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Probing Majorana bound states via a pn junction containing a quantum dot
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We propose an alternative route to transport experiments for detecting Majorana bound states (MBSs) by
combining topological superconductivity with quantum optics in a superconducting pn junction containing a
quantum dot (QD). We consider a topological superconductor (TSC) hosting two Majorana bound states at its
boundary (n side). Within an effective low-energy model, the MBSs are coherently tunnel-coupled to a spin-split
electron level on the QD, which is placed close to one of the MBSs. Holes on the QD are tunnel-coupled
to a normal conducting reservoir (p side). Via electron-hole recombination, photons in the optical range are
emitted, which have direct information on the MBS properties through the recombined electrons. Using a
master equation approach, we calculate the polarization-resolved photon emission intensities (PEIs). In the weak
coupling regime between MBSs and QD, we find an analytical expression for the PEI which allows to clearly
distinguish the cases of well separated MBSs at zero energy from overlapping MBSs. For separated MBSs, the
Majorana spinor polarization is given by the relative widths of the two PEI peaks associated with the two spin
states on the QD. For overlapping MBSs, a coupling to the distant (nonlocal) MBS causes a shift of the emission
peaks. Additionally, we show that quasiparticle poisoning (QP) influences the PEI drastically and changes its
shot noise from super-Poissonian to sub-Poissonian. In the strong coupling regime, more resonances emerge in
the PEI due to spin-mixing effects. Finally, we comment on how our proposal could be implemented using a
Majorana nanowire.
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I. INTRODUCTION

Majorana zero modes are quasiparticle states that appear at
zero energy in topological superconductors (TSC) at bound-
aries or in vortices [1–3] and can be potentially used to build
topologically protected qubits [4–6]. Inspired by the seminal
proposal of Fu and Kane [3] to combine conventional s-wave
superconductors (SC) with Dirac surface states of topological
insulators a plethora of hybrid systems of ordinary SCs and
appropriate normal systems have been proposed [7–10]. The
existence of Majorana zero modes in such hybrid structures
have so far been investigated mainly in electron transport
setups via tunneling experiments [11–25] and in Josephson
junctions [2,9,26–42]. Another proposed route is to couple
Majorana zero modes to microwave electromagnetic radiation
in optical cavities [43–50], where recently also schemes for
braiding and read-out have been proposed as well [51–53].

Here, we propose another route that has so far been less
explored, namely to use an interface between Majorana bound
states (MBSs) and an optically active quantum dot (QD).
Unlike recently suggested spin-insensitive dipole-dipole cou-
pling of driven excitons coupled to MBSs [54–56] our effects
rely on a tunnel-coupled spin-split QD in the absence of
external electric driving fields. We note that another related
idea, considers the direct coupling of two Majorana nanowires
forming a light-emitting fractional Josephson junction without
access to the spinor wave functions [43]. Our setup consists

of a pn junction containing an optically active QD, where
the n side consists of a TSC and the p side consists of a
normal reservoir providing holes to the QD, see Fig. 1. Due
to optical selection rules, the polarization of emitted photons
is connected to the spin of the QD electron and hole taking
part in the recombination process. Since the electronic states
of the QD are coherently coupled to the TSC, the signatures of
Majorana bound states are imprinted on the emitted photons
(via electron-hole recombination) in terms of their energy and
polarization.

