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Waiting time distribution and current correlations via a Majorana single-charge transistor
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We investigate the electron transport and the waiting time distribution (WTD) in a topological superconducting
Coulomb island system weakly coupled to two metallic leads. A pair of Majorana bound states are hosted in
the island with a finite charging energy. By employing the Markovian master equation, we study the effect of
interplay between Majorana energy splitting and the charging energy on the current correlations and the relevant
electron WTDs. It is found that the super-Poissonian shot noise could be induced when the Majorana energy
splitting is larger than the charging energy. The reason is that the degeneracy of the ground states in the island
could be lifted by a finite Majorana energy splitting, which produces the asymmetry between tunneling channels
and leads to the dynamical channel blockade effect. We show that the WTD for electron tunneling through two
Majorana bound states is equivalent to the WTD in a single-resonant-level device. For comparison, we also
discuss the WTD for electron tunneling through a non-Majorana device. It is found that the WTD sensitively
depends on the length of the island and indicates oscillation behaviors in the absence of Majorana bound states.
The particular behaviors of the WTDs in a Majorana island device can be useful in identifying the existence
of Majorana bound states. Furthermore, we study the randomness parameter of the waiting time to describe
the fluctuations of waiting times. It is shown that the randomness parameter indicates behavior similar to that
indicated by the noise Fano factor, and both of them reflect the information of tunneling dynamics.
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I. INTRODUCTION

The search for Majorana bound states (MBSs) at the edges
of one-dimensional topological superconductors or the chains
of adatoms on superconducting substrates has attracted in-
creased attention recently, due to expected applications in
topological quantum computation [1–4]. Possible signatures
supporting the existence of such modes have already been
reported by several experiments [5–11]. Another important
aspect making such hybrid systems interesting is that the
quantum transport in the presence of Majorana modes could
indicate several unique and important tunneling signatures
[12,13]. For instance, the coupling to a topological supercon-
ductor hosting Majorana quasiparticles results in the zero-bias
conductance peak [12]. As the signature of the MBSs, the
zero-bias conductance peak has been observed in hybrid de-
vices of superconductor and semiconductor nanowire [14,15]
and in ferromagnetic iron atomic chains on the surface
of a superconductor [6]. In an interacting transistor with
MBSs, it is found that the conductance shows Coulomb
oscillations with universal halving of the finite-temperature
peak conductance under strong blockade conditions [16,17].
Despite the fact that several experiments using such plat-
forms have reported signatures compatible with MBSs, the
Majorana interpretation has been challenged because zero-
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energy Andreev bound states, in the absence of an underlying
topological state, can mimic MBSs [18–22]. The most recent
experiments demonstrate that the appearance of the robust
zero-bias peaks in tunneling spectroscopy is more likely in-
duced by trivial Andreev levels in the Yu-Shiba-Rusinov
regime, while not originating from Majorana zero modes
[20,23,24]. At this stage, it is urgent to search for a signal
that can provide an alternative or confirmative proof to verify
the existence of MBSs.

Quantum statistical properties of charge transfer in meso-
scopic devices can be described by full counting statistics
(FCS) [25,26]. The FCS in a long-time limit captures statis-
tical information about the low-frequency fluctuations of the
number of transferred charges, providing the average current,
the zero-frequency noise, and higher-order current cumulants.
The finite-time FCS has been developed to access short-time
physics [27,28]. In addition, the waiting time distribution
(WTD) represents the probability distribution of the time in-
terval between two successive electrons transmitted through
a conductor, which can also serve as a useful tool for de-
scribing short-time fluctuations in quantum nanoscale systems
[29–35].

Theoretically, Brandes [36] firstly discussed the WTD and
its relation to other statistical transport quantities in single-
particle transport using the quantum master equations. The
WTD has been investigated to understand the short-time dy-
namics of various systems with electron-electron interactions
[37–39], electron-phonon interactions [40], non-Markovian
quantum transport [30], Cooper pair splitting [41,42], and
spintronics [29]. For instance, it was found that the statistics of
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the WTD can be used to characterize Cooper pair splitters that
create spatially separated spin-entangled electrons [41,43]. A
short waiting time between tunneling events in which elec-
trons tunnel into different leads is associated with the fast
emission of a split Cooper pair, while long waiting times are
governed by the slow injection of Cooper pairs from a su-
perconductor [41]. In addition, a scattering matrix formalism
has been developed to evaluate the WTDs in fully coherent
transport systems [44–48]. The WTD taking into account the
higher-order processes for electron transport through an in-
teracting quantum dot has been recently investigated [38,49].
Experimentally, measurements of microscopic current fluctu-
ations and waiting times between tunneling events have been
realized in various quantum devices [50–52]. Spurred by the
rapid development of real-time single-electron detection tech-
niques [50,53–56], the WTDs in a dynamic single-electron
transistor has been measured recently [51]. The observed
WTDs are quite different from that corresponding to a Poisson
process and can be well explained by the theoretical analysis
[51]. By detecting the time-resolved statistics including the
WTD, it has been demonstrated that strong nonlocal correla-
tions exist in Cooper pair splitters [52]. The WTD indicates
different features as a function of bias voltage in the junctions
made of s-wave or p-wave superconductors [46]. Although
conductance properties in Majorana devices have been widely
explored [13,16,57–63], the WTD is much less studied [46].

