now enjoyed wide application in a variety of sys-
tems [7–21] that includes optical waveguides, metamaterials,
plasmonics, and quantum systems. These effects transpire for
beams of finite width (i.e., a distributed spectrum of plane
waves) whose reflection and refraction do not quite follow
the simple geometric rules of Newtonian optics—they fea-
ture lateral and angular shifts with respect to the point of
incidence that admit a geometrical description [22] instead.
For instance, when a traveling photon beam suffers mul-
tiple total internal reflections inside an optical waveguide,
a measurable GH shift along the direction of propagation
is observed which can be attributed to a finite penetra-
tion of the evanescent beam into the cladding material at
each turn. This is reminiscent of the tunneling of quantum
particles through finite barriers owing to their dual (wave-
particle) nature and has inspired researchers to explore such
scattering effects in various quantum systems such as two-
dimensional electron gas (2DEG) nanostructures [23–25] and
Dirac materials like graphene [19,26–35] and transition metal
dichalcogenides [36], enabling new device applications that
extend, as well, to a terahertz regime [37–39]. The GH shift,
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occurring in a system of 2DEG subject to a tunable elec-
tric potential and hosted between magnetic stripes, has been
utilized to construct an efficient spin beam splitter [23,40].
While spin manipulation of such type is highly desirable for
spintronics and quantum information applications, the valley
degrees of freedom in electronic systems (such as semicon-
ductors and semimetals) are also of concurrent and intensive
interest [28,41], especially for rapidly emerging quantum
technologies like valleytronics.

On both fronts, Dirac materials have been at the center
stage over the last few decades. Graphene (along with other
materials of similar band structures) has emerged as a paradig-
matic model wherein a host of exotic electronic phenomena
that arises in two dimensions has been proposed and verified
in experiments (see Ref. [42] for a review). The GH shift for
the massless electrons in graphene manifests as a pseudospin-
dependent scattering effect that results in a quantized jump in
the conductance of heterojunctions [19]. In the same system,
a valley-dependent GH shift is studied by means of tailoring
the local strain profile [41] exhibiting a close resemblance to
the spin manipulation in Ref. [23] and also, in part, to the
aforementioned optical and electronic analogs.

The IF effect, likewise, has also been explored in graphene
systems [43–49], and recently, to some extent, in Weyl
semimetals [50–56] which serve as the model of the present
study. Weyl semimetals are characterized by topologically ro-
bust nodes (immune to arbitrary perturbations) in the bulk and
Fermi arc surface states [57]. The nodes are of distinct chiral-
ity, referred to as Weyl cones (singly degenerate, as opposed
to the doubly degenerate Dirac cones in, e.g., graphene),
and responsible for strange phenomena like chiral anomaly,
exclusive in three dimensions. Aside from the bulk nodes,
the surface states are also a distinctive hallmark of these
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topological semimetals which have been experimentally
probed (such as in TaAs or NbAs) and bear important im-
plications for various transport properties of these systems
(see Ref. [58] and references therein). The beam shifts can
be exploited to probe the separation of these Weyl nodes in
momentum space [54], and particularly, the IF shift being
a topological effect (depends on the chirality of the nodes),
provides a measure of Berry curvature [50]. Thus, the factors
that can potentially influence these measurements should be
thoroughly examined for a precise characterization of the
underlying system which underpins the present study.

While previous studies on the shifts in Weyl semimetals
have focused only on pristine surfaces, real materials would
naturally host impurities that give rise to localized surface
potentials of various kinds, akin to a scenario in topological
insulators [59–61]. In topological insulators, the surface po-
tentials that respect time-reversal symmetry are capable of
influencing surface spin texture, shifting the Dirac points,
and eliminating blockades imposed by orbital orthogonali-
ties across heterojunctions. In Weyl systems, these potentials
could break time-reversal or inversion (or none), which is
anyway required to stabilize a Weyl semimetallic phase in
the bulk. For instance, magnetic impurities can populate the
surface of a magnetic Weyl semimetal such as Co3Sn2S2 [62]
while spin-orbit type impurities can be found in inversion
breaking Weyl semimetals such as candidates from the TaAs
material class [63]. Apart from bulk impurities, these poten-
tials are also of great relevance to experiments dedicated to
probing surface transport (such as conductivities) in these
topological materials and also towards validating the theoret-
ical predictions based on clean surfaces and derived from the
bulk-boundary correspondence.

Among many intriguing consequences, localized bulk im-
purities in Weyl semimetals can lead to suppression in the
nodal density of states which may or may not be lifted by
impurity-induced resonances [64]. Besides, these impurities
also exhibit prominent features for the surface states such as
giving rise to bound states for certain parameter values in the
Hamiltonian that lead to distinct topological phases [65]. As
the lateral shifts concerned are exclusively surface phenomena
and such shifts, particularly for a Weyl semimetal surface, are
intricately related to the Fermi arc structure [55], we naturally
ask to what extent are they influenced by the presence of
impurity-induced surface potentials that are compatible with
the symmetry breaking in the bulk.

In this paper we model the impurity as planelike infinite-
amplitude potential lying on an infinite surface which can
be solved using a transfer-matrix (T -matrix) based ap-
proach [66]. The resultant potential enables a nontrivial T
matrix to affect the wave function continuity in the vicinity of
the surface which causes the concerned beam shifts suscepti-
ble to the perturbations. An advantage of using this formalism
is that the shift can be traced for arbitrary strengths of the
impurity potential. Since topological materials are primarily
characterized by their surface signatures, it is legitimate to as-
sess the robustness of these signatures against such potentials.
The key findings of this paper entail a thorough analysis of
GH and IF shifts in the presence of such imperfections. In dis-
tinction to the results obtained from the hitherto studied clean
surfaces, our work reveals that certain types of potentials can

FIG. 1. The schematic of the Weyl semimetal surface hosting
surface potential VS at x = 0 with the two lateral shifts indicated. The
plane of incidence is the x-y plane such that the in-plane lateral shift
(GH shift) is along the y axis and the out-of-plane shift (IF shift) is
along the z axis. The barrier potential to distinguish the two regions
I and II is denoted by V0.

abate the topological effects and also give rise to phenomena
like valley inversion.