In particular, we analyze a general model of two MBSs
tunnel-coupled to spin-split electron levels on the QD. The
electrons are also coherently coupled to heavy-hole states
via spontaneous emission of photons. The holes are tunnel-
coupled to a normal conducting p-doped lead acting as a
reservoir for holes. We analyze the intensity and noise of
the emitted light by using a master equation approach. We
identify a regime of interest where two holes are present
in the steady state (fast hole refilling), thereby providing a
parameter regime where the emitted photons have direct in-
formation on the MBSs, their nonlocality [24,57–59], and
spinor-polarization [58,60–62], a property not usually avail-
able with microwave photons. We provide analytical formulas
for the polarization-resolved photon emission intensity (PEI)
and its noise in the weak-coupling regime where the spin
dynamics becomes decoupled. Information about the mu-
tual Majorana hybridization and the effect of quasiparticle
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FIG. 1. (a) Exemplary sketch of a pn junction based on semicon-
ducting nanowires in the presence of a magnetic field in z direction
with three separated regions. In the topologically nontrivial phase
MBSs (yellow stars) emerge at the ends of the n side (blue) which
is in proximity to an s-wave SC. The p side is coupled to a normal
lead and serves as a hole reservoir (red). In the pn junction a QD
is formed (gray) which confines electrons and holes and can be
tuned via a gate voltage (gate). Due to electron-hole recombination,
photons (green arrows) are emitted in wire direction. (b) Sketch of
the energy diagram. Shown are the uncoupled levels of the optically
active QD, n-side (right) and p-side (left) leads. Full blue and empty
red circles represent electrons and heavy holes, respectively.

poisoning (QP) and spin-relaxation on the QD are directly ob-
servable in our model and results. For larger tunnel couplings
between the QD and MBSs and/or larger Majorana splittings,
the two spin levels on the QD become effectively coupled by
the MBSs which leads to spin-mixing effects in the PEI.

The combination of semiconductor optics and SCs has
been a topic of considerable interest in the past few years,
including the study of Josephson radiation [63], entangled
[64–68] and squeezed [69,70] photons as well as lasing
[71]. There are also experimental realizations of such hy-
brid systems between SCs and semiconductor optics [72–74].
In addition, pn junctions containing optically active QDs
were successfully implemented for single [75] and entangled
photon sources [76]. We therefore believe that our proposal
could be feasible in the realm of quantum wire based setups.
Rashba-nanowires in proximity to an s-wave SC and subjected
to a magnetic field have been proposed as a platform for MBSs
[77,78], and the coherent tunnel-coupling of such wires to a
QD has been investigated theoretically [58,79–82], as well as
experimentally [18,24].

The paper is organized as follows. In Sec. II, we introduce
the model of a pn junction containing a QD coupled to MBSs
and explain how electrons and holes recombine to photons.
In Sec. III, we discuss the structure of the master equation.
Besides the recombination rates for the emission of photons,
we consider additional phenomenological rates. We give the
polarization-resolved PEI and explain the relevant transitions
in the system. In Sec. IV, we investigate different parameter

regimes of the MBSs and present the corresponding PEIs.
For decoupled spins we derive analytical expressions for the
PEI and compare them to our findings from the full model.
Furthermore, we investigate the photon shot noise and the in-
fluence of spin relaxation and QP. Additionally, we investigate
the spin-mixing regime where electron spins are effectively
coupled through the MBSs. In Sec. V, we comment on how
our proposed pn junction could be implemented using a semi-
conducting nanowire which can host MBSs. We conclude the
paper in Sec. VI. In the appendices, we show further details of
the calculations, in particular the full master equation and the
derivation of the photon shot noise.

II. MODEL

We consider a pn junction containing a QD with electrons
(holes) in the conduction (valence) band with a bias voltage
μn − μp = eV . The n side is a TSC with chemical potential
μe = μn, whereas the p side is a normal lead which acts as a
hole reservoir with chemical potential μh = −μp. In the pres-
ence of electron-hole-recombination under photon emission,
the model reads

H = He + Hh + Hphoton + Vrec, (1)

where He describes electrons in the conduction band of the
QD coherently coupled to the MBSs by tunneling, Hh de-
scribes holes in the valence band of the QD, and Hphoton

gives the photon continuum. Electrons and holes on the QD
recombine to photons via Vrec.