In this paper, we investigate the WTD and current corre-
lations in a Majorana single-charge transistor. Such devices
have been realized in a semiconducting nanowire partially
covered by or fully wrapped in a superconducting shell, and
Majorana modes can be obtained by applying proper magnetic
fields [5,20,64]. It is expected that the nonlocal current corre-
lations and the WTD contain the extra dynamical information
mediated by the interaction between the Majorana energy
splitting and the charging energy in a Majorana island. The
paper is organized as follows. In Sec. II, we introduce the
model Hamiltonian of the Majorana single-charge device, as
well as the formulas to calculate the Fano factor and the
WTD. In Sec. III, we investigate the nonlocal transport and
the WTD properties modulated by the charging energy and the
Majorana energy splitting in the island. As a comparison, we
also study the WTD in a non-Majorana island device. Finally,
a summary is given in Sec. IV.

II. MODEL AND FORMULA

A. Model Hamiltonian

As schematically shown in Fig. 1, we consider a Coulomb-
blockaded topological superconducting quantum nanowire
hosting a pair of MBSs at its two ends weakly coupled to two
metallic leads (the source and drain). The coupling between
the two MBSs can be modeled by the following Hamiltonian:

Hd = εMd†d, (1)

where εM is the Majorana splitting energy. Majorana operators
γi (i = L, R) describing the two spatially separated Majorana
excitations satisfy γi = γ

†
i . They can be combined into a

usual nonlocal fermion operator d , d = (γL + iγR)/
√

2. If the
length of the quantum wire is comparable to the size of the

FIG. 1. Schematic of the setup: A topological superconductor
(TS) Coulomb island hosting MBSs at the two ends with the energy
splitting εM is weakly coupled to two metallic leads (the source and
drain). The Coulomb interacting effect is included by giving the
charging energy Ec = e2/2C.

wave packet of two Majorana states, the formed fermionic
mode gains a finite energy splitting εM due to the overlapping
of their wave functions. It is shown that the energy splitting
decreases exponentially as a function of the length of the
quantum wire as long as MBSs are exponentially localized
[65].

In our setup, the Cooper pair number of a floating topolog-
ical superconducting nanowire is allowed to fluctuate, and the
Coulomb interaction on the topological nanowire is included
via the charging energy Ec = e2/2C [17]. The instantaneous
charge state of the superconducting island is specified by the
occupation of the d fermionic mode and the number of Cooper
pairs. Such a charge state can be represented as |Q〉 ≡ |N, nd〉,
where N and nd are the eigenvalue of Cooper pair number
operator N̂ and d-fermion number operator n̂d = d†d , respec-
tively. Then, the Coulomb interaction is effectively described
by the Hamiltonian

Hc = Ec(2N̂ + n̂d − ng)2, (2)

where ng ∈ R can be tuned by a gate voltage.
The source and drain are noninteracting electron reservoirs

with Hamiltonian

Hl =
∑
α,k

εαkc†
αkcαk, (3)

where α = {S, D} labels the source and drain electrode, εαk =
εk + μα with μα being the chemical potential of lead α, and
c†
αk is the lead electron creation operator with energy εk . Here,

we should note that electrons in leads are effectively mod-
eled as spinless fermions when we consider electron transport
through nanowire by mediating MBSs at the two ends [66].

The electron tunneling between two leads and nanowire is
described by the following Hamiltonian [16,67]:

Ht = 1√
2

∑
α={S,D},k

λαc†
αk (d + sαe−iφd†) + H.c., (4)

where sS = 1 (sD = −1), λα is the momentum-independent
tunneling amplitude, and φ is the superconductor conden-
sate phase which is the conjugate variable to N̂ , [φ, N̂] = i.
Since e±iφ creates or breaks a Cooper pair in the supercon-
ducting island, the tunnel Hamiltonian preserves the charge
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conservation. Finally, the Hamiltonian of the system can be
written as H = Hd + Hc + Hl + Ht .

B. Transition rates and n-resolved master equation

In this paper, we investigate the electron transport across a
Majorana island device in the weak-tunneling regime where
the tunneling coupling strength �α = π |λα|2να , with να be-
ing the density of states in lead α, is much smaller than 


and Ec. One of main approaches is based on the quantum
master equation. It is the equation of motion of the reduced
density ρisland(t ) = Trleads[ρ(t )], where the trace is over elec-
tronic states of the leads and ρ(t ) is the density operator
of the total system. In our present system, since there is a
one-to-one correspondence between the island charge state
|Q〉 and the charge number Q = 2N + nd , we can write the
charge state as |Q〉 = |N, nd〉. In the secular approximation,
the nondiagonal entries of ρisland are assumed to decay rapidly
and can be neglected [38,68]. The diagonal elements PQ ≡
[ρisland]QQ = 〈Q|ρisland|Q〉 describe the occupation probabili-
ties of the charge states. The master equation of ρisland then is
reduced to the rate equations for PQ, which can be constructed
from the transition rates between different charge states. In
the following, we adopt the T-matrix formalism to obtain
the transition rates up to the fourth order in the tunneling
amplitude. For kBT, eV � �α and in the Coulomb blockade
regime, the T-matrix approach has been shown to be a reason-
able approximation to calculate the transition rates under the
Markov assumption [38,68].