The remainder of the article is structured as follows. In
Sec. II we introduce the model and review some aspects of the
GH and the IF shift for a clean surface. In Sec. III we discuss
the transfer matrix-based approach that applies to analyze
the Weyl wave function across an interface hosting impurity-
induced surface potentials. These potentials are classified in
Sec. IV where the shift calculations are revisited for each of
the classes. We summarize the results in Sec. V and discuss
future work.

II. GH AND IF SHIFTS FOR A CLEAN INTERFACE

We start by reviewing the results from a previous work that
computed the GH and the IF shifts for a clean interface [50].
For calculations we consider the surface (or interface) to be
the y-z plane at x = 0 which breaks the translation symmetry
along x but retains along the other two directions (see Fig. 1),
however, the formulation presented in this article, as well,
applies to surfaces of other orientations.

The Hamiltonian of the system is described by

H =
{

HI = χ h̄vF kiσi, x � 0,

HII = χ h̄vF kiσi + V0, x > 0,
(1)

where i ∈ {x, y, z} and χ (χ = ±1) denotes the chirality of
the Weyl cones. We refer to the region x � 0 as region I,
and the region x > 0 as region II as in Fig. 1. These two
regions are distinguished by applying a chemical potential
difference V0 between them which creates a finite barrier for
the Weyl fermions to scatter off. Furthermore, vF denotes the
Fermi velocity, which is taken the same on both sides, and σi

are the Pauli matrices representing the pseudospin degrees of
freedom. Throughout the calculations that follow, we adopt
the units in which h̄ = vF = 1, however, while presenting
the final expressions of the shifts, the factor of h̄vF is duly
restored.

A beam of Weyl fermions, in the form of a Gaussian wave
packet, incident on the interface at x = 0 is modeled by

� in(r) =
∫ ∞

−∞
dkydkz f (ky, kz )ψ in(k, r), (2)
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where the Gaussian function f is assumed to be localized
around (k̄y, k̄z ) as

f (ky, kz ) = 1

2π
√

�y�z
exp

[
− (ky − k̄y)2

2�2
y

− (kz − k̄z )2

2�2
z

]
,

(3)

�y (�z) denoting the width of the wave packet along y (z).
The spinor part of the incident wave function ψ in satisfies the
Schrödinger equation HIψ

in = Eψ in, and including the plane
wave phase factor eik·r,

ψ in(k, r) = Ci

[
2ηχe−iθ/2

η̃eiθ/2

]
eik·r, (4)

where kx =
√

E2 − k2
y − k2

z , tan θ = ky/kx, η =
√

E−kz

E+kz
, η̃ =

η2(1 + χ ) + (1 − χ ), and Ci is the normalization constant.
Taking the plane of incidence to be the x-y plane, θ represents
the angle of incidence for the incident beam measured from
the surface normal perpendicular to the y-z plane at the point
of incidence (see Fig. 1).

The reflected wave packet can be expressed in a similar
form as the incident one. Multiplied by the reflection coeffi-
cient r = |r|eiφr , it is

�re(r) =
∫ ∞

−∞
dkydkz f (ky, kz ) rψ re(k, r), (5)

where φr is the reflection phase and ψ re(k, r) is obtained
from ψ in(k, r) in Eq. (4) via kx → −kx, θ → π − θ . For the
phenomena concerned, we will be considering total reflection
from the interface in the region I with |r| = 1, and for this, the
mode on the other side (region II) must be evanescent. Note
this happens only for values of the incident angle θ greater
than a critical value θc which, as will be shown later, depends
on the ratio of the barrier height to the incident energy V0/E .

Linearizing the phases θ and φr in terms of k̄y and k̄z, the
integrals in Eqs. (2) and (5) provide the centers of the incident
and the reflected wave packets, respectively, from which the
(spinor) component-wise spatial shifts along y and z follow as

�
y
± = − ∂

∂ky
φr (k̄y, k̄z ) ∓ ∂

∂ky
θ (k̄y, k̄z ),

�z
± = − ∂

∂kz
φr (k̄y, k̄z ) ∓ ∂

∂kz
θ (k̄y, k̄z ), (6)

where ± refers to the shifts of the two spinor components. The
full spatial shifts are then given as the weighted average of the
individual shifts for each of the spinor components,

�y(z) = 4η2�
y(z)
+ + η̃2�

y(z)
−

4η2 + η̃2
. (7)

As the results do not depend on the shape of the wave packets,
we conveniently adopt a reference by setting k̄z = 0 which
aligns the GH and the IF shift along y and z axis, respectively,
and thus simplifies Eq. (7) to

�GH ≡ �y = 4η2�
y
+ + η̃2�

y
−

4η2χ2 + η̃2
= −∂φr

∂ky
,

�IF ≡ �z = 4η2�z
+ + η̃2�z

−
4η2χ2 + η̃2

= −∂φr

∂kz
. (8)

To quantify the shifts, it then remains to compute the reflection
phase φr using the continuity of the wave functions at the
interface

ψ tr (k, 0) = ψ in(k, 0) + ψ re(k, 0), (9)

where the transmitted spinor ψ tr (k, r) in region II has an
evanescent form at energy E as

ψ tr (k, r) = Ct

[−i
βχ

]
e−κxei(kyy+kzz); βχ = ky + κ

kz + χ (E − V0)
,

(10)

Ct being the normalization constant and κ =√
k2

z + k2
y − (E − V0)2 > 0 setting the inverse decay length.