A possible realization of the setup is shown in Fig. 1 where
we propose a semiconducting nanowire in a magnetic field
(assumed to be in the z direction) with three separated regions:
The n side is in proximity to an s-wave SC where the nanowire
hosts MBSs in the topologically nontrivial phase, whereas the
p side is coupled to a normal lead serving as a hole reservoir.
In the pn junction of the wire, a QD is formed where electrons
and holes can recombine to photons. We note, however, that
our proposal could be implemented with any TSC coupled to
a QD, embedded in a pn junction. Our results to be derived in
the following would hold accordingly. To be specific, we will
later comment on the Majorana nanowire model explicitly in
Sec. V.

We represent He by an effective low-energy model, where
we can neglect the ordinary proximity effect on the QD in-
duced by the coupling to the superconducting continuum (see
below). Therefore the TSC is modeled only by the MBSs and
their mutual coupling. He is then given by

He =
∑

σ=↑,↓
εeσ d†

σ dσ + Uen̂d↑n̂d↓

+ i

2
ξγ1γ2 +

∑
i=1,2
σ=↑,↓

(tiσ dσ γi + H.c.). (2)

The first term in Eq. (2) corresponds to the QD where the oper-
ator d (†)

σ annihilates (creates) an electron on the QD with spin
σ = ↑,↓ along the z axis (having total angular momentum
jz = ±h̄/2) and energy εeσ = εe + σ�Z,e where �Z,e is the
Zeeman energy on the QD. We count energies from the chem-
ical potential μe of the SC (the n-side reservoir). The second
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term describes the energy penalty for double occupancy on
the QD with charging energy Ue and the occupation number
operator n̂dσ = d†

σ dσ . The third term describes the MBSs γ1

and γ2 with splitting energy ξ due to a finite overlap of the
Majorana wave functions. The MBSs fulfill the self-adjoint
condition γ

†
i = γi and {γi, γ j} = 2δi j with i = 1, 2. The last

term in Eq. (2) describes the tunneling of electrons with spin
σ between the QD and MBSs γi with tunneling amplitudes tiσ .
Here, it is important to keep in mind that the Majorana wave
function is a four component spinor whose components are
spin-dependent and lead to tunneling amplitudes ti↑ and ti↓,
respectively. Henceforth, we refer to the spin of the electronic
components of the MBSs as the spin of the MBSs [58,60].
Note that γ1 and γ2 are spatially separated, so that the total
tunneling amplitudes ti = √|ti↑|2 + |ti↓|2 obey t1 > t2, if the
QD is placed closer to γ1. In the basis of the nonlocal fermion
c† comprised by two MBSs γ1 = c† + c and γ2 = i(c† − c),
the Hamiltonian reads

He =
∑

σ=↑,↓
εeσ d†

σ dσ + Uen̂d↑n̂d↓ + ξ

(
n̂c − 1

2

)

+
∑

σ=↑,↓
(tPσ dσ c + tT σ dσ c† + H.c.), (3)

where n̂c = c†c, nc = 0, 1, is the occupation number operator
of the nonlocal fermion, tPσ = t1σ − it2σ is a nonlocal pair-
ing between QD and MBSs and tT σ = t1σ + it2σ describes
tunneling processes of single fermions. We want to study
the properties of the MBS with photons that are emitted via
optical transitions, when electrons on the QD recombine with
holes in the valence band. We focus on the regime where the
singly occupied QD levels are close to the chemical potential
μe of the TSC and assume that Ue � �Z,e, |tiσ |,1 see [18].
In this case, the states | ↑↓, nc〉 are off-resonant (i.e the hy-
bridization with the electron reservoir is suppressed). Hence,
we do not further discuss the doubly occupied QD state in the
remainder of the paper. We assume in addition that Ue � �S ,
where �S is the superconducting pairing potential in the bulk
SC, so the ordinary proximity effect involving tunneling of
Cooper pairs between QD and SC is suppressed. Note that in
the topologically trivial regime without MBSs, the PEI would
be very weak, since the photon emission would be significant
only if Ue < �S . In this regime, the PEIs would have no spin
dependence (i.e., the emission of ↑ and ↓ electrons would be
equally strong), since only Cooper pairs can tunnel onto the
QD [63]. Due to superconducting terms such as dσ c in Eq. (3)
only the fermion parity (nd↑ + nd↓ + nc) mod 2 is conserved
and even and odd states are decoupled. We show He in the
product basis |ndσ 〉 × |nc〉. In the even parity subspace with
basis {|0, 0〉, | ↑, 1〉, | ↓, 1〉}, He becomes