The transition amplitude from an initial charge state |i〉 at
t = t0 to a final state | f 〉 at the time t is given by 〈 f |i(t )〉, and
the corresponding transition rate can be defined as

� f i(t ) ≡ d

dt
|〈 f |i(t )〉|2. (5)

In the T-matrix formalism, one can define the following T
matrix in a recursive way [69]:

T = Ht + Ht
1

Ei − H0 + i0
T

= Ht + Ht
1

Ei − H0 + i0
Ht + O

(
H3

t

)
, (6)

where Ei is the energy of an initial state when the tunneling
is turned off and H0 = Hc + Hl + Hd describes the decoupled
leads and Majorana island in our present case. The transition
rate equation (5) can be expressed as a form of generalized
Fermi’s golden rule

� f i = 2π〈 f |T |i〉|2δ(E f − Ei ), (7)

where E f (Ei) is the eigenenergy of the final state | f 〉 (initial
state |i〉) and the δ function indicates the energy conservation.

In order to get the transition rates among various island
charge states, we take the state |i〉 (| f 〉) as a tensor product
state of the island charge state |Q〉 (|Q′〉) and continuous lead
states |il〉 (| fl〉). The lowest-order term of Ht in the expansion
of the T matrix describes the sequential tunneling processes
with a single electron tunneling between the island and one
of the two leads. Here, we rewrite Ht = ∑

α=S,D Hαt with Hαt

describing the electron tunneling between the island and lead
α. The sequential tunneling rates for the electron tunneling

through lead j can be expressed as

�α,Q′,Q = 2π
∑
fα,iα

|〈 fα|〈Q′|Hαt |Q〉|iα〉|2Wiα,Q

× δ
(
E (Q′) + ε fα − E (Q) − εiα

)
, (8)

where Wiα,Q is the thermal distribution function for the lead α

with state |iα〉. Note that the summation in Eq. (8) should be
replaced by the integration when we consider continuous lead
states. After integrating out continuous electronic states of the
lead, we get the corresponding transition rate

�
(Seq)
α,Q±1,Q = �i

2
nF (E (Q ± 1) − E (Q) + (−1)QεM ∓ μα ),

(9)

where Q = 2N + nd is the charge number of the island state
|Q〉, E (Q) = Ec(Q − ng)2, and nF (ε) = 1/(eβε + 1) with β =
1/kBT is the Fermi-Dirac distribution function.

More complicated cotunneling processes are included in
the next-to-leading term in the T-matrix expansion of Ht .
In our considered parameter regime, the topological super-
conducting gap dominates all other energy scales, i.e., 
 �
EC, εM , �S/D, and the rates of cotunneling processes via states
above the superconducting gap are suppressed by a factor of
1/
 [16]. All cotunneling processes except those involving
the superconductor ground state and MBSs are ignored. For
the present case of a Majorana island, cotunneling processes
fall into two classes: inelastic and elastic cotunneling pro-
cesses. Elastic cotunneling processes involve electron transfer
from lead S (D) to D (S) through the island and preserve
the energy of the island state. When εM 
= 0, this means that
elastic cotunneling processes will leave the island state un-
changed. Inelastic cotunneling processes correspond to the
local or crossed Andreev reflections. For a local Andreev
reflection, an electron and a hole tunneling from the same lead
form a Cooper pair on the island; for the crossed Andreev
reflection, the formed Cooper pair comes from an electron
and a hole of different leads. Their inverse processes include
those processes which split a Cooper pair [16] and transfer the
electrons into leads. Here, we defer the detailed derivations of
the regularized cotunneling rates to the Appendix.

To perform the calculations of the current correlations and
WTDs, we employ the n-resolved master equation. It is based
on the n-resolved occupation probability for the Majorana is-
land charge states. Here, we define PQ(n, t ) as the probability
of the island in the charge state Q with n electrons having been
transported from the source to the drain in time interval [0, t].
The n-resolved Markovian master equation can be written as
the following matrix form:

dP(n, t )

dt
=

∑
n′

M(n − n′)P(n′, t ), (10)

where P(n, t ) is defined as

P(n, t ) = ( . . . , PQ−1(n, t ), PQ(n, t ), PQ+1(n, t ), . . . )T. (11)

If we consider both sequential and cotunneling processes, the
sum over n′ includes only five terms with n − n′ = 0,±1,±2.
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Then, we rewrite Eq. (10) as

dP(n, t )

dt
= M0P(n, t ) + J±1P(n ∓ 1, t ) + J±2P(n ∓ 2, t ),

(12)

where the matrices M0, J±1, and J±2 can be constructed
from the sequential tunneling rates and the regularized co-
tunneling rates. Instead of solving the n-resolved master
equation directly, it is useful to Fourier-transform Eq. (10) to
the counting-field χ space. In χ space, the master equation be-
comes [40]

dP̃(χ, t )

dt
= M̃(χ )P̃(χ, t ), (13)

where

P̃(χ, t ) =
∑

n

P(n, t )einχ (14)

and

M̃(χ ) =
∑

n′
ei(n′−n)χM(n′ − n)

= M0 +
∑

k=±1,±2

Jkeikχ . (15)