Equation (9) yields a chirality-dependent reflection phase

φr = −θ − π

2
+ 2 tan−1

[
η̃ cos θ

2ηχβχ − η̃ sin θ

]
, (11)

from which the spatial shifts follow as

�GH = h̄vF
(
1 + sin2 θ̄ − V0

E

)
κ sin θ̄ cos θ̄

; �IF = − h̄vF χ

E tan θ̄
, (12)

where tan θ̄ = k̄y/k̄x. The critical angle to ensure a total reflec-
tion from the interface is given by θc = sin−1 |V0/E − 1|.

Note the GH shift on a clean surface is not a chirality-
dependent phenomenon while the IF shift is and can be
interpreted as a topological effect [50]. This is attributed to the
fact that during the reflection the Weyl fermions retain their
valley characteristics due to momentum conservation on the
surface which is in sharp distinction with the optical analog
where the polarization of the photons does get altered during
reflection. We further note that the IF shift is independent of
the ratio of the barrier height to the incident energy V0/E . The
GH shift, on the other hand, changes sign at a given angle of
incidence θ∗ = sin−1 √

sin θc—it is negative for θc < θ̄ < θ∗
while positive for θ∗ < θ̄ irrespective of the values of V0/E ,
and likewise for θ̄ → −θ̄ .

So far we have discussed the shifts for a clean interface.
In the following sections we will demonstrate how they are
modified when the same interface harbors different types of
impurity-induced surface potentials that affect the continuity
equation stated above and the resultant reflection phase. In
fact, in the presence of certain types of surface potentials, the
shifts feature distinct asymmetry between the valleys resem-
bling the effects of intervalley scattering [52].

III. THE TRANSFER MATRIX APPROACH

For Weyl (or Dirac) fermions subject to a delta poten-
tial scattering, the transfer matrix accounts for the rotation
between the spinors on the two sides of the potential [67].
This approach is adopted extensively in transport calcu-
lations to compute observables like surface conductance,
Aharonov-Bohm oscillations, and spin Berry phase in vari-
ous mesoscopic systems including topological insulators with
impurities [68–70].

The spatial profile of the full Hamiltonian in the presence
of a delta function-type surface potential VS (x) = Vδ(x) is
given by

H = χ (σaka − iσx∂x ) + V0�(x) + Vδ(x), (13)
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where a ∈ {y, z} as ky,z are regarded as good quantum numbers
for we have imposed periodic boundary conditions on the
interface; V denotes the surface potential (see Fig. 1) which
could be a scalar or a spin-valued operator. The Schrödinger
equation Hψ = Eψ can be recast as ∂xψ = H0(x)ψ leading
to a path-ordered solution of ψ (x) as ψ (x2) = Tx2,x1ψ (x1)
where the transfer matrix T = Pxexp[

∫ x2

x1
dx H0(x)], Px de-

noting the path ordering [70]. For the interface at x = 0 (see
Fig. 1), the transfer matrix pertinent to the model in Eq. (13)
turns out to be

T = lim
ε→0

Px exp

[
−i

∫ +ε

−ε

dx σxVS (x)

]
= e−iσxV . (14)

The continuity equation in Eq. (9) gets modified to

ψ tr (k, 0+) = T [ψ in(k, 0−) + ψ re(k, 0−)], (15)

and so does the reflection phase φr accordingly. This is how
the spatial shifts are expected to get modified in the presence
of various surface potentials.

IV. SURFACE POTENTIALS

In this section we will consider a family of surface poten-
tials by expressing the surface term V in Eq. (13) as

V = λ + V · σ, (16)

where λ is a real constant, and the components of the vector
V = (Vx,Vy,Vz ) are, in general, real functions of ky and kz. In
particular, we take note of the following cases:

(i) Scalar potential: λ 	= 0, V = 0.
(ii) Magnetic potential: Uniform magnetic field specified

by Vx = Bx, Vy = By, Vz = Bz where Bx,y,z are constants and
λ = 0.

(iii) Spin-orbit potential of Rashba type: λ = Vx = 0, but
Vy and Vz are linear functions of ky and kz as Vy = −αRkz and
Vz = αRky.

(iv) Spin-orbit potential of Dresselhaus type: λ = Vx = 0,
but Vy and Vz are linear functions of ky and kz as Vy = αDky

and Vz = −αDkz.
In the following subsections we compute the GH and the

IF shift from the resultant φr while addressing the above four
cases separately. It should, however, be noted that combina-
tions of them are also likely to occur on the surface of a
Weyl semimetal. We will illustrate one such combination in
which the surface potential includes both scalar and magnetic
impurities.

