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Due to its transparent and highly dispersive nature, plasmonically induced transparency (PIT) has become
an attractive field in the on-chip control of light. Conventional methods to achieve PIT are only limited to the
lowest dipole-dipole or dipole-combined quadrupole modes by breaking structural symmetry. Consequently,
a general methodological framework for accurately designing all-order PIT remains absent. In this paper, we
propose a theoretical scheme to achieve unidirectional odd-to-even order PIT by establishing a model with
two layers of periodic graphene nanoribbons. The underlying physical principles are uncovered by defining
the additional resonant phase of one mode over the other as phase difference, which predicts that the PIT effects
appear (disappear) generally near the positions where the phase difference is around odd (even) multiple numbers
of π . Full-wave simulations and theoretical analysis are used to demonstrate our proposal, revealing that the
proposed PIT concept possesses good robustness against both the ribbon width and the relative ribbon positions.
Our results serve to provide an effective method to realize all-order PIT and to design PIT-based photonic devices.
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I. INTRODUCTION

Surface plasmons, the collective oscillations of free elec-
trons in the surface of conducting media, can concentrate
the incident electromagnetic energy into extremely subwave-
length scales [1,2]. This extraordinary property has gained
multifield research interest from physics [3], chemistry [4],
and biology [5] and has been reported to have various ap-
plications such as optical modulators [3,6], nanolasers [7],
chemical reaction [4], sensors [8,9], and particle manipula-
tion [10,11]. Additionally, the physical mechanism of surface
plasmons provides a fruitful platform to achieve some clas-
sical phenomena, for example, the classical analogue of
electromagnetically induced transparency [12,13], which is
also known as plasmonically induced transparency (PIT)
[12,14,15].

PIT is an effect driven by the interference between two
excitation pathways in two coupled resonators [16,17]. If a
plasmon mode can strongly (weakly or not) couple to in-
cident light at some excitation conditions, it can work as a
bright (dark) mode [12]. Bright plasmon modes are radia-
tive, which means they are easy to be excited and measured
with far-field plane-wave optical techniques and, therefore,
are extensively studied [18]. Meanwhile, dark plasmon modes
are nonradiative, which makes them difficult to be excited
and measured with far-field techniques [19], but they can
usually be generated through near-field couplings [20–22].
Note that both the bright and dark modes can be switched
to each other in some cases, depending on the polarization
condition [23]. When the bright and dark modes approach
each other in both the resonant frequency and the real space,
their destructive interferences will create a transparency win-
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dow at the wavelength near the original bright mode in
the optical spectrum [12,13,24]. Because of the ability to
slow the light near the transparency window and strongly
localize the electromagnetic field [25,26], PIT has great po-
tential applications in the field of integrated photonic devices
[27,28].

Recently, tremendous attention has been attracted to study
the PIT effect in many types of resonators, such as in periodic
metasurfaces/metamaterials and waveguide systems, which
are either constructed by traditional metals (like Au and Ag)
[12,14,29,30] and two-dimensional (2D) materials (such as
graphene and black phosphorus) [23,31] or their combinations
[32,33]. Among them, the more commonly proposed designs
are constructed by nanostructure arrays [12,13,25,32,34]. The
main features of this kind of system are that the PIT effects
can be generally conserved if the symmetry of the system
is broken [12,13,28,34–37], and it can be found that these
systems mainly support the lowest order dipole-dipole mode
coupled PIT effects [13,28,34,37]. Conversely, these features
arouse two longstanding questions: Why can PIT effects be
achieved by breaking the geometrical symmetry? Is the sym-
metry breaking a general method to achieve all-order PIT?
These issues have severely hampered the design and appli-
cation of PIT devices. Therefore, a general theoretical model
that can quantitatively characterize all-order PIT is certainly
important and highly desired.

To answer these questions and further reveal the phys-
ical controlling mechanisms behind them, in this paper, a
parameter called phase difference is introduced to predict
the existence of PIT. In terms of the plasmon wave func-
tions (PWFs) within the classical electrostatic limit, we
theoretically propose and numerically demonstrate how this
parameter is related to the relative geometrical position of the
coupled resonators and how it further tunes the PIT properties
through a general rule by making use of the bright and dark
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FIG. 1. (a) Three-dimensional (3D) and (b) two-dimensional (2D) geometrical diagrams of the proposed plasmonically induced trans-
parency (PIT) device. Two graphene nanoribbon (GNR) layers are sandwiched among three dielectric layers that have refractive indexes
of n1 = 1, n2 = 1.5, and n3 = 1.5, respectively. The two ribbon layers are assumed to be with widths W1 and W2, distance d (60 nm),
period � (1000 nm), and central-to-central shift s. A plane wave is incident from the positive y direction with the polarization direction
perpendicular to the ribbon width. (c) Schematic representations of the energy-level diagram describing the plasmon couplings for different
ribbon configurations. The two nanoribbons are uncoupled (cases I and III), asymmetrically coupled (upper plots in cases II and IV,
antisymmetric mode), and symmetrically coupled (lower plots in cases II and IV, symmetric mode) when they are with same width (case
I) or centrosymmetric (case III) and edge-aligned (cases II and IV) constructions, respectively.

modes in a model composed of two coupled periodic graphene
nanoribbons (GNRs).

To this end, the structure of this paper is constructed as
follows: In Sec. II A, we present the structure and materials
under study and the energy-level schematic diagram of the
proposed PIT effects. In Sec. II B, we briefly discuss the
bright and dark modes supported by a single graphene ribbon
layer. In Sec. II C, we study the existence, mechanism, and
properties of the PIT effects in detail and demonstrate their
relationships with coupling strengths and phase differences
for different ribbon configurations. Then in Secs. II D and
II E, we briefly discuss the robustness of ribbon width and
sensing performance of the proposed PIT effect. Finally, we
respectively summarize our findings in the conclusion section
and present detailed theoretical calculations of PWFs in the
appendixes.