Due to the time independence of M̃(χ ), the form solution of
Eq. (13) can be written as

P̃(χ, t ) = eM̃(χ )t P̃(χ, 0), (16)

with P̃(χ, 0) being the initial probability distribution in χ

space. Because the electron-counting processes are assumed
to start at t = 0 when the system stays at a stationary state,
we have P(n 
= 0, 0) = 0 and P̃(χ, 0) = P(n = 0, 0). In the
following, we set P(0) = P̃(χ, 0), and P(0) satisfies the equa-
tion MP(0) = 0 with M ≡ M(χ = 0). The P(n, t ) can be
obtained by performing the inverse Fourier transform:

P(n, t ) = 1

2π

∫ 2π

0
e−inχ eM̃(χ )t P(0)dχ. (17)

The distribution for the charge transfer at time t is given by

P(n, t ) = (I, P(n, t )) =
∑

Q

PQ(n, t ), (18)

where I is the identity vector.

C. Current and noise correlations

The stationary transport properties of a system are deter-
mined by the normalized occupation probability P(0). For a
floating Majorana island device, we have current conservation
IS = −ID. Here, the current flowing into the drain can be cast
in the form [70]

ID = e
∑

Q

[JDP(0)]Q, (19)

where JD is the matrix of the current operator. In our present
case, JD is given by

JD =
∑

k

kJk, (20)

where we define the current to be positive for an electron
transfer from the island to the drain. Similarly, we can con-
struct a current matrix JS for the source electrode.

The Wiener-Khinchin theorem shows that the noise spec-
trum S(ω) is related to the current correlation function via

Sαβ (ω) = 2
∫ +∞

−∞
dt eiωt [〈Iα (t )Iβ (0)〉 − 〈I〉2], (21)

where 〈·〉 is the average over the time. To convert this time
average into an average over the initial steady-state occu-
pation probabilities, we introduce a time-evolution operator
T(t ) ≡ eMt . Then, the current-current correlation function in
Eq. (21) can be expressed in terms of the current operators and
the time-evolution operator as [70]

〈Iα (t )Iβ (0)〉 = θ (t )
∑

Q

[JαT(t )JβP(0) + JβT(−t )JαP(0)]Q

+ eδαβδ(t )
∑

Q

|[JαP(0)]Q|, (22)

where θ (t ) is the Heaviside function. After a Fourier trans-
form to ω space, we can get the noise spectrum. In the
limit of ω → 0, the noise spectra for the cross-correlation
and autocorrelation of the currents are equal. Here, we take
S(0) ≡ SSD(0), and the dimensionless Fano factor F is defined
as

F = S(0)

2e〈ID〉 . (23)

D. Waiting time distribution

The electron waiting time is the time delay between two
subsequent electron emissions into the given one or two leads.
Here, we consider the WTDs for electrons jumping into the
drain electrode. Recently, the electron WTDs in an interaction
quantum dot including higher-order effects has been explored
in the framework of real-time diagrammatic theory [49]. It
has been shown that the effects of higher-order tunneling
processes on the WTDs will be strongly suppressed with
the increase in electronic temperature [49]. In the following,
for relatively high temperature and large bias, we evaluate
the WTDs in the sequential tunneling regime, using the n-
resolved master equation with the transition rates obtained in
Sec. II B. After introducing the idle time probability �(τ ),
which is the probability that no transported electron has been
detected in the drain during a time interval τ [71], the condi-
tional WTD is defined as

w(τ ) = 〈τ 〉 ∂2

∂τ 2
�(τ ), (24)

where the mean waiting time 〈τ 〉 is given by

〈τ 〉 =
∫ ∞

0
w(τ )τdτ = − 1

�̇(τ )|τ=0
. (25)

Based on the n-resolved occupation probability, the idle time
probability �(τ ) can be identified as P(n = 0, τ ) [38]. In the
large-bias limit, combining with the definition of M̃(χ ) given
in Eq. (14), we exclude all back-tunneling terms and get

M̃(χ ) = M0 + Jeiχ , (26)
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where J = J1. The idle time probability can be written as

�(τ ) = lim
χ→i∞

(I, eM̃(χ )τ P(0) ). (27)

Plugging Eq. (27) into Eq. (24), we obtain

w(τ ) = − lim
χ→i∞

(I, M̃(χ )eM̃(χ )τ M̃(χ )P(0))

(I, M̃(χ )P(0))
. (28)

Finally, using the explicit form of M̃(χ ) given by Eq. (26), we
get [38]

w(τ ) = (I, JeM0τ JP(0) )

(I, JP(0) )
. (29)

In Laplace space, the WTD reads

w̃(z) = (I, J(z − M0)−1JP(0))
(I, JP(0) )

. (30)

The moment-generating function of w(τ ) is defined as

G(z) =
∫ ∞

0
dτ eizτw(τ ) = − (I, J(M0 + iz)−1JP(0))

(I, JP(0) )
.