A. Scalar potential

For a scalar surface potential of the form VS = λδ(x), the
transfer matrix that connects the two spinors across the in-
terface is T = e−iσxλ which results in a chirality-dependent

FIG. 2. Scalar potential: The valley-dependent GH shift (mea-
sured with respect to the length scale h̄vF /E ) as a function of the
incident angle θ for V0/E = 1.5 (E = 1) for valley A in (a) and valley
B in (b) at different strengths (λ) of the scalar surface potential. The
critical angle θc = 30◦ below which no total reflection takes place.
The valley-dependent GH shift as a function of V0/E for an incident
angle θ = 50◦ for valley A in (c) and valley B in (d). The clean case
corresponds to λ = 0 (red). The other representative values of the
scalar potential considered are λ = 0.6 (green), λ = 1.9 (blue), and
λ = 2.6 (magenta).

reflection phase

φr = −θ − π

2
+ 2 tan−1 ζ ,

where

ζ = η̃ cos θ (1 − βχ tan λ)

2ηχ (tan λ + βχ ) − η̃ sin θ (1 − βχ tan λ)
. (17)

The GH shift, in the presence of a scalar potential, is chirality
dependent

�GH = h̄vF

E

κ̃2(1 − tan2 λ) + 2εχκ̃ tan λ + ε sec2 λ cos2 θ̄

κ̃ sin θ̄ cos θ̄[1 − ε + 2κ̃χ tan λ + (1 + ε) tan2 λ]
,

(18)

where sin θc ≡ −ε = V0/E − 1 as defined before and κ̃ =√
sin2 θ̄ − sin2 θc =

√
k̄2

y − (E − V0)2/E = κ/E for k̄z = 0.
The IF shift, on the other hand, is insensitive to the scalar

potential and retains its form as in Eq. (12), i.e.,

�IF = − h̄vF

E

χ

tan θ̄
, (19)

reflecting topological robustness against such type of po-
tential. In the limit λ → 0, we retrieve the clean results of
Eq. (12).

At any finite strength of the scalar potential λ, the GH shift
is evidently valley dependent and from the expression of the
reflection phase φr in Eq. (17), λ = nπ (n integers) has the
same effect as λ = 0 (clean case). Figures 2(a) and 2(b) show
the functional dependence of �GH on the incident angle θ at
various values of λ. Here we fix V0/E = 1.5 which, in turn,
gives a critical angle θc = 30◦ below which total reflection
does not occur. The main features of Figs. 2(a) and 2(b) are
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highlighted below which are distinct for different chiralities
(also referred to as valleys).

Valley A (χ = +1): For 0 � λ < λ1 where λ1 = π/6, �GH

for valley A behaves qualitatively similar to the clean case,
however, the value of θ at which its changes the sign, denoted
θ∗(+), is λ dependent. We find θ∗(+) = sin−1

√
α2

+ + 1/4,
where

α+ =
2 tan λ +

√[
6 cos(2λ) − 1

2 cos(4λ) + 7
2

]
sec4(λ)

8 − 2 sec2 λ
.

(20)

In the aforementioned range, θ∗(+) gradually moves from 45◦
(at λ = 0) to 90◦ (at λ = λ1) monotonically. The numerator
in Eq. (18) for valley A changes sign at θ̄ = 90◦ across λ =
λ1, by virtue of which, for λ1 � λ � λ2 where λ2 = 2π/3,
�GH for valley A remains finite irrespective of the incident
angle θ , i.e., θ∗(+) does not exist. The numerator for valley
A changes sign again at θ̄ = 90◦ across λ = λ2. As a result,
for λ2 < λ � π , θ∗(+) decreases from 90◦ (at λ = λ2) to 45◦
(at λ = π ), however not monotonically (it obtains a minimum
somewhere before λ = π ).

Valley B (χ = −1): For 0 � λ < λ3 where λ3 = π/3, �GH

for valley B behaves qualitatively similar to the clean case,
however, the value of θ at which its changes the sign, denoted
θ∗(−), is λ dependent. We find θ∗(−) = sin−1

√
α2

− + 1/4,
where

α− =
−2 tan λ +

√[
6 cos(2λ) − 1

2 cos(4λ) + 7
2

]
sec4(λ)

8 − 2 sec2 λ
.

(21)

In the aforementioned range, θ∗(−) increase from 45◦ (at
λ = 0) to 90◦ (at λ = λ3) but nonmonotonically (it attains a
minimum somewhere in-between). The numerator in Eq. (18)
for valley B changes sign at θ̄ = 90◦ across λ = λ3, by virtue
of which, for λ3 � λ � λ4 where λ4 = 5π/6, �GH for valley
B remains finite irrespective of the incident angle θ , i.e., θ∗(−)

does not exist, just like valley A. The numerator for valley B
changes sign again at θ̄ = 90◦ across λ = λ4. Consequently,
for λ4 < λ � π , θ∗(−) decreases monotonically from 90◦ (at
λ = λ4) to 45◦ (at λ = π ).

In summary, a notable aspect, which gains prominence
from the above analysis, is that the GH shift, in the presence
of scalar surface potential, can behave in vastly different ways
for the two valleys—it can vanish for one of the valleys for
certain values of the strength of the potential while, at the
same time, it remains finite for the other. Note the plots of
�GH against θ for the two valleys overlap at the transition
points λ = λ1,2,3,4. Figures 2(c) and 2(d) display the behavior
of �GH against the ratio of the barrier height to the incident
energy V0/E which also feature a strong valley dependence in
the presence of a scalar surface potential, namely, the values of
V0/E at which the GH shift vanishes, depends on the chirality,
unlike the clean case. As the IF is not influenced by the scalar
potential, we do not show its parametric dependence which
is already discussed in Ref. [50]. In all the plots of the shifts
(i.e., Fig. 2 to Fig. 7), the shift parameter � is measured with
respect to the characteristic length scale h̄vF /E . In a typical
Weyl system (such as the compound Co3Sn2S2), Weyl nodes

are realized around E ∼ 60 meV while the Fermi velocity
vF ∼ 2 × 106 m/s. That provides an estimate of this length
scale to be ∼22 nm. The departure due to the various types of
surface potentials, discussed in this article, from the pristine
results should therefore be measurable in the exiting meso-
scopic setups.