II. RESULTS AND DISCUSSIONS

A. Model and materials

The analytical model under study is presented in Fig. 1.
Two layers of periodic GNRs with different widths are stacked
with central-to-central in-plane shift s and spaced by a dis-
tance d . A plane wave with the electric field polarized along
the x direction is incident from the positive y direction. Here
and in what follows, we only consider the case with normal in-
cidence, unless specified otherwise. The three dielectric layers
separated by the two graphene layers are assumed to be re-
spectively dominated with refractive indexes of n1 = 1, n2 =
1.5, and n3 = 1.5, so that we can elucidate the fundamental

principles of PIT without loss of generality. From the practical
point of view, these materials can be trivially extended to
conductive media such as Si, SiO2, or ion-gel since the silicon
substrate with a proper doping level or the ion-gel can act
as gate electrodes, and the voltage can be applied between
the substrate and a metallic electrode on the graphene layer
to dynamically tune graphene conductivity [38,39]. All the
geometrical parameters are predefined, as shown in Figs. 1(a)
and 1(b). The proposed structures are simulated by using
finite-difference time-domain (FDTD) methods with Lumer-
ical FDTD solutions. In both our theoretical and numerical
calculations, we model the graphene sheet as a 2D surface
characterized by an infinitesimally thin, local, and in-plane
isotropic electrical conductivity σ (ω), which is expressed in
terms of interband and intraband contributions and is widely
used to model the optical property of graphene in both the-
oretical and experimental works [40–42]. Full details on this
model and the parameters can be found in Refs. [23,43,44].
Notably, the Fermi level of graphene is assumed to be 0.6 eV
in this paper, which is a conservative value within experimen-
tally feasibly ones reached by electrostatic gates [45,46]. We
also note that our proposals are general, and our fundamental
conclusions do not depend on the choice of the Fermi level
of graphene or other dielectric parameters if the choices can
guarantee efficient excitation of the plasmons.

B. PWFs in single-layer GNR

The proposed PIT effects are the results of strong coupling
between two ribbon layers; how the fundamental plasmon
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FIG. 2. Plasmon response of single-layer periodic graphene nanoribbons (GNRs). (a) Absorption map for different ribbon widths. The
cyan-colored crosses present the mode position from plasmon wave functions (PWFs), with their sizes proportional to the absorption maxima.
The black lines plot the wavelength of the even-order dark modes that are captured by using oblique incidence. (b) Logarithmic scale absorption
lines with W1 = 100 nm and � = 1000 nm under normal and oblique incidence. The insert depicts the schematic diagram of the structure under
oblique incidence. (c) Mode profiles of the first 10 lowest-order plasmon modes. The circles are the results of the finite-difference time domain
(FDTD), while the lines are fitted by extracting the PWFs from the polarizability calculated with FDTD.

modes behave in each ribbon layer will determine how they
interact with each other. Therefore, it is essential to start by
analyzing the fundamental plasmon modes in only one-layer
GNR. Figure 2 presents some fundamental properties of the
first 10 lowest-order plasmon modes. Firstly, it is shown in
Fig. 2(a) that the strong absorptions exist in the absorption
map that reveals the excitation of the plasmons, but these
plasmons are all odd-order modes. With the increase of the
ribbon width, their resonant wavelengths shift to longer wave-
lengths. This is because the multimode plasmon resonances
can be viewed as Fabry-Pérot cavity modes that travel along
the ribbon width and get reflected at the edge terminal [47,48];
thus, the termination of the GNR acts both as a scattering
source and as a reflection mirror. When the round-trip travel
accumulates a 2jπ phase (where j presents the mode order), it
forms standing wave resonance so that the local electromag-
netic field is trapped within the ribbon [49,50], as is clearly
shown in Figs. 2(c) and S3(b) in the Supplemental Material
[44]. The remarkable signature of these standing waves is that
the jth-order mode has j nodes along the ribbon width, as
shown in Figs. 2(c) and S3(b) in the Supplemental Material
[44] and well predicted by the PWF. Therefore, the wider
ribbon width will cost a longer trip to accumulate the resonant
phase at each mode, resulting in longer wavelengths.

The other significant feature is that the even-order modes
are not (weakly) excited under normal (oblique) incidence.
To clearly illustrate this, we plot the numerically and theo-
retically calculated absorption spectra for the cases with two
specified incident angles of 0° and 60°, respectively, as shown
in Fig. 2(b) (evidence of odd-order plasmon excitations can
be found in Fig. S3(b) in the Supplemental Material [44]).
In addition to the good agreement between the results of the
two methods, one can easily find that the even-order modes
are completely dark under normal incidence. Their excitation
efficiencies are almost two orders of magnitude smaller than
those of the odd-order modes even at the oblique incident an-
gle of 60°. The difference in excitation efficiency between the
odd- and even-order modes is caused by the mode symmetry
[19]. As the first 10 lowest-order eigenmode profiles shown
in Fig. 2(c), all odd-/even-order modes have an asymmet-
ric/symmetric field distribution. Considering that the mode
moment is defined as ζ j = ∫

dθρ j (θ )θ with θ = x/W being
a dimensionless coordinate [see Eq. (A15) in Appendix A],
the odd-/even-order modes have nonzero/zero mode moment
and, thus, the high/low mode excitation efficiency (according
to our calculation, the mode moment ζ j of the odd mode is at
least three orders bigger than that of the even order mode).
Therefore, they can/cannot be observed in simulations or
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FIG. 3. (a) Calculated absorption map with sweeping wavelength and ribbon width of the second ribbon layer, where we have W1 = 100 nm
and s = −|W2 − W1|/2. (b) Linecuts of the absorption spectra for selected ribbon widths and different ribbon configurations. The two light-blue
lines are guides for the eye. The identified numbers at the absorption maxima are in accordance with these positions shown in Fig. 4, which
refer to the resonant positions of the symmetric mode (SM; smaller numbers) and asymmetric mode (AM; bigger numbers). Circles and lines
correspond to the data from the finite-difference time domain (FDTD) and plasmon wave functions (PWFs), respectively.

experiments since they can/cannot be excited using standard
plane-wave incidence configurations [51–53].