(31)

The moments of τ can be obtained by taking derivatives of
Eq. (31) with respect to z and are explicitly given by

〈τ n〉 =
∫ ∞

0
dτ τ nw(τ )

= n!(−1)n+1

(
I, JM−(n+1)

0 JP(0)
)

(I, JP(0) )
. (32)

III. RESULTS AND DISCUSSION

In this section we discuss the subgap electron transport
in the weak-tunneling regime where the superconducting en-
ergy gap 
 is much larger than other energy scales, i.e.,

 � Ec, εM , �S/D. In this regime, the electron transport
through the island is dominated by subgap MBSs and Andreev
reflections. Here, we consider the case that the superconduct-
ing island is floating and the setup is a two-terminal device. In
this case, the superconducting island behaves like a Cooper
pair box with multiple interacting energy levels. Majorana
energy splitting εM and the charging energy Ec are two com-
peting parameters that determine electron transport properties.
In the following discussion, we focus on the shot noise and
the WTD properties of the electron transport through the
Majorana island. In the calculation, we adopt the symmetric
lead-island coupling strength �S/D = �/2 for simplicity. We
choose μS = −μD = eVSD/2 and kBT = 2.5�. The shot noise
reflects the dynamical tunneling correlations and is frequency
dependent, which is different from the Schottky noise [72].
In addition, the WTDs and related randomness parameter are
calculated to reveal more information about time-resolved
dynamics.

A. Current, conductance, and Fano factor

We start by studying the case where the Majorana energy
splitting εM is exact zero. Figure 2 summarizes the depen-
dence of the current, the conductance, and the noise Fano

FIG. 2. (a) and (d) The steady-state current I , (b) and (e) conduc-
tance G, and (c) and (f) Fano factor F as functions of bias voltage VSD

with different Coulomb charging energies for ng = 4.0 and ng = 4.5,
respectively. The Majorana island hosts a pair of zero-energy MBSs.

factor on the applied bias voltage VSD for different values
of Ec with ng = 4.0 and ng = 4.5, respectively. For the case
where ng is an integer or half-integer, the energy spectra of
the Majorana island are different. When ng is an integer, the
ground state of system is nondegenerate, and all excited states
are doubly degenerated; for a half-integer ng, all energy levels
including the ground state are doubly degenerated. We first
discuss the case in which ng is an integer. When the bias
voltage is lower than 2Ec, the electron transport is dominated
by thermally activated sequential tunneling and cotunneling
processes. In the Coulomb blockade regime, the first-order
tunneling is exponentially suppressed, while the higher-order
processes can contribute a small current. As illustrated in
Figs. 2(a) and 2(b), the tunneling channel related to the first
excited states is open, and a conductance peak appears near
eVSD = 2Ec. In the low-bias regime with eVSD  kBT , the
shot noise is mainly induced by thermal fluctuations, and
the noise Fano factor is divergent in this case. With the
increase in bias voltage, the electron tunneling through the
device becomes independent events for eVSD < 2Ec, leading
to a Poissonian shot noise with the Fano factor F = 1. In the
large-bias regime, more eigenenergy levels of the Majorana
island enter the transport window. Having multiple energy
levels participating in transport weakens the competition or
cooperation between different tunneling channels, resulting in
a sub-Poissonian Fano factor which is close to 1/2. The Fano
factor F = 1/2 has been found in noninteracting fermion
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FIG. 3. We take the Majorana energy splitting εM = 20�. (a) and
(d) The steady-state current I , (b) and (e) conductance G, and (c) and
(f) Fano factor F are plotted as functions of bias voltage VSD with
different Coulomb charging energies for ng = 4.0 and ng = 4.5.

transport systems and in the symmetric single-electron tran-
sistor in the high-bias regime [72]. When ng is a half-integer,
the sequential tunneling processes dominate electron transport
in the whole bias regime. In this case, a zero-bias conductance
peak always exists, as shown in Figs. 2(d) and 2(e). In addi-
tion, the sideband peaks appear at eVSD = 4Ec, which means
that a pair of states with higher energy enters the bias window.
Different from the integer ng case where a Fano factor plateau
with F = 1 appears, the Fano factor for the half-integer ng

case exhibits a sub-Poissonian value (F < 1) in a wide range
of bias voltages.

Next, we consider the effects of a finite Majorana energy
splitting on the transport properties. The finite Majorana en-
ergy splitting can considerably modulate the energy spectrum
of the Majorana island, and the degeneracy of energy levels
is partly lifted. This dependence remarkably modifies the
electronic occupations in comparison with the noninteracting
case. In Fig. 3, we take εM = 20� and plot the current, the
conductance, and the Fano factor as a function of bias voltage
VSD for several values of Ec. For ng = 4, it is shown that the
zero-bias conductance peak is shifted to eVSD = 2(Ec + εM )
because the energy difference between the ground state and
the first excited state becomes Ec + εM . For the case of ng =
4.5, it is shown in Fig. 3(e) that there is no zero-bias con-
ductance peak in the presence of a finite Majorana energy
splitting. In this case, the degeneracy of energy levels is com-
pletely lifted. The energy gap between the ground state and

FIG. 4. (a) and (d) The steady-state current I , (b) and (e) con-
ductance G, and (c) and (f) Fano factor F as functions of bias voltage
VSD with serious values of Majorana energy splitting for ng = 4.0 and
ng = 4.5. The Majorana island charging energy is Ec = 20�.