B. Magnetic potential

For a magnetic impurity present all over the interface with
field orientation �B = (Bx, By, Bz ), the transfer matrix is

T = e−iσx (�B·�σ ) = e−iBx eByσz−Bzσy . (22)

The out-of-plane component Bx contributes merely as a phase
factor and does not influence the shifts. For the remaining
components, it is useful to introduce the parameters B‖ =√

B2
y + B2

z and tan � = Bz/By. In terms of these parameters,
the reflection phase is

φr = −θ − π

2
+ 2 tan−1 ζB,

where

ζB = η̃ cos θ (bB + βχaB)

2ηχ (βχ + aB) − η̃ sin θ (bB + βχaB)
, (23)

with the parameters aB and bB defined as

aB = sin � tanh B‖
1 + cos � tanh B‖

; bB = 1 − cos � tanh B‖
1 + cos � tanh B‖

. (24)

The corresponding shifts are given by

�GH = h̄vF

E

1

κ̃ cos θ̄

NGH

D ; �IF = h̄vF

E

2 cos θ̄

D NIF, (25)

where

NGH = κ̃2
(
b2

B + 1 − 2a2
B

) + κ̃
(
1 − b2

B

)
sin θ̄

+ 2ε
[
χκ̃aB(1 − bB) − (

a2
B − bB

)
cos2 θ̄

]
,

NIF = aB(1 + bB) sin θ̄ + aBκ̃ (1 − bB)

+ χ
[(

a2
B + bB

)
ε + a2

B − bB
]
,

D = {
(sin θ̄ + κ̃ )

(
1 + a2

B − 2χaB sin θ̄
)

+ (sin θ̄ − κ̃ )
(
a2

B + b2
B − 2aBbBχ sin θ̄

)
+ 2ε

[
aBχ (1 + bB) − a2

B sin θ̄ − bB sin θ̄
]}

. (26)

Eq. (25) matches with the clean results in the limit B‖ → 0.
Figure 3 displays the behavior of the GH shift �GH in the

presence of magnetic surface potential at various values of the
in-plane strength B‖ and the orientation of the magnetic field
characterized by the angle � defined previously. In Figs. 3(a)–
3(d) B‖ is being varied while keeping the orientation � fixed
to π/10. In Figs. 3(e)–3(h) B‖ = 1 while the orientation �

is being varied. The out-of-plane component has no effect on
the shifts and is taken to be zero. In Figs. 3(a) and 3(b) �GH

is plotted against the incident angle θ for the two different
valleys, given V0/E = 1.5. Evidently, �GH is no more an
odd function of θ unlike the clean or the scalar case. The
distinctive behavior of the two valleys is prominent that can be
explained in the same way as the scalar potential. In Figs. 3(c)

075414-5



DONGRE AND ROYCHOWDHURY PHYSICAL REVIEW B 106, 075414 (2022)

FIG. 3. Magnetic potential: The valley-dependent GH shift (measured with respect to the length scale h̄vF /E ) as a function of the incident
angle θ for V0/E = 1.5 (E = 1) for valley A in (a) and valley B in (b) at different strengths of the in-plane magnetic field B‖ keeping the
orientation � = π/10 and again for valley A in (e) and valley B in (f) at different orientations of the in-plane magnetic field � keeping the
strength B‖ = 1. The critical angle θc = 30◦ as before. The valley-dependent GH shift is plotted as a function of V0/E with an incident angle
θ = 50◦ for valley A in (c) and valley B in (d) varying B‖ which shows a plateaulike behavior as B‖ is increased. The same varying � is shown
in (g) for valley A and (h) for valley B which features a peak for certain values of the orientation which are distinct for different valleys. The
clean case corresponds to B‖ = 0 (red) in (a)–(d) and the other parameter values are shown in different colors.

and 3(d) �GH is plotted against V0/E which, for both valleys,
features a plateaulike behavior as B‖ is increased. When the
orientation � is varied, �GH plotted against θ as in Figs. 3(e)
and 3(f) behaves in a qualitatively similar way to Figs. 3(a)
and 3(b), however, its variation against V0/E is observed to de-
velop conspicuous peaks for certain orientations whose height
can differ in order of magnitudes between the two valleys as
shown in Figs. 3(g) and 3(h).

The behavior of the IF shift in the presence of the mag-
netic surface potential is quite remarkable as shown in Fig. 4.
Similar to Fig. 3, the variation with respect to B‖ keeping

� fixed is displayed in Figs. 4(a)–4(d) while the opposite is
shown in Figs. 4(e)–4(h). Note that at any finite B‖, the IF
shift is defined only for |θ | > θc where the total reflection
takes place because of the parameter κ̃ , unlike the clean case.
For the clean case, this parameter in absent in the expression
of �IF as in Eq. (12). Besides the difference in magnitude,
�IF as a function of θ can have the same sign for the two
valleys depending on the values of B‖ when it is gradually
increased. In Figs. 4(a) and 4(b), such a behavior is observed
for B‖ = 1.5. Furthermore, from Eq. (25|), �IF can change
sign for χ = +1 and vanishes at a specific value of ε or equiv-