C. PIT in two layers of GNRs

In this part, we discuss our concept of achieving PIT effects
by making full use of the features of the odd- and even-order
modes. Odd-/even-order modes have nonzero/zero net mode
moments and can strongly/weakly couple with incident light;
therefore, they can play the role of bright/dark mode [12].
Considering that the wider ribbon width supports an increas-
ing number of plasmon modes with increasing wavelength
(see Figs. 2(a) and S1(a) in the Supplemental Material [44]),
it is possible to construct a PIT device by using this primary
property. To find this out, we carry out the simulations and
display the results in Fig. 3(a) for the construction shown in
Fig. 1 with s = −|W2 − W1|/2 (and also with s = 0, see Fig.
S1(b) in the Supplemental Material [44]) for various ribbon
widths of the second ribbon layer while fixing that of the first
ribbon layer. The results clearly show that, compared with the
case with only the first ribbon layer where only one peak is
identified in the interested wavelength range, the edge-aligned
ribbon layers produce two new distinct absorption peaks
(also see Fig. S1 in the Supplemental Material [44]). They

appear and fade away gradually with the increase of the ribbon
width.

To gain physical insight into the nature of these peaks
and distinguish whether they are the result of PIT, we firstly
capture the absorption lines with two comparable absorption
maxima and illustrate them in Fig. 3(b) (also see Fig. S3 in
the Supplemental Material [44] for full wavelength range).
These spectra indicate that the new emerging peaks locate
at the positions between two odd-order modes of the sec-
ond ribbon layer. For example, as shown in Fig. S3 in the
Supplemental Material [44], peaks 1 and 3 appear within
the range between the modes j1 and j3 of the case with
W2 = 178 nm only. One may find that these peaks (except
for the case with W2 = 178 nm) exhibit pronounced blueshift
once compared with only the first ribbon layer, as the dashed
line shows in Fig. 3(b). The blueshift of the high-order PIT
can be explained by considering the change of the effective
propagation constant that is caused by the existence and the
coupling effect of the second graphene layer. This is because
the existence of the second graphene layer not only brings
the dielectric change but also leads the difference of the
effective propagation constant between the symmetric mode
(SM) and asymmetric mode (AM) that further shifts the res-
onant wavelengths (see Sec. S5 in the Supplemental Material
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FIG. 4. Absorption maps for the (a) plasmonically induced transparency (PIT)1-2, (d) PIT1-6, and (g) PIT1-10 effects with different ribbon
shift s. The inserts are the field distributions corresponding to the positions labeled by the cyan-colored numbers. (b), (e), and (h) PIT window
width (left axis), coupling strength (right axis), and (c), (f), and (i) corresponding phase differences of (a)–(c) PIT1-2, (d)–(f) PIT1-6, and
(g)–(i) PIT1-10 for different ribbon shift s, respectively.

[44] for more discussion). Notably, this blueshift is observed
only when the coupling distance between the bright and dark
modes is fixed. For the parameters used in this paper, the PIT
effects can be maintained if the effective coupling distance is
<150 nm (see Sec. S4 in the Supplemental Material [44] for
details).

In addition, further examining the resonant field at these
peaks, one can find the nature of these localized surface
plasmons. As shown in Fig. 4 (also see Fig. S4 in the
Supplemental Material [44]) by the inserts labeled with the
corresponding numbers, the upper layer bright mode always
keeps a dipole mode resonance, while the lower dark res-
onator is featured by an even-ordered mode with continuously

increasing mode order j. The mode at the longer wavelength
corresponds to an in-phase charge distribution where the
charge carriers of the same sign are induced in the lower
ribbon layer, which is named SM for convenience. In contrast,
the mode at a shorter wavelength is excited when out-of-phase
charge carriers are induced, which we call AM. The attrac-
tion between the asymmetric and symmetric charge carrier
distributions in the second ribbon layer leads to an increase
in restoring force and thus to a shift in the energy of the AM
to higher energies compared with the SM. Therefore, the fea-
tures of absorption lines and the near-field distributions reveal
the fact that these peaks are indeed the results of different
ordered PIT [12,13,23,54]. For conceptual discussion, the PIT
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effect that is induced by the bth-order bright mode and the
dth-order dark mode is abbreviated as PITb-d . Accordingly,
we observe all-order PIT effects that are induced by the cou-
plings from the first odd-order bright mode to the even-order
dark mode from the lowest PIT1-2 to the highest PIT1-10 for
the fixed period of 1 μm. Note that the highest 10th-order
plasmon mode is used so that we can demonstrate the high
efficiency of our proposal in inducing PIT and draw our con-
clusion for different mode orders without loss of generality.
In all cases, the agreements between the analytical results
obtained with PWFs [as plotted with lines in Fig. 3(b)] and the
numerical results (represented with dots) are nearly perfect.

To understand the physical origin of these newly emerg-
ing PIT effects as well as the mechanisms controlling them,
we present extensive numerical simulations and PWF-based
theoretical analyses on different ribbon positions that allow
us to fully characterize the dependence of the PIT spectra
on their relative geometrical parameters. Figure 4 illustrates
the absorption maps of three selected PIT effects for different
ribbon shift s within one period (see Fig. S4 in the Supple-
mental Material [44] for other ordered PIT). One can find that
the PIT window reappears and disappears with the change of
their relative position, which is also revealed by tracking the
wavelength difference of the absorption maxima, as shown in
the left axes of Figs. 4(b), 4(e), and 4(h).

The underlying physics involved in the characteristics of
these PIT effects can be quantitatively analyzed by putting
additional insights into the phase difference and the related
coupling strength. With the help of the PWF (see Ap-
pendixes), we plot the coupling strength (to the second-nearest
neighbor, see Eq. (B6) in Appendix B and Sec. S7 in the
Supplemental Material [44]) as well as the phase difference
(see Appendix D for details about its definition and calcula-
tion) between the two coupled modes of the ribbon layers in
the right axes of Figs. 4(b), 4(e), and 4(h) and in Figs. 4(c),
4(f), and 4(i), respectively. The PIT effects take place near the
positions where the coupling strength obtains its maximum,
and more notably, the phase difference is around odd multiple
numbers of π , whereas the PIT windows disappear at the
places where the coupling strength takes its minimum and
the phase difference approaches even multiple numbers of
π . However, one may find that, for the cases with relatively
low-order dark modes (that is from PIT1-2 to PIT1-8), the
PIT effects disappear when s approaches the boundary of each
unit even if the phase difference is an odd multiple number
of π ; this is because there is no vertically overlapped region
and, therefore, the interaction between the two ribbon layers
is weak, as shown in the right axes of Figs. 4(b), 4(e), and 4(h)
(also see Figs. S4(b) and S4(e) in the Supplemental Material
[44]).