H even
e =

⎛
⎝ − ξ

2 −tP↑ −tP↓
−t∗

P↑ εe + �Z,e + ξ

2 0
−t∗

P↓ 0 εe − �Z,e + ξ

2

⎞
⎠, (4)

1We include the charging energy Ue in the numerical calculations
and assume the value Ue = 10�Z,e.

and in the odd parity basis {|0, 1〉, | ↑, 0〉, | ↓, 0〉},

Hodd
e =

⎛
⎝ + ξ

2 −tT ↑ −tT ↓
−t∗

T ↑ εe + �Z,e − ξ

2 0
−t∗

T ↓ 0 εe − �Z,e − ξ

2

⎞
⎠. (5)

If we compare H even
e and Hodd

e , the diagonals only differ by
ξ , i.e., the energy to occupy the nonlocal fermion. Since the
even subspace describes states of zero and two fermions,
unoccupied and singly occupied QD levels are connected via
tPσ , see Eq. (4), where pairs of fermions are created and anni-
hilated. The odd subspace has only states with one fermion, so
unoccupied and singly occupied QD levels are connected via
tunneling processes with tT σ , see Eq. (5). Note that tPσ and
tT σ are different if there is a finite tunneling amplitude t2 to
the second MBS.

We diagonalize Eq. (3) in the product basis |ndσ , nc〉.
The resulting eight eigenstates |ψ〉e = |Em(Om)〉 with m =
1, 2, 3, 4 are sorted by energy and even (odd) parity. Note
that the eigenstates |E4(O4)〉 ≈ | ↑↓, nc〉 are energetically
separated from the other states due to a large charging energy
Ue and are discarded in the discussion (see Ref. [83] for
further details). We can identify four qualitatively different pa-
rameter regimes depending on the splitting ξ and the coupling
t2 to γ2. In Fig. 2, we show the corresponding spectrum for
each regime. In all cases we assume |t1↓| > |t1↑|, since this is
the case for a finite Zeeman field in a Majorana nanowire [60],
for which the coupling to a QD was already experimentally
shown [18]. Furthermore, we assume that the wave functions
of γ1 and γ2 differ by a relative phase factor of i, so that t1σ

and it2σ can be considered to be real [58,83]. In Fig. 2(a),
we show the case of separated MBSs (ξ, t2 = 0). Here, even
and odd states are degenerate. Away from the avoided cross-
ings we can identify the three QD level states in each parity
sector. The singly occupied QD levels |↑〉 and |↓〉 increase
linearly in energy for increasing �Z,e and are split in energy
by 2�Z,e, whereas the unoccupied level |0〉 is constantly at
zero energy. Due to tunneling between QD and MBSs there
are two avoided crossings each at εe = −�Z,e (εe = +�Z,e),
where ↑(↓) electrons are in resonance with the MBSs. Since
we chose |t1↓| > |t1↑|, the hybridization between ↓ electrons
and MBSs is larger. In Figs. 2(b)–2(d), we show overlapping
MBSs, where either t2, ξ , or both are finite. In Fig. 2(b), a
finite splitting ξ leads to an energy difference between even
and odd states. Additionally, the avoided crossings shift away
from εe = ±�Z,e to εe = ±�Z,e − ξ for even and to εe =
±�Z,e + ξ for odd states, respectively, since the degeneracy
between even and odd states is lifted now. In Fig. 2(c), a finite
coupling t2 to the second MBS leads to different hybridiza-
tions of even and odd states. In this case |tP↓| > |tT ↓|, so even
states are more hybridized than odd states, which can be seen
in the spectrum at εe = +�Z,e. In Fig. 2(d), ξ and t2 are both
finite. Here, even and odd states are separated in energy by ξ