FIG. 4. Magnetic potential: The valley-dependent IF shift (measured with respect to the length scale h̄vF /E ) as a function of the incident
angle θ for V0/E = 1.5 (E = 1) for valley A in (a) and valley B in (b) at different strengths of the in-plane magnetic field B‖ keeping the
orientation � = π/10 and again for valley A in (e) and valley B in (f) at different orientations of the in-plane magnetic field � keeping the
strength B‖ = 1. The critical angle θc = 30◦ as before. The IF shift is plotted as a function of V0/E with an incident angle θ = 50◦ for valley
A in (c) and valley B in (d) varying B‖. A vanishing IF shift at this incidence is observed in the presence of a finite B‖ which is specific to only
one of the valleys (namely, A). The same varying � is shown in (g) for valley A and (h) for valley B which displays a peak for certain values
of the orientation which are distinct for different valleys. The clean case corresponds to B‖ = 0 (red) in (a)–(d) and the other parameter values
are shown in different colors.
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alently V0/E that depends on B‖ and �. This is not the case for
the other valley [see Figs. 4(c) and 4(d)]. In the clean case, i.e.,
for B‖ = 0, the factor containing ε drops off which results in
�IF being independent of V0/E with the chirality χ appearing
as a prefactor. Thus, magnetic surface potential can lead to a
vanishing IF shift for a specific valley (χ = +1) at an incident
angle θc < θ < π/2 while not having any such effect on the
other. Upon varying the orientation � as in Figs. 4(e) and 4(f),
for both valleys, the behavior appears similar to varying B‖.
In addition, when plotted against V0/E , �IF exhibits a peak,
similar to �GH, for certain values of � as shown in Figs. 4(g)
and 4(h) for B‖ = 1.

C. Rashba spin-orbit potential

For surface potentials resulting from Rashba type spin-
orbit coupling V = αR(kyσz − kzσy), the transfer matrix is
given as

T = e−iαRσx (kyσz−kzσy ) = e−αR (kzσz+kyσy ) (27)

and the reflection phase, in this case, φr turns out to be

φr = −θ − π

2
+ 2 tan−1 ζR,

where

ζR = η̃ cos θ (1 + βχaR)

2ηχ (βχbR + aR) − η̃ sin θ (1 + βχaR)
, (28)

with the parameters aR and bR defined as

aR = cos ϕ tanh (αRk‖)

1 + sin ϕ tanh (αRk‖)
; bR = 1 − sin ϕ tanh (αRk‖)

1 + sin ϕ tanh (αRk‖)
.

(29)

Here k‖ =
√

k2
y + k2

z and tan ϕ = kz/ky.
Note the expression of ζR can be obtained from that of ζB

by identifying By ↔ −αRkz and Bz ↔ αRky, or equivalently,
B‖ ↔ αRk‖ and � ↔ π/2 + ϕ, which, in turn, identifies
aB/bB ↔ aR and b−1

B ↔ bR. This readily yields Eq. (28) from
Eq. (23). However, the results for the shifts that follow are
significantly different from the magnetic impurity case since
aR and bR are momentum-dependent parameters unlike aB and
bB. This has distinct effects on the two shifts when we adopt a
reference by setting k̄z = 0.

In detail, in this setting, the Rashba type surface potential
appears to have no effect on the IF shift, i.e.,

�IF = − h̄vF

E

χ

tan θ̄
, (30)

same as the clean case. The chirality-dependent GH shift,
however, is modified and given by

�GH = h̄vF

E

1

κ̃ cos θ̄

NR

DR
, (31)

where

NR = (κ̃2 + ε cos2 θ̄ − 2χαRE κ̃2 cos2 θ̄ )sech2(αRE sin θ̄ ),

DR = sin θ̄ (1 − ε)[1 + tanh2(αRE sin θ̄ )]

+ 2χ tanh(αRE sin θ̄ )(ε − sin2 θ̄ ). (32)

FIG. 5. Rashba potential: The valley-dependent GH shift (mea-
sured with respect to the length scale h̄vF /E ) as a function of the
incident angle θ for V0/E = 1.5 (E = 1) for valley A in (a) and valley
B in (b) at different strengths (αR) of the Rashba spin-orbit potential.
The same as a function of V0/E for an incident angle θ = 50◦ for
valley A in (c) and valley B in (d). The clean case corresponds to
αR = 0 (red).

It is straightforward to show that NR and DR approach their
corresponding clean values in the limit αR → 0. The general
case for k̄z 	= 0 is discussed in Appendix B which indeed
affects the IF shift.

The influence of Rashba-type surface potential on the shifts
is depicted in Fig. 5. The GH shift behaves qualitatively very
similar to the clean case in the sense that it is odd in θ and
for all values of αR below αR ∼ 10 (beyond this, �GH ∼ 10−5

and gets further suppressed with increasing αR), there exists
a θ∗ at which the shift vanishes (and across which it changes
sign) as can be seen in Figs. 5(a) and 5(b) for both valleys.
The same comparison holds for the plots of �GH vs V0/E
[Figs. 5(c) and 5(d)] except that at large values of αR, the GH
shift plateaus over the entire range of V0/E for both valleys.
Furthermore, as shown above, the IF shift is not affected, and
so we do not provide any parametric plot of �IF for this case.

D. Dresselhaus spin-orbit potential

For surface potentials that arise from Dresselhaus type
spin-orbit coupling V = αD(kyσy − kzσz ), the transfer matrix
is given by

T = e−iαDσx (kyσy−kzσz ) = eαD (kzσy+kyσz ), (33)

which results in a reflection phase

φr = −θ − π

2
+ 2 tan−1 ζD,

where

ζD = η̃ cos θ (bD − βχaD)

2ηχ (βχ − aD) − η̃ sin θ (bD − βχaD)
, (34)

with the parameters aD and bD defined as

aD = sin ϕ tanh(αDk‖)

1 + cos ϕ tanh(αDk‖)
; bD = 1 − cos ϕ tanh(αDk‖)

1 + cos ϕ tanh(αDk‖)
.