In addition to the existence of these PITs, the number
of transparency windows is under the control of the phase
difference. It is shown in Fig. 2 that the plasmon mode with
order j has a resonant phase jπ for a single trip along the
ribbon surface. As a result, the total resonant phase of the bth-
order bright mode and the dth-order dark mode is (b + d)π .
Considering two facts, firstly, to make sure of the existence
of the PIT effect, the two ribbons must have an overlapped
region to guarantee a strong coupling between the two modes
which, according to our calculation, can be further guaranteed

by a minimum π phase resonance in each ribbon within this
overlapped region (e.g., as can be seen from the inserts in
Fig. 4 that the resonant phase within the overlapped region
is π—the single trip resonant phase of the bright mode).
Secondly, though the phase shift between two neighboring
PIT windows is 2π , it only corresponds to a π phase shift
in each ribbon (see Appendix D for more details). Therefore,
there are b + d − 1 transparency windows for PITb-d within
one period shift on the condition that W1 + W2 < � (under
this condition, each ribbon will strongly couple with only one
ribbon in the other layer within each period). These transmis-
sion windows open and close with the relative position change
and, thus, with the phase difference and the related coupling
strength between the ribbons. These intriguing properties are
well described and predicted by the PWF (please see Sec.
S2 in the Supplemental Material [44] for more details about
the discussions on coupling distance and the comparation
between the numerical and the theoretical results from PWFs).

To confirm the theoretical model discussed above and ver-
ify its generality, we further examine it on the PIT effects
that are induced by the j = 3 mode and show the corre-
sponding results in Figs. S8–S11 and discuss them in Sec. S6
in the Supplemental Material [44]. These results reveal that
the PIT effects appear (disappear) near the positions where
the coupling strength obtains its maximum (minimum), and
more importantly, the phase difference approaches odd (even)
multiple numbers of π .

Therefore, we can answer the questions raised in the in-
troduction. Symmetry breaking is not a general method to
achieve all-order PIT because it cannot guarantee a phase
difference of odd multiple numbers of π . However, for the
common dipole-dipole coupled PIT effect, the breaking of
symmetry results in a phase difference near π , leading to
the excitation of PIT. That is to say, the existence of the PIT
cannot be simply described by the structural symmetry; this is
because it fails to capture every detail of the resonant phase,
especially for the high-order modes.

In addition to the general rules controlling the existence of
the PIT effects, the resonant fields at the two PIT peaks also
share a remarkable property. One can find in Figs. 4 and S4
and S8 in the Supplemental Material [44] that the odd-order
modes always keep the same resonance field since they are
directly excited by the external field, while the even-order
modes indicate an in-phase (SM) and out-of-phase (AM) res-
onance at the peak with a longer and shorter wavelength,
respectively. It is indeed the revision of the resonant field of
the even-order modes that causes the energy difference of the
SM and AM and further gives rise to the existence of the two
absorption peaks of the PIT effects.

Remarkably, there are three facts that need emphasizing in
this paper so far. The first one is that the underlying physics of
the proposed PIT effects are different from the ordinary plas-
monic hybridization in paired, coplanar, and stacked arrays
of graphene ribbons, where the plasmon interactions are only
within ribbons with the same width [55,56] and the energy
splittings are due to the bonding and antibonding eigenmode
hybridizations of the same order modes in each ribbon [55].
Secondly, since the PIT effects discussed here are achieved by
the unidirectional coupling from odd- to even-order mode and,
on the other hand, the odd (even)-order mode is assumed to be
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excited on the first (second) ribbon layer, the PIT effects are
only shown to be induced from the coupling from the first rib-
bon layer to the second one. However, the physical mechanism
allows us to couple from the second ribbon layer to the first
layer, depending on the ribbon width, the phase difference,
and the order of PIT (see Sec. S3 in the Supplemental Material
[44] for more detail). Therefore, our proposal is different
with other bidirectional coupling-induced PIT effects [23,57],
where the coupling is within the same order modes and is
either from the first layer to the second one or on the contrary.
Thirdly, though the highest order of the dark mode reaches
the 10th (14th) for the cases induced by the first (third) order
mode, which is already the highest mode order in the PIT
effects, it is expected to be further improved by using a larger
period of the ribbon array.

D. Existence of proposed PIT effects

In addition to the above salient features, the proposed
mechanism allows realizing the PIT effects with good toler-
ance to the geometrical imperfections, e.g., the relative ribbon
position and the ribbon width. Specifically, as shown in Fig. 4
as well as in Figs. S4, S10, and S11 in the Supplemental Ma-
terial [44], the PIT window exists and becomes pronounced
with two notable absorption peaks almost as long as the phase
difference is unequal to odd multiple numbers of π , which
means all ordered PIT effects can be induced for a wide range
of relative ribbon positions. In addition, it is also interesting
to find that a wide range of the second ribbon width can also
induce PIT, as shown in Figs. 3(a) and S8(a) in the Supple-
mental Material [44]. This is because the coupling strength
calculated by the PWF remains a notably big value, and at
the same time, the phase difference is around odd multiple
numbers of π , which guarantee the conditions of allowing the
existence of PIT. To make this clearer, we plot the ranges of
the ribbon width and the corresponding phase difference in
Fig. 5. For example, the PIT1-10 effect maintains a minimum
absorption of 5% provided that the width fails within 776–989
nm, which corresponds to a span of 212 nm. Meanwhile,
the corresponding phase difference changes from 8.85π to
9.11π , which is around nine times of π . These fantastic prop-
erties guarantee the existence of PIT by engineering without
stringent geometrical requirements, making it experimentally
accessible and giving significant freedom in the design of
devices.