the first excited state is εM and independent of Ec, leading to a
conductance peak appearing at eVSD = 2εM . As illustrated in
Figs. 3(c) and 3(f), a finite Majorana energy splitting could
induce a super-Poissonian shot noise with F > 1. This is
similar to the single-level quantum dot device. When the spin
degeneracy in the dot is lifted by applying a magnetic field
and the chemical potentials of leads are properly adjusted, a
super-Poissonian shot noise can be induced. In mesoscopic
quantum devices, the super-Poissonian shot noise is usually
induced by the dynamical channel blockade effect [73]. This
mechanism has been illustrated in several quantum transport
systems, such as multilevel quantum dot devices, Franck-
Condon blockade in single molecules [74], and nanoscale
oscillators. In the case of Ec < εM , the energy gap between
the first excited state and second excited state is smaller
than the gap between the ground state and the first excited
state. However, the Coulomb effect reduces the occupation
probability of these higher-level states. As a consequence,
the competition between the two transport channels arises,
leading to a super-Poissonian shot noise. As the bias voltage
is further increased, the super-Poissonian shot noise directly
develops into a sub-Poissonian type because more tunneling
channels enter the transport window.

In the following, we vary the Majorana energy splitting
and take a fixed charging energy Ec = 20�. The results are
presented in Fig. 4. For both cases with ng = 4 and ng =
4.5, it is shown in Figs. 4(a) and 4(d) that the currents are
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FIG. 5. (a) and (b) The WTDs for various charging energies with
εM = 10�. For a half-integer ng and a large Ec, the WTD for electron
transport through a Majorana island device takes the same form as
that in a single-level quantum dot.

significantly suppressed in the low-bias-voltage regime with
the increase in the Majorana energy splitting. As shown in
Figs. 4(c) and 4(f), we find that the super-Poissonian shot
noise exists more commonly under the condition εM > Ec. In
contrast, the sub-Poissonian shot noise appears in wide range
of bias voltages for εM < Ec. In the presence of the strong
charging energy, the island prefers to occupy the ground state,
and the occupation probabilities of other states are strongly
suppressed. The long-time occupation of the ground state
impedes the entry of electrons into the island region through
other channels, leading to the suppression of the current and
enhancement of shot noise when εM < Ec.

B. Waiting time distributions in a Majorana
single-charge transistor

In this section, we study the probability distribution of the
electron waiting time between two successive electron jumps
from the Majorana island into the drain. We choose the param-
eters kBT = 2.5�, �S/D = �/2, and μS = −μR = 40� in the
following calculations of the WTD. In this parameter regime,
the bias is large enough compared with kBT to suppress the
contributions from higher-order tunneling processes to the
WTD but still small enough to limit the number of tunneling
channels in the transport window to only a few.

In Fig. 5, we present the results of the WTDs with εM =
10� for various Ec. For a small Ec, the Cooper pair number
is allowed to fluctuate when electrons transport through the

island. Electrons from the source can tunnel to the island with
no need of overcoming the large Coulomb charging energy.
Therefore the short waiting time has a relatively large prob-
ability distribution, and the maximum of the WTD appears
at τ = 0. As Ec increases, the tunneling of an electron into
the Majorana island has a large Coulomb charging energy
cost. In this case, the fluctuation in the Cooper pair number
of the island is suppressed, and the charge states with high
eigenenergy are removed from the transport window, giving
rise to the broadening of WTDs. The waiting time with the
maximum distribution also becomes longer in this case. In the
large-Ec limit, we see that the WTD becomes very flat for an
integer ng due to the fact that there is no electron tunneling
channel in the transport window. Electron tunneling to the
drain can only be aided with thermal activated sequential
tunneling processes which have exponentially reduced tun-
neling rates. Differently, when the charging energy is large
and ng is a half-integer, only two charge states with charge
number differing by 1 remain in the transport window. In
this situation, the Majorana island behaves like a single-level
quantum dot system with a highly nonlocal electronic state,
giving rise to phase-coherent electron teleportation even when
the distance between two localized MBSs is much larger than
the superconducting coherence length. This nonlocal property
could result in a zero-bias conductance peak with a height of
at most e2/h [17]. Importantly, it can also be unraveled in
the electron WTD. Using the master equation approach, the
corresponding WTD is obtained and given by [36]

w(τ ) = �S�D

�D − �S
(e−�Sτ − e−�Dτ ). (33)

Physically, right after an electron jumps into the drain, the
nonlocal electronic state is left unoccupied, and it has to be
reoccupied before the next electron can jump into the drain.
Therefore the WTD is always suppressed at short times and
starts from zero for τ = 0, as shown in Fig. 5(b).

In order to study the effects of Majorana energy splitting
on the WTD, we choose the charging energy Ec = 25�. The
WTDs for different values of εM are plotted in Fig. 6. For
different ng, we find that the Majorana energy splitting can
modulate the WTD nonmonotonically. Here, we first consider
the case of ng = 4. When εM is small, there are three states in
the bias window, making the device a multiple reset system
[36]. Thus the WTD gets a relatively large value at τ = 0 and
a short average waiting time. For a relatively large εM only
the ground state stays in the bias window, leading to a large
average waiting time. When ng = 4.5, the Majorana island
behaves more like a single-level quantum dot system for a
small εM ; see Fig. 6(b). As εM is increased, w(0) enlarges, and
the average waiting time becomes shorter. When εM > Ec, we
find that the corresponding WTDs take a maximum value at
τ = 0 and decay monotonically as the time elapses. We also
see that similar WTDs show up in the case where Ec is small
and multiple energy levels participate in the electron transport,
as shown in Fig. 5.