and additionally even and odd states couple differently to the
QD. Note that for t1σ = ±it2σ either tPσ = 0 or tT σ = 0. This
corresponds to the case of coupling to an ordinary complex
fermion, where superconductivity is effectively suppressed.
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FIG. 2. Eigenenergies of the coupled QD-MBSs system over QD energy εe in different regimes. (a) Separated MBSs. Even and odd states
are degenerate and we show the QD states |ndσ 〉 away from the avoided crossings. Parameters are ξ = 0, 10t1↑ = t1↓ = 0.025�Z,e, and t2 = 0.
(b) Overlapping MBSs with finite splitting. Parameters are ξ = 0.5�Z,e, 10t1↑ = t1↓ = 0.05�Z,e, and t2 = 0. (c) Overlapping MBSs with finite
coupling to γ2. Parameters are ξ = 0, 10t1↑ = t1↓ = 0.03�Z,e, it2↑ = 0.0012�Z,e, and it2↓ = −0.012�Z,e. (d) Overlapping MBSs with finite
splitting and finite coupling t2. Parameters are ξ = 0.04�Z,e, 10t1↑ = t1↓ = 0.03�Z,e, it2↑ = 0.0009�Z,e, and it2↓ = −0.009�Z,e.

The holes in the valence band of the QD are given by

Hh =
∑

σ=⇑,⇓
εhσ h†

σ hσ + Uhn̂h⇑n̂h⇓, (6)

with charging energy Uh. The operator h(†)
σ annihilates (cre-

ates) a hole with spin σ and energy εhσ = εh + σ�Z,h
2. The

holes can in general have a different Zeeman energy �Z,h than
the electrons due to a different g-factor. We count energies
from the chemical potential μh of the p side reservoir. We
assume that the relevant carriers are “heavy” holes so that
h†

⇑/⇓ creates a hole with total angular momentum projec-
tion jz = ±3h̄/2 (see for instance [84]). In the eigenbasis of
the number operator n̂hσ = h†

σ hσ , we obtain four hole states
|ψ〉h = {|0〉h, | ⇑〉, | ⇓〉, | ⇑⇓〉} which are eigenstates of Hh.
The hole states are separated from the electronic states in the
QD by a large energy of the order of the gap of the host
semiconductor which is approximately given by μe + μh =
eV . The holes merely act as recombination partners for the
electrons and do not couple directly to the MBSs, since due
to the large separation in energy a coherent coupling between
holes and MBSs can be neglected. The holes can be refilled
by the normal conducting p side reservoir, and we assume
that the hole energies satisfy 0 > εh + Uh + |�Z,h|, so that
εh < 0. In that case, the chemical potential μh is always above
the energetically highest hole state, so that the holes can be
refilled on the QD with a rate 	h and do not tunnel back to the
reservoir. Therefore the stationary state of the holes without
the coupling to the photons described below would be | ⇑⇓〉.

The photon bath is described by

Hphoton =
∑

k

∑
P=L,R

h̄ωk a†
k,Pak,P, (7)

where photons of energy h̄ωk with wave number k and polar-
ization P are annihilated (created) by a(†)

k,P. The polarization
can be L-circular with total angular momentum jz = −h̄ or
R-circular with jz = +h̄.

2Since the holes (electrons) are positively (negatively) charged, a
gate acting on electrons and holes simultaneously leads to a shift of
their energy levels in the opposite way.