(35)
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FIG. 6. Dresselhaus potential: The GH shift (measured with re-
spect to the length scale h̄vF /E ) as a function of the incident angle
θ for V0/E = 1.5 (E = 1) in (a) and the same as a function of V0/E
with θ = 50◦ in (b) for valley A at different strengths (αD) of the
Dresselhaus spin-orbit potential. The IF shift under the same setup
in (c) and (d). Note here �GH is valley independent while �IF ∝ χ

like the clean case (αD = 0).

Here a straightforward identification aB ↔ −aD and bB ↔
bD (by virtue of B‖ ↔ αDk‖ and � ↔ 2π − ϕ) would yield
Eq. (34) from Eq. (23).

Following analogous calculations as the Rashba case
above, we obtain the shifts as

�GH = h̄vF

E

1

κ̃ cos θ̄

N (GH)
D

DD
; �IF = − h̄vF

E

χ

tan θ̄

N (IF)
D

DD
,

(36)

where

N (IF)
D = (1 − ε)[1 − tanh2(αDE sin θ̄ )] sin θ̄

− 2κ̃ tanh(αDE sin θ̄ ) − 2 tanh2(αDE sin θ̄ ) sin θ̄ ,

N (GH)
D = (κ̃2 + ε cos2 θ̄ + 2αDεκ̃E cos2 θ̄ )

+ 2 tanh(αDE sin θ̄ )κ̃ sin θ̄ + tanh2(αDE sin θ̄ )

× [κ̃2 − ε cos2 θ̄ − 2αDεκ̃E cos2 θ̄ ], (37)

and

DD = sin θ̄ (1 − ε) + 2κ̃ tanh(αDE sin θ̄ )

+ tanh2(αDE sin θ̄ ) sin θ̄ (1 + ε). (38)

Again, the clean results are readily obtained in the
limit αD → 0.

The Dresselhaus-type surface potential has quite a few
exotic effects on both shifts. First, from the above expressions,
�GH is chirality independent and odd in θ while �IF carries
the same chirality dependence as the clean case, i.e., �IF ∝ χ .
This is reflected in Fig. 6. In Fig. 6(a) �GH is plotted against

θ keeping V0/E = 1.5. Similar to the other potentials, a θ∗
exists at which �GH vanishes in a given range of αD beyond
which |�GH| remains finite. In Fig. 6(b) �GH is plotted against
V0/E keeping θ = 50◦. We note while at small values of αD,
the behavior of �GH looks qualitatively similar to the clean
case, as αD is gradually increased, the plateauing effect starts
dominating, and eventually, at very large values of αD, �GH

saturates at a value that increases with θ .
For the IF shift we find that the Dresselhaus type surface

potential can interestingly lead to phenomena like valley in-
version as seen in Fig. 6(c) in the following manner. Let us
denote the value of θ at which the IF shift vanishes by θ∗

IF.
For the clean case, |θ∗

IF| = π/2. When αD is increased, there
appears another θ∗

IF such that |θ∗
IF| < π/2 which gradually

approaches θc as αD approaches

α∗
D = 1

E sin θc
tanh−1 V0

V0 + 2
. (39)

If αD is increased further beyond this value, a valley in-
version takes place as �IF changes sign across αD = α∗

D.
Similar phenomenon is also observed in the plot of �IF against
V0/E as in Fig. 6(d) where the valley inversion manifests
as reordering of the curves of �IF against V0/E at different
values of θ as αD is increased and consequently, �IF(θ ) →
−�IF(θ ).

V. DISCUSSION

In this article we revisited the phenomena of GH and IF
shifts, the lateral shifts of an incident beam upon total re-
flection, in a Weyl semimetal system to discuss the effects
of surface potentials on these shifts which could be probed
in real materials. Earlier these shifts were studied for a clean
Weyl surface and argued that the IF shift is topological in
nature, namely, it is chirality dependent and so can be ex-
ploited in experiments to characterize Weyl systems. The GH
shift in Weyl semimetals, on the other hand, does not have
such a feature. However, as we reveal in this article, this is
not entirely true when the concerned surface harbors various
kinds of surface potentials as is the case in real materials
exhibiting Weyl nodes. Among the key observations, the pres-
ence of any type of surface potential renders the GH shift
strongly chirality dependent. In fact, strong scalar or magnetic
potential can yield a situation in which the GH shift remains
finite irrespective of the incident angle for the allowed values
of the magnitude of the chemical potential barrier (V0) that
distinguishes the surface. For other types of surface potentials
such as the Rashba or Dresselhaus type, the GH shift shows
a conspicuous departure from the clean results. In the case of
magnetic impurities, when plotted as a function of the barrier
height V0, strong surface potentials give rise to a plateauing
effect in the GH shift and sometimes, pronounced cusps at
specific values of V0. These effects can be particularly useful
in probing magnetic Weyl systems that have recently nucle-
ated experimental activities.

For the IF shift, the scalar surface potentials turn out to
have no effect, however, a statement is in order. This is
specific to the reference used which is k̄z = 0, otherwise, a
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FIG. 7. Combination of scalar and Zeeman potential: GH shift
(measured with respect to the length scale h̄vF /E ) as a function of
the incident angle θ for V0/E = 1.5 for valley A in (a) and valley
B in (b) at different strengths of the scalar surface potential (λ) and
magnetic potential (B‖). The same as a function of V0/E at θ = 50◦

for valley A in (c) and valley B in (d). The combinations of λ and B‖
are specified in different colors as λ = 1, B‖ = 0 in red, λ = 0, B‖ =
1 in green, λ = 0.5, B‖ = 0.2 in blue.

finite contribution to the IF shift due to a scalar potential can
arise as discussed in Appendix A. On the other hand, even in
this simple setting, the other kinds of surface potentials leave
remarkable signatures compared to the clean case similar to
when intervalley scattering takes place. Most promising are
the magnetic and Dresselhaus-type impurities, in the presence
of which, the IF shift, which otherwise is independent of V0

and changes sign between the two valleys for the clean case,
develops a strong valley asymmetry beyond a simple sign
inversion and also a parametric dependence on V0 such that
it can vanish at certain values of V0 depending on the incident
angle θ . Similarly, in distinction to the clean case where the
IF shift vanishes only at θ = ±π/2, the impurities can enforce
intermediate values of 0 < |θ | < π/2 at which the IF shift is
nullified and that too can be valley dependent. This can poten-
tially mask the IF shift to be identified as a topological effect
in realistic Weyl systems as their surfaces would typically host
various impurities even including a mixed nature.