The randomness parameter which is related to the Fano
factor is defined as

R = 〈τ 2〉
〈τ 〉2

− 1. (34)
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FIG. 6. (a) and (b) The WTDs for different Majorana energy
splittings at fixed Ec = 25�.

If the electron transport processes satisfy the renewal assump-
tion [75,76], it has been shown that the randomness parameter
is equal to the noise Fano factor [77]. In Fig. 7, we plot the
Fano factor and the randomness parameter as a function of
bias voltage with Ec = 30� for several values of εM . In the
low-bias regime, we see that the Fano factor and the ran-
domness parameter are equal for both cases. This originates
from the fact that no or only one tunneling channel resides
in the transport window, and the renewal assumption is well
satisfied. As eVSD increases, more channels start to enter the
transport window. The discrepancy between the F and R arises
because the electrons tunneling to the drain could take dif-
ferent channels, making successive waiting times correlated.
In the large-bias limit, despite the difference between the
two quantities, the sub-Poissonian transport property is still
captured by the randomness parameter.

C. Comparison with a non-Majorana device

Above, we discuss the WTDs of electronic tunneling
through a Majorana island. For strong charging energy, the
electron transfer process by virtue of tunneling in and out of
the MBSs manifests the nonlocal teleportation phenomenon
[17]. In this case, a pair of MBSs are equivalent to a nonlocal
single energy level, and the behavior of the WTD approaches
to the result of a single-level quantum dot device with strong
Coulomb interaction. This means that the WTDs in a Majo-
rana island are irrelevant to the distance between two MBSs.
For comparison, we turn to considering the WTD for electron
transport through a nanowire island in the absence of MBSs,

FIG. 7. (a) and (b) Dependence of the randomness parameter
(dotted lines) and the Fano factor (solid lines) on the bias voltage
with Ec = 30�, kBT = 2.5�.

as in the setup shown in Fig. 8. To model this non-Majorana
device, we take the tight-binding model of the nanowire, and
it is given by

H =
L∑

i=1

εc†
i ci +

L−1∑
i=1

(tc†
i ci+1 + H.c.), (35)

FIG. 8. Schematic of the setup: A nanowire island is modeled as
a quantum dot chain of L sites with a global charging energy Ec. In
the large-Ec limit, only singly occupied states and the empty state are
involved in electron transport. Electrons are injected into (extracted
out of) the island through the first (last) site of the chain. The wave
function of an eigenstate of the chain spreads over the entire chain,
and it takes a finite time for an injected electron to pass through the
entire chain.
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FIG. 9. The WTDs for quantum dot chains of the lengths L =
10, 20, 30. The parameters are as follows: �S = �D = �, ε̃ = 40�,
t = 10�. At short times, the WTDs vanish completely for a finite
time interval with its width proportional to L.

where ε is the on-site energy and t is the hopping. The elec-
trostatic charging energy is described by a term Hc = Ec(N̂ −
ng)2 with N̂ = ∑L

i=1 c†
i ci. For a large Ec, strong Coulomb

interaction significantly reduces the number of charge states
involved in the electron transport. For simplicity, we assume
that the quantum dot chain can accommodate at most one
excess electron. In this case, the difference in the charging
energy between the empty state and the singly occupied states,
denoted by 
Ec, can be incorporated by redefining the on-site
energy ε̃ = ε + 
Ec.

The WTDs are evaluated by using the generalized master
equation approach [30,78], and the results are plotted in Fig. 9.
As can be seen from Fig. 9, the WTDs vanish at short times
for a finite time interval with its width proportional to L. This
occurs because, after an electron tunnels into the drain, it takes
a finite time for the subsequent electron to jump into and then
travel through the nanowire island. Here, we also notice that
the WTDs exhibit complicated oscillatory behaviors. This can
be traced back to the quantum coherent processes which allow
an electron to hop back and forth multiple times within the
chain [78]. Recently, a different approach to tackle the WTD
in a free-fermion chain has been developed, and similar results
were obtained [78]. Here, the length-dependent suppression
and oscillating behaviors of the WTDs are quite different
from those of the WTDs associated with electron teleportation
induced by MBSs.

IV. CONCLUSION

In summary, we have analyzed the subgap transport and
the WTD properties of a Majorana single-charge transistor
contacted by two metallic leads. The current, the differential
conductance, and the noise Fano factor are calculated by
means of the master equation with transition rates obtained
from the T-matrix approach. We focused on the effects of
the interaction between the Majorana splitting energy and
the charging energy on the shot noise and the WTD. For

a pair of Majorana zero modes, the shot noise indicates a
sub-Poissonian type for all bias voltages. Differently, a super-
Poissonian shot noise generally appears when the Majorana
energy splitting is larger than the charging energy. In this
case, the energy gap between the first and second excited
states becomes smaller than the gap between the ground state
and the first excited state. This induces asymmetric tunneling
rates between different channels, leading to the dynamical
channel blockade effect and super-Poissonian shot noise. With
the increase in bias voltage, the shot noise becomes of sub-
Poissonian type due to the fact that more energy levels of
the island lie in the transport window, which weakens the
competition between different transport channels.