E. Sensing performance of PIT effects

Due to the one-atom-thick nature of graphene, graphene
plasmons are extremely confined to their surface, making
them highly sensitive to the environment [58]. As a result, the
induced SM and AM discussed here are extremely sensitive
to the local dielectric environment surrounding the two ribbon
layers, providing an effective route to design a refractive index
sensor. Therefore, it will be interesting to exploit the sensing
application of the proposed PIT effects and reveal how the
mode order affects the sensing performance. Figure 6 uncov-
ers the sensing properties in the terms of the sensitivity and the
corresponding quality factor (Q-factor), which are defined as
the plasmon peak shift in the wavelength caused by the change

FIG. 5. Ranges of the second layer ribbon width corresponding
to the cases with absorption maxima of the two peaks not smaller
than 5% for differently ordered plasmonically induced transparency
(PIT) effects that are induced by the (a) first-order and (c) third-
order modes, respectively. The green square symbols in (a) and
(c) correspond to the values shown in Figs. 3(b) and S8(b) in the
Supplemental Material [44], respectively, while the green straight
lines are the guides for the eye. The upper and lower numbers refer
to the maxima and minima values of the width. Phase difference for
the corresponding ribbon width in the second ribbon layer for PIT
effects induced by the (b) first-order and (d) third-order bright modes,
respectively.

of the dielectric medium in one refractive index unit (RIU)
and the ratio of the plasmon wavelength to the full width at
half-maximum of its peak, respectively. To distinguish the
effects of both the bright and dark modes on the sensitivity,
we assume that the sensing region can be either above the

FIG. 6. (a) and (b) Refractive index sensitivities and (c) and (d)
Q factors of the proposed plasmonically induced transparency (PIT)
effects for different ordered PIT.
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first bright mode layer (sensing region n1) or below the second
dark mode layer (sensing region n3), respectively.

Firstly, it is found that the sensitivity of the case with the
sensing region below the second ribbon layer is higher than
that of the case with the sensing region above the first ribbon
layer for all mode orders, as can be seen in Figs. 6(a) and
6(b), which means the dark mode exhibits a better sensing
performance than the bright mode. The reason for this can be
figured out by considering two primary effects that directly
emerge with the change of mode order. On the one hand, as
shown in Figs. 3(b) and S8(b) in the Supplemental Material
[44], the absorptions of both the SM and AM decrease with
increasing mode order, which means the resonant fields of
these modes also reduce with the increase of the mode or-
der. Further considering the known fact that the stronger the
resonant field, the bigger the sensitivity [59], we can conclude
that the sensitivities tend to reduce with increasing mode order
due to the diminishing resonant field. On the other hand, the
increase of mode order is accompanied by the increase of the
ribbon width of the dark mode resonator, which contributes to
an expansion of the dominant sensing region and thus can ben-
efit the sensing performance by boosting the sensitivity. These
two aspects indicate that the increasing mode order imposes a
tradeoff between the increase and the decrease of sensitivity.
Specifically, for the case with the sensing region above the
first ribbon layer, only the increasing mode-order-induced de-
graded resonant field affects it and, therefore, the sensitivity
decreases with mode order. Meanwhile, for the case with the
sensing region below the second ribbon layer, the two aspects
simultaneously play a role, but the effect of the increased
sensing region dominates, resulting in the improvement of the
sensitivities. Consequently, the sensitivity gap between these
two cases continues to widen with increasing mode order.

In addition to the sensitivity, the sensing performance also
benefits from the high mode order from the high Q-factor. As
can be seen from Figs. 6(c) and 6(d), the Q-factors increase
with increasing mode order for all-order PIT. The Q-factors
of the PIT modes induced by the third-order bright mode
are almost two times those of the PIT effects induced by the
first-order bright mode, indicating that the dual-band sensing
can benefit from the PIT effects that are induced by high-order
bright modes. In general, the proposed high-order PIT effects
are expected to be useful for highly sensitive plasmonic sen-
sors that can benefit from high Q-factor resonances.

III. CONCLUSIONS

Different from general ways to achieve PIT by sim-
ply breaking the structural symmetry, where only a limited
lowest-order PIT effect can be realized, in this paper, we
have proposed using a parameter called phase difference to
break this limitation and predict the existence of all-order
PIT. Owing to its ability to capture the detail of the plasmon
resonant phase, this parameter indicates that the PIT effects
take place (disappear) generally near the positions where the
phase difference is around odd (even) multiple numbers of
π . To this end, a model with two layers of stacked GNRs is
built to reveal the underlying physics, where multi-order PIT
effects up to PIT1-10 and PIT3-14 are achieved to support
the governing rules. Additionally, we find that the existence

of these PIT effects is guaranteed by the significant freedom
in the choice of geometrical parameters while the high-order
PIT effects possess blueshifts, high sensitivities, and high
Q-factors. Considering that general ways to achieve PIT only
depend on breaking structural symmetry while failing to cap-
ture the details about the mode order and distribution of the
resonant phase, in this paper, we have stepped forward to
study the existence of PIT by building up the relationship
between the relative position of resonators and the resonant
phase distribution of diversely ordered modes through the
well-defined phase difference.

Therefore, in this paper, we provide guidance for the design
of multistructured PIT devices. For example, it can benefit
the design of layered, coplanar, or other nanostructured 2D
material-based PIT devices from how to choose the geometri-
cal parameters and set the relative position of the resonators.
The findings in this paper provide a fundamental understand-
ing of the existence of PIT and pave the way to the precise
designs of on-chip devices that can realize multifunctional ap-
plications, such as slowing light, sensing, perfect absorption,
and controlling the state of light.
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APPENDIX A: PLASMONIC EIGENMODES AND WAVE
FUNCTIONS IN SINGLE GNRs

The PWF has been shown as a powerful and successful
tool to describe the electromagnetic field in one-dimensional
(1D) and three-dimensional (3D) GNRs and nanodisks
[23,39,51,56,58,60–65]. In this paper, following the formal-
ism presented in these works, we further explore and apply
it to the situation with a 1D case but two ribbon layers.
Considering that the periodic GNRs under study are much
smaller than the incident light wavelengths, therefore, we can
safely describe their plasmonic response under the electro-
static limit. The nanoribbons are however taken to be large
enough to be described as infinitesimally thin domains char-
acterized by a local, homogeneous, and frequency-dependent
2D conductivity σ (ω). Based on the proposed structures
shown in Fig. 1(a), we aim to find the electric field E pro-
duced on a planar GNR illuminated by a normal-incidence
plane wave of an external field arriving from the y di-
rection Eext (x, ω) = E ext exp[−iω(y/c + t )] · x̂. The system
possesses translational symmetry, so the z component of the
electric field is zero. We can formulate a self-consistent equa-
tion for the remaining in-plane electric field component in the
graphene [23,56,62]:

E (x, ω) = E ext (x, ω) + i

εavgω

∂

∂x

∫ ∫
dx′dz√

(x − x′)2 + z2

×
[

∂

∂x′ σ (x′, ω)E (x′, ω)

]
. (A1)
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Here, εavg is the average permittivity of the two media
surrounding the graphene sheet. The expression in square
brackets is the induced charge density on the graphene, and
the integral calculates the induced scalar potential, which in
turn can be written in terms of the current via the continuity
equation [51], where we describe graphene by means of a
local and homogeneously doped surface conductivity σ (x, ω)
and incorporate the dependence on nanoribbon position x by
writing σ (x, ω) = σ (ω) f (x), where f (x) is a filling function
that is 1 when the in-plane 1D position x lies within the
GNR and 0 otherwise. It should be noted that the present
formalism of the surface conductivity σ (ω) can be readily
applied to a more realistic inhomogeneous doping profile by
transferring the space dependence of the carrier concentration
to f (x), where σ (ω) can be computed using either Drude or
local-Random Phase Approximation (RPA) models. Defining
a dimensionless coordinate θ = x/W , where W is the ribbon
width, the normalized electric field [56,62,65]

E (θ, ω) = W
√

f (θ )E (θ, ω). (A2)

Combining these elements, the self-consistent Eq. (A1) can
be recast as

E (θ, ω) = E ext (θ, ω) + η(ω)
∫

dθ ′M(θ, θ ′)E (θ ′, ω), (A3)

where η(ω) = iσ (ω)/(ωW ε) is a dimensionless parameter
that contains all the physical characteristics of the graphene
[51], and

M(θ, θ ′) =
√

f (θ ) f (θ ′)
∂2

∂θ2

1

log |θ − θ ′| , (A4)

which is a real and symmetric linear operator and is invariant
within the exchange of its arguments: M(θ, θ ′) = M(θ ′, θ ).
As a result, it admits a complete set of real eigenvalues 1/η j

and orthonormalized eigenmodes ε j for the jth-ordered mode
that can be defined through [51,56,62,65]

Ej (θ, ω) = η j (ω)
∫

dθ ′M(θ, θ ′)E (θ ′, ω), (A5)

and satisfy the orthogonality condition∫
dθEj (θ )Ej′ (θ ) = δ j j′ . (A6)

Using the eigenmodes shown above, the solution to
Eq. (A3) can be written in terms of these eigenmodes as

E (θ, ω) =
∑

j


 j

1 − η(ω)
/
η j

E j (θ ), (A7)

where 
 j is the expansion coefficient which is given by


 j =
∫

dθEj (θ )E ext (θ, ω). (A8)

By using the closure relation, we can get

E ext (θ, ω) =
∑

j


 jE j (θ ), (A9)

by which the induced field can be expressed as

E ind(θ, ω) =
∑

j


 j

η j/η(ω) − 1
Ej (θ ). (A10)

Now it is convenient to define the PWFs associated with
mode j as

ρ j (θ ) = ∂

∂θ

√
f (θ )Ej (θ ), (A11)

which corresponds to the induced charge density profiles of
the confined plasmon eigenmode j.

Based on Eqs. (A5) and (A6), we find that the PWFs satisfy
the orthonormality condition:∫

dθ

∫
dθ ′ ρ j (θ )ρ j′ (θ ′)

|θ − θ ′| = −δ j j′

η j
. (A12)

Using the continuity equation along with Eqs. (A3) and
(A9) and following a procedure like the derivation of Eq. (A1),
we can write the induced charge density ρ ind as

ρ ind(θ, ω) = εavg

W

∑
j


 j

1/η j − 1/η(ω)
ρ j (θ ). (A13)

Considering that the GNRs are described within the elec-
trostatic limit, the external plane wave acts as a uniform
electric field E ext. Upon integration of Eq. (A8) by parts, we
find this equation can be rewritten as


 j = −W ζ jE
ext (θ, ω), (A14)

where

ζ j =
∫

dθρ j (θ )θ (A15)

is the so-called normalized mode moment, which depicts the
spatially normalized total polarizability of the ribbon under
external incidence and can be used to describe the symmetry
of the mode. At this point, we can deduce the induced electric
mode moment as

Pind(ω) = W 2
∫

dθρ ind(θ, ω)θ. (A16)

Considering that the nanoribbon polarizability per unit
length is defined as α(ω) = pind(ω)/E ext, which can be ex-
pressed as the following equation after inserting Eqs. (A13)–
(A15) into Eq. (A16):

α(ω)=εavgW
2
∑

j

ζ 2
j

1/η(ω) − 1/η j
. (A17)

This polarizability allows us to calculate the transmission
and extinction cross-section properties of a GNR by using the
corresponding PWFs [56,62]. We are interested in the former
one, which will be discussed in the following section for the
periodic case.

APPENDIX B: COUPLING AMONG LAYERED GNRs

We now discuss the case with two-layered periodic GNRs,
as shown in Fig. 1(a). For conceptual demonstration, we index
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the nth ribbon in the lth layer (where l only takes 1 or 2) by ln
and its width and center position by Wln and xln, respectively.
We also donate the other parameters of the plasmon modes
j in the lnth ribbon as the conductivity σln(ω), eigenvalue
ηln j , eigenmode Eln j , PWF ρln j , and mode moment ζln j . The
corresponding position vector is defined as θ = (x − xln)/Wln,
where xln is the position of the lnth nanoribbon. The average
relative permittivity of the lth layer is εl . Note that θ is a global
variable that runs over the coordinates of all the nanoribbons
and is normalized within each of the corresponding ribbon
widths. Based on the above definitions, the induced charge
density can be expressed as a sum of the contributions from
both near and far nanoribbons in a self-consistent equation
[56,62]:

ρ ind(θ, ω)=
∑
ln j

aln j (ω)ρln j (θ ), (B1)

where aln j is the expansion coefficient, which can be ex-
pressed as a self-consistent form after adding the field induced
by other ribbons l ′n′ �= ln to the external field experienced by
each island n:

aln j (ω) = εl

Wln

1

1/ηln j − 1/ηln(ω)