The recombination of electrons and holes in the pn junction
containing the QD is given by

Vrec = g
∑

k

(d↑h⇓a†
k,L + d↓h⇑a†

k,R) + H.c. (8)

with the light-matter-interaction energy g, which is a dipole
matrix element. It depends on the overlap of the electron and
hole wave function and gives rise to selection rules for optical
transitions (see, for instance, Ref. [84]). Eq. (8) describes the
emission (absorption) of photons with a given polarization P
due to recombination (creation) of an electron and a hole,
whose spins are quantized along the magnetic field. We as-
sume that this axis corresponds to the high symmetry axis of
the QD so that the total angular momentum along this axis
commutes with the Hamiltonian, i.e., photons emitted in this
direction are circularly polarized. The form of Vrec then holds
for emission along this axis (see for instance [85]). Photons
emitted in other directions would lead to different photon
polarizations and Vrec would have to be adjusted accordingly
[64,86].

III. MASTER EQUATION

The dynamics of the system is governed by electron-hole
recombination with the simultaneous emission of a photon
changing the states of electrons and holes on the QD. Elec-
trons on the QD are coherently coupled to the MBSs forming
the eigenstates |ψ〉e = |Em(Om)〉, m = 1, 2, 3, 4. Incoher-
ent processes are suppressed in the regime kBT, |tiσ | 
 �S .
The hole states |ψ〉h, however, are incoherently coupled to
a normal p side reservoir which we incorporate by rates 	h

(we assume −(εh + Uh + |�Z,h|) � h̄	h to have incoherent
transitions) which provide new holes to the QD after each
photon-emission process.

We split the Hamiltonian of the open setup into a system
part containing the 32 joint electron and hole eigenstates
|ψ〉 = |ψ〉e × |ψ〉h and treat the photons as well as the p side
electronic reservoir as a bath. The dynamics of the reduced
density matrix of the system can be described by a Marko-
vian master equation, which takes the form of a Pauli master
equation [87] for the diagonal parts of the reduced density
matrix 〈ψ |ρ(τ )|ψ〉 ≡ ρ|ψ〉(τ ). These elements describe the
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probability of the system being in the state |ψ〉 at time τ and
have the following time evolution

ρ̇|ψ〉(τ ) =
∑
ψ ′ �=ψ

(−	|ψ ′〉←|ψ〉ρ|ψ〉(τ ) + 	|ψ〉←|ψ ′〉ρ|ψ ′〉(τ )),

(9)
where the rates 	|ψ ′〉←|ψ〉 (	|ψ〉←|ψ ′〉) reduce (increase) the oc-
cupation ρ|ψ〉(τ ) with time τ . The stationary state is given by
∂τρ

stat
|ψ〉 (τ ) = 0. Eq. (9) can also be written as ρ̇(τ ) = Lρ(τ )

where ρ(τ ) is the vectorized reduced density matrix of its
diagonal elements and L is the Liouvillian (see Appendix C).

In the following paragraphs, we introduce four different
kinds of rates that we use in the master equation. Via optical
transitions from an initial state |ψi〉 (energy Ei) to a final
state |ψ f 〉 (energy E f ) a photon with state |k, P〉 = a†

k,P|0〉ph

(energy h̄ωk) is emitted. Here, |0〉ph is the vacuum state of
optical photons. We only consider photon emission, i.e., there
are no optical photons in the initial state. The corresponding
recombination rates (see Appendix A) are calculated with
Fermi’s golden rule

wP
|ψ f 〉←|ψi〉(ωk ) = 2π

h̄

∣∣MP
f ,i

∣∣2
δ(Ei − E f − h̄ωk ) (10)

with matrix elements

MP
f ,i = 〈ψ f |〈k, P|Vrec|ψi〉|0〉ph. (11)

The delta function in Eq. (10) is broadened to a Lorentz curve
δ(Ei − E f − h̄ωk ) = dph/π (d2

ph + (Ei − E f − h̄ωk )2) due to
the finite lifetime of electron-hole pairs. For simplicity, we
assume the same width dph for all the transitions which is
artificially broadened to improve visibility [cf. Figs. 4(e), 5(c),
and 5(d)]. Due to energy conservation the energy of emitted
photons is given by h̄ωk = μe + μh + �Ee + �Eh ∼ 1 eV,
which is in the optical range. Here �Ee (�Eh) describes the
energy difference from an initial to a final state in the subsys-
tem He (Hh). The total rate for the transition of the system
state from |ψi〉 to |ψ f 〉 is obtained by integrating Eq. (10)
over k. By changing the integration variable from k to h̄ω

we define W P
|ψ f 〉←|ψi〉 = Nph

∫
d (h̄ω)wP

|ψ f 〉←|ψi〉(ω) where Nph

is the photon density of states assumed to be constant in the
frequency range of interest. By integrating out the Lorentz
function, we obtain the total rate