Additionally, we considered the WTDs in a Majorana is-
land device and a non-Majorana island device, respectively.
At short times, the WTD for electron transport through a
nanowire island without MBSs is shown to be completely
suppressed for a finite time interval with its width proportional
to the length of the island. By contrast, the WTD associated
with electron teleportation induced by MBSs has the same
form as that in a single-level quantum dot system. In a wider
parameter regime, the WTDs are evaluated under a large bias
voltage. For a small charging energy, the fluctuation of the
Cooper pair number is large in the bias window. The electron
from the source can tunnel to the island with no need of
overcoming the large charging energy. In this case, the WTDs
take a higher finite value at short times. As the charging
energy increases, the entrance of an extra electron into the
island needs to overcome more charging energy, and levels
with higher energy are excluded from the transport window.
Correspondingly, the WTDs are suppressed at short times, and
the average waiting time becomes longer. We also showed
that the Majorana energy splitting can change the WTDs
significantly. Furthermore, we found that the randomness pa-
rameter matches the Fano factor at low bias voltages. With
the increase in the bias voltage, it is shown that there exists
a discrepancy between the randomness parameter and the
Fano factor as more higher-energy states enter the transport
window.

The detection and control of single quanta of charge have
been realized in recent experiments using a dynamic single-
electron transistor and a Cooper pair splitter [52]. We expect
that the detection of particular behaviors of the WTDs in a
Majorana island device may be useful in identifying the exis-
tence of MBSs. Moreover, the WTDs in the same setup with
the island Josephson coupled to another bulk superconductor
also deserve further study in this area.
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APPENDIX: REGULARIZED COTUNNELING RATES

In this Appendix, we provide detailed derivations of regularized cotunneling rates. Cotunneling processes are described by
the next-to-leading term in the T-matrix expansion of Ht . The transition rates are captured by the fourth-order term of Ht in
Eq. (7). Here, we take this term and put it into a more refined form as [38]

�αβ,Q′Q = 2π
∑
il , fl

∣∣∣∣〈 fl |〈Q′|Hαt
1

Ei − H0 + i0
Hβt |Q〉|il〉

∣∣∣∣
2

Wiα,QWiβ ,Qδ(E (Q) + εil − E (Q′) − ε fl ). (A1)

After some algebra, we obtain the elastic cotunneling rates

�
(EC)
α,Q = �S�D

8π

∫
dεnF (ε − μα )[1 − nF (ε − μᾱ )]

∣∣∣∣ 1

ε − 
E (Q) + i0
− 1

ε − 
E (Q − 1) + i0

∣∣∣∣
2

, (A2)

where 
E (Q) = E (Q + 1) − E (Q) + (−1)QεM and ᾱ labels the opposite lead of α. The inelastic cotunneling rates read

�
(AR)
αβ,Q±2,Q = 1 + δα,β̄

2

�α�β

8π

∫
dε

∫
dε′nF ( ± (ε − μα ))nF ( ± (ε′ − μβ ))δ(ε + ε′ ∓ [E (Q ± 2) − E (Q)])

×
∣∣∣∣ 1

ε ∓ E∓(Q) + i0
− sαsβ

ε′ ∓ 
E±(Q) + i0

∣∣∣∣
2

, (A3)

where 
E±(Q) = E (Q ± 1) − E (Q) + (−1)QεM . We note that the expressions for the cotunneling rates in Eqs. (A2) and (A3)
are divergent due to the second-order poles contained in the integrands. To get the correct cotunneling rates, a regularization
scheme should be applied to eliminate the singularities.

Here, we follow the standard regularization procedure detailed by Refs. [74,79]. This regularization procedure gives us the
following two integral formulas:

Re
∫

dε
nF (ε − E1)[1 − nF (ε − E2)]

(ε − ε1 − i0)(ε − ε2 + i0)
= nB(E2 − E1)

ε1 − ε2
Re

{
ψ

(
1

2
+ iβ

2π
(E2 − ε1)

)
− ψ

(
1

2
− iβ

2π
(E2 − ε2)

)

−ψ

(
1

2
+ iβ

2π
(E1 − ε1)

)
+ ψ

(
1

2
− iβ

2π
(E1 − ε2)

)}
, (A4)

∫
dε

nF (ε − E1)[1 − nF (ε − E2)]

|ε − ε1 + i0|2 = βnB(E2 − E1)

2π
Im

{
ψ ′

(
1

2
+ iβ

2π
(E2 − ε1)

)
− ψ ′

(
1

2
+ iβ

2π
(E1 − ε1)

)}
, (A5)

where the divergent parts have been subtracted from the integrals, nF (nB) is the Fermi-Dirac (Bose-Einstein) distribution,
β = 1/kBT , ψ (x) is the digamma function, and ψ ′(x) denotes its first derivative. Then, using Eqs. (A4) and (A5), we can
directly obtain the regularized cotunneling rates.
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[75] K. Ptaszyński, Nonrenewal statistics in transport through quan-
tum dots, Phys. Rev. B 95, 045306 (2017).
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