To investigate the effects of such mixed impurities, we
study the case where the surface potential includes both the
scalar and magnetic contributions as V = λ + B · σ . The re-
sults are summarized in Fig. 7. While the IF shift (not shown)
is dictated by the magnetic contribution, the GH shift is af-
fected by both. In fact, as revealed by Fig. 7, the plateauing
effect is stronger when both types of surface potentials are
present with moderate strengths, compared to their individual
influences at higher strengths. If the two impurities form dis-
tinct domains on the surface, we expect the resultant shifts
to be a weighted average of the individual shifts as 〈�〉 =
w〈�1〉 + (1 − w)〈�2〉 where the two kinds of impurities are
denoted by 1 and 2 and 〈· · · 〉 implies ensemble averaging
that includes the impurities with probabilities w and (1 − w),
respectively. This extends to multiple types of impurities as
well.

In summary, our work extends the phenomena of GH
and IF shift in Weyl semimetals beyond a clean surface and
accommodates surface potentials to unveil novel features of
the shifts. Our observations would provide useful guidance
to experiments that are tuned to characterize Weyl systems
based on such phenomena that have already found potential
relevance in device applications engaging other electronic
systems. Studying similar effects on other transport properties
of Weyl semimetals will be addressed elsewhere.
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APPENDIX A: IF SHIFT DUE TO THE SCALAR
POTENTIAL FOR k̄z �= 0

Here we present the expression of the IF shift for k̄z 	= 0 in
the presence of a scalar potential that reads

�IF = − 2

G2
[−2ηη̃χ cos θ̄ (1 + tan2 λ)β (1)

χ

+ 2χ cos θ̄ (1 − βχ tan λ)(βχ + tan λ)(ηη̃(1) − η̃η(1) )]

+ θ (1)

[
1 + η̃2 − 4η2

η̃2 + 4η2
− 2η̃2(1 − βχ tan λ)2

G2

+ 2χηη̃ sin θ̄ (βχ + tan λ)(1 − βχ tan λ)

G2

]
, (A1)

where

β (1) = ∂βχ/∂kz|k̄z=0[
1 + χ k̄z

(E−V0 )

]2

[
1 − χ k̄z(E − V0)

κ (k̄y + κ )

(
1 + χ k̄z

(E − V0)

)]
,

η(1) = 1

η

∂η/∂kz|k̄z=0[
1 + k̄z

E

]2 ,

η̃(1) = 2(1 + χ )ηη(1),

θ (1) = k̄y√
E2 − k̄2

y − k̄2
z

k̄z(
E2 − k̄2

z

) ,

G2 = η̃2(1 − βχ tan λ)2 + 4η2(βχ + tan λ)2

− 4ηη̃χ sin θ̄ (βχ + tan λ)(1 − βχ tan λ). (A2)

Note θ (1) vanishes at k̄z = 0 and the term remaining in
Eq. (A1) simplifies to Eq. (19) (without the prefactor h̄vF /E ).
Also the quantities βχ, η, η̃ in the above expressions are eval-
uated at ky = k̄y, kz = k̄z.
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APPENDIX B: IF SHIFT DUE TO THE RASHBA-TYPE
POTENTIAL FOR k̄z �= 0

Here we present the expression of the IF shift for k̄z 	= 0 in
the presence of a Rashba-type potential that reads

�IF = − 2

G2
R

[
2ηη̃χ cos θ̄β (1)

χ

[
a2

R − bR
]

+ 2χ cos θ̄ (1 + βχaR)(aR + βχbR)[ηη̃(1) − η̃η(1)]

+ 2η cos θ̄ η̃χ
[
β2

χbR − 1
]
a(1)

R

− 2ηχη̃ cos θ̄βχ (1 + βχaR)b(1)
R

] + θ (1)[· · · ], (B1)

where

a(1)
R = − k̄y

k̄2
‖

tanh(αRk̄‖)[tanh(αRk̄‖) + sin ϕ̄]

[tanh(αRk̄‖) sin ϕ̄ + 1]2

+ k̄z

k̄‖

αR sech2(αRk̄‖) cos ϕ̄

[tanh(αRk̄‖) sin ϕ̄ + 1]2
,

b(1)
R = − k̄y

k̄2
‖

2 tanh(αRk̄‖) cos ϕ̄

[tanh(αRk̄‖) sin ϕ̄ + 1]2

− k̄z

k̄‖

2αR sech2(αRk̄‖) sin ϕ̄

[tanh(αRk̄‖) sin ϕ̄ + 1]2
,

G2
R = η̃2(1 + βχaR)2 + 4η2(aR + βχaR)2

− 4ηη̃χ sin θ̄ (1 + βχaR)(aR + βχaR), (B2)

and k̄‖ =
√

k̄2
y + k̄2

z , tan ϕ̄ = k̄z/k̄y. Again it is straight-
forward to show that setting k̄z = 0 in Eq. (B1)
reproduces the expression in Eq. (30) (without the prefactor
h̄vF /E ).
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