W P
|ψ f 〉←|ψi〉 = 2π

h̄

∣∣MP
f ,i

∣∣2
Nph, (12)

which we insert into Eq. (9). Note that optical transitions
change the parity of the electronic and hole subsystems. The
light-matter-interaction energy g in Eq. (8) determines the
maximal recombination rate Wmax = 2π

h̄ |g|2Nph.
We supplement the master equation by additional phe-

nomenological rates. The hole refilling rate 	h refills holes on
the QD from a normal reservoir. It is necessary to have a sta-
tionary emission of photons. Indeed for 	h = 0, the stationary
state for the holes would be |0〉h and the total PEI IP defined
below would be zero. We can add two additional rates that de-
scribe environmental influences on the system. Quasiparticle
poisoning changes the occupation of the nonlocal fermion and
therefore the parity of the system with rate 	QP [28,30,88–
91]. Furthermore, we assume a spin relaxation rate 	R that
flips the spin of the energetically higher ↑ electron on the QD

which conserves the parity. Note that this is a nonreversible
process since the spin excitation process is not probable due to
a large energy difference between spin states (kBT 
 �Z,e).3

These rates can be included in the master equation Eq. (9) by
adding the following Lindblad superoperators [28,89,90] on
the right-hand side of the equation and taking its expectation
value in the system state |ψ〉,

Lhσ [ρ] = 	h

(
h†

σ ρhσ − 1

2
{ρ, hσ h†

σ }
)

, (13)

LQP[ρ] = 	QP

(
cPρPc† + c†PρPc

− 1

2
{ρ,Pc†cP} − 1

2
{ρ,Pcc†P}

)
, (14)

LR[ρ] = 	R

(
d†

↓d↑ρd†
↑d↓ − 1

2
{ρ, d†

↑d↓d†
↓d↑}

)
, (15)

where P = (−1)n̂c . The full master equation (see Ap-
pendix B) for all eigenstates |ψ〉 results in 32 differential
equations like Eq. (9) with four different kinds of rates we
introduced above. We define the frequency-dependent PEI as
a function of the frequency ω for photons with polarization P
as

iP(ω) = h̄Nph

∑
ψ ′,ψ

wP
|ψ ′〉←|ψ〉(ω)ρstat

|ψ〉, (16)

where ψ ′ �= ψ , and the polarization-resolved total PEI

IP =
∫

dωiP(ω). (17)

Before we discuss the photon emission spectra, we examine
the different processes described by the master equation in
more detail.

The master equation is written in the eigenstates of the
coherently coupled QD-MBSs-system. To better understand
the transition processes, it is useful to look at the case where
QD and MBSs are decoupled. In Fig. 3(a), we show the
relevant transitions between decoupled states |ndσ , nc〉 of the
electronic subsystem. In particular, we look at the states |0, 0〉,
|↑, 1〉, and |↓, 1〉 in the even, and |0, 1〉, |↑, 0〉, and |↓, 0〉 in
the odd parity sector, respectively. Optical transitions corre-

spond to |↑, 1〉(|↑, 0〉)
W L−→ |0, 1〉(|0, 0〉) or |↓, 1〉(|↓, 0〉)

W R−→
|0, 1〉(|0, 0〉) with rates W L or W R, respectively. In the former
case, a ↑ electron recombines with a ⇓ hole to a L-photon
resulting in an empty QD in the electronic subsystem, while
in the latter case, ↓ electrons