×
[

ln j +

∑
l ′n′ �=ln

∑
j′

Cl,n, j-l ′,n′, j′al ′n′ j′ (ω)

]
. (B2)

Here, 
ln j = −Wlnζln jE ext, ηln(ω) = iσln(ω)/(ωWlnεl ) is
defined based upon the conductivity of nanoribbon ln, and

Cl,n, j-l ′,n′, j′ = 1

ζl

∫
ln

dR
∫

l ′n′
dR′ ρln j (R) · ρl ′n′ j′ (R′)

|R − R′ + dlnl ′n′ | (B3)

depicts the coupling strength between plasmon modes j and
j′ that are respectively excited on nanoribbons ln and l ′n′ and
separated by a distance dln = xln − xl ′n′ , with the integration
over the normalized position R of each nanoribbon. Note that
the coupling strengths shown above have considered both the
interlayer and intralayer couplings and the couplings between
both the odd- and even-ordered modes. Once solving Eq. (B3),
the induced mode moment on ribbon ln can be written as

Pln =
∑

j

W 2
lnaln jζln j . (B4)

Then it is convenient to rewrite Eq. (B2) based on the above
moments as

Pln = αln(ω)

(
E ext +

∑
l ′n′ �=ln

Cl,n−l ′,n′P′
ln

)
, (B5)

where

Cl,n−l ′,n′ = −
∑

j

Cl,n, j−l ′,n, j′

W 2
lnζ

2
ln j

(B6)

describes the coupling between nanoribbons ln and l ′n′ from
all ordered modes, whereas

αln(ω) = εlW
2

ln

∑
j

ζ 2
ln j

1/ηln − 1/ηln j
(B7)

is the ribbon polarizability per unit length of the lnth ribbon.

APPENDIX C: COUPLING IN LAYERED PERIODIC GNRs

For the periodic GNR arrays shown in Fig. 1(a), the uni-
form ribbon width and periodicity will lead to indiscriminate
plasmon modes in each layer. Therefore, the total resonant
mode moment and the corresponding polarizability should be
independent of ribbon index n but linked to the layer orders.
Further considering the geometric symmetry and Bloch’s the-
orem of the system, it is found that Pln = Pl and αln(ω) =
αl (ω). Direct insertion of these expressions into Eq. (B5) leads
to

Pl = E ext

α−1
l (ω) − Cl

. (C1)

Here, Cl = ∑
n �=0 Cl,0−l,n′ is a lattice sum running over all

coplanar ribbon sites, and we have taken n = 0 [66,67]. Note
that, in the above equations, we have considered the inter-
actions between all ordered modes instead of the case with
dipole-dipole modes only [23,56,61,67].

Finally, considering that the incident wavelength is much
larger than the nanoribbon period so that all high-order
diffracted beams are evanescent, the far-field zero-order trans-
mission (t) and reflection (r) coefficients of the periodic GNR
arrays in the lth layer can be expressed as [61,66,67]

tl = 2n+
l

n+
l + n−

l

[
εlαl (ω) − Cl

εlαl (ω) − Cl − iSl

]
, (C2)

rl = tl − 1. (C3)

Here, the superscript +/− represents the effective refrac-
tive index of the dielectric layer above/below the lth graphene
layer. Also, Sl = Im{Cl} + 2k3/3 accounts for the coupling to
propagating light, with k being the wave vector of the incident
light [66,67].

At this point, the absorbance A of the layer is found to be

Al = 1 − |rl |2 − |tl |2
n−

l

n+
l

. (C4)

For the system with periodic two-layer GNRs (as shown
in Fig. 1), we can model it as a planar layered system with
three subdivided dielectric layers and two graphene interfaces.
Since the ultrathin nature of the graphene sheet can be treated
as an interface, we use the transfer matrix method to theo-
retically calculate the light propagation in the layered system
[23,68]. The thickness of the dielectric layer sandwiched be-
tween the graphene is much smaller than the propagating
wavelength; its propagation phase can be safely neglected.
Since incident light only comes from the positive y axis and
propagates downward in the negative y direction, the transmis-
sion T , reflection R, and absorption A of the multilayer system
can be described as [23]

R =
∣∣∣ r1 + r2

1 + r1r2

∣∣∣2

, (C5)

T =
∣∣∣ t1t2
1 + r1r2

∣∣∣2

, (C6)

A = 1 − R − T . (C7)
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FIG. 7. (a) Schematic diagram of the definitions of the phase difference for five different cases. (b) Ey field distributions of plasmonically
induced transparency (PIT)3-6 for different ribbon shifts at the selected positions labeled by the numbers in Fig. S10(g) in the Supplemental
Material [44]. Note that the dark-colored fields in the second graphene layer at the positions labeled @103-107 is a guide for the understanding
of the phase difference; this is because the sixth mode cannot be excited by the first layer bright mode in the corresponding condition.

APPENDIX D: DEFINITION OF PHASE DIFFERENCE

In this paper, the resonant phase difference �ϕ has been
considered a decisive parameter to predicate the existence
of the PIT effect. Here, we define it as the difference be-
tween the resonant phase of the left/right side of the bright
mode to the left/right side of the dark mode. Obviously, this

definition has avoided the possible influence of the phase shift
at the ribbon edges. Considering that the plasmonic coupling
occurs between the y components of the coupled modes, the
position-dependent resonant phase in each GNR is calculated
by tracking the resonant phase of Ey or the y component of
the induced charge density ρ ind [see Eq. (A13)]. Therefore,
we can define the resonant phase as

ϕ(x) = arcsin

(
ρ ind

y

|ρ ind|
)

, (D1)

with x being the position within the ribbon area. For the convenience of calculation and discussion, we assume that ϕ(x)
monotonically increase from the left to the right part of the ribbon and set the resonant phase and the coordinate at the middle
of the dark mode resonator (second ribbon layer, which is assumed to be fixed while the first layer GNR shifts over it) as zero.
Based on that, the proposed constructions can be simply classified into five cases for different relative ribbon positions, as shown
in Fig. 7(a). By further assuming that W1 < W2 (the case for W1 > W2 can be similarly defined by switching the layer order), we
can write the phase difference of the five cases as

�ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−bπ − dπ, s � −W1+W2
2

ϕ1
(
s − W1

2

) − ϕ1
(−W2

2

) + ϕ2
(
s + W1

2

) − ϕ2
(W2

2

)
, −W1+W2

2 < s � W1−W2
2

ϕ2
(
s − W1

2

) − ϕ2
(−W2

2

) + ϕ2
(
s + W1

2

) − ϕ2
(W2

2

)
, W1−W2

2 < s < −W1+W2
2

ϕ2
(
s − W1

2

) − ϕ2
(−W2

2

) + ϕ1
(
s + W1

2

) − ϕ1
(W2

2

)
, −W1+W2

2 � s < W2+W1
2

bπ + dπ, s � W1+W2
2

, (D2)

where the subscripts 1 and 2 refer to the layer order of GNRs,
b and d being the mode order of the bright and dark modes,
respectively.

Since the phase difference is only related to the
relative resonant phase instead of the absolute value of
the position (namely, the x coordinate), we can further
assume that the absolute values of resonant phases in

the two ribbon layers are the same at the ribbon edge of
overlapped region. That is, for the case with W1 < W2

(the case with W1 > W2 can be obtained likewise)
ϕ1(−W2/2) = ϕ2(−W2/2) for −(W1 + W2)/2 < s �
(W1 − W2)/2, ϕ1(−W1/2) = ϕ2(−W1/2) for (W1 − W2)/2 <

s < (−W1 + W2)/2, and ϕ1(W2/2) = ϕ2(W2/2) for (−W1 +
W2)/2 � s < (W1 + W2)/2, respectively. Based on this
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assumption, we do not need to distinguish the layer order
anymore when calculating the phase difference in both the
left and right sides. Instead, we extend the resonant phase
by connecting the overlapped region since they have same
resonant phase at same position. Therefore, we have

�ϕ =
{

bπ + dπ, |s| � W1+W2
2

ϕL+ϕR, |s| < W1+W2
2

, (D3)

with ϕL=ϕ(s − W1/2) − ϕ(−W2/2) and ϕR=ϕ(s + W1/2) −
ϕ(W2/2) are phase difference in the two sides. Therefore,
for the five cases labeled A–E, all phase differences can be
calculated as the sum of the resonant phases beyond the over-
lapping region in the left and right sides. Notably, we use the
absolute value of phase difference for conceptual discussion
throughout our paper.

To show how the phase difference is calculated and make
clear the relationship between the PIT effect and the phase
difference, we select PIT3-6 as an example, as it is presented
in Fig. 7(b). Before going further, we need to note that a sign
reverse of the resonant field corresponds to a phase change
of π [48,69], while there is about π /2 phase change and
a near-zero phase pickup [70,71] at the edge of the ribbon
because the resonant field takes its maximum here. For a
standing wave resonance within a ribbon resonator, a plasmon
mode with order j will become resonant when it accumulates
a 2jπ phase shift for a round trip between the two edges.
For the parameters of W1 = 200 nm and W2 = 394 nm, the
status of the induced PIT3-6 effects (or correspondingly the
sixth-order mode in the second layer) changes from off to
on with the relative shift of the first-layer GNR. Specifically,
for the cases with s = 0, 69, 142, 214, and 271 nm, we get
ϕL = 3π/2, 5π /2, 7π /2, 9π /2, and 11π /2 and ϕR = −3π/2,
−π /2, π /2, 3π /2, and 5π /2, respectively, which means the
phase differences are 0, 2π , 4π , 6π , and 8π , respectively. At
these conditions, the plasmonic couplings take their minima
values (see Fig. S10(h) in the Supplemental Material [44]). As
a result, the sixth-order mode cannot be excited by the upper
layer bright mode, and therefore, no PIT effect but only one
absorption peak is observed in the interested spectral range, as

one can see in Fig. S10(g) in the Supplemental Material [44].
However, for the cases with s = 36, 97, 166, and 236 nm, one
can get ϕL = 2π , 3π , 4π , and 5π and ϕR = −π , 0, π , and 2π ,
respectively, which means the corresponding phase difference
takes 1π , 3π , 5π , and 7π , respectively. In these cases, the
plasmonic coupling strength is around their maximum (see
Fig. S10(h) in the Supplemental Material [44]), which means
the upper layer bright mode couples strongly with the lower
high-order dark mode and further leads to distinct PIT effects
(see Fig. S10(i) in the Supplemental Material [44]). At this
point, the relationship between the phase difference and the
existence of the PIT effect stated in the main text has been
made clear.

Additionally, one may find that, when the upper ribbon
shifts partially beyond the region over the lower ribbon, e.g.,
cases B and D, the induced PIT peaks are not as high as
those corresponding to case C, as is clearly shown in Figs.
S10(a), S10(d), S10(g), S10(j), S11(a), S11(d) and S11(g) in
the Supplemental Material [44]. This is because the coupling
strength becomes weak under this condition, which is clearly
shown by the blue line in Figs. S10(b), S10(e), S10(h), S10(k),
S11(b), S11(e) and S11(h) in the Supplemental Material [44].
Note that this phenomenon is different from the case with PIT
induced by the first-order bright mode when it is compared
with those shown in Figs. 4(a), 4(d), 4(g), and S4(a) and S4(d)
in the Supplemental Material [44]. However, the PIT effect
does not exist for all-order modes when the upper ribbon
shifts totally beyond the region over the lower ribbon, as
shown in cases A and E; even the phase differences are odd
multiple numbers of π (that is, 5π , 7π , 9π , 11π , 13π , and
15π for PIT3-2, PIT3-4, PIT3-6, PIT3-8, PIT3-10, and PIT3-
12, respectively, as it is respectively shown in Figs. S10(c),
S10(f), S10(i), S10(l), S11(c), and S11(f) in the Supplemental
Material [44]). This is because the coupling between the two
ribbons approaches zero in these cases, as can be seen in
Figs. S10(b), S10(e), S10(h), S10(k), S11(b), and S11(e) in the
Supplemental Material [44]. The same phenomenon can also
be found in the PIT effects induced by the first-order bright
mode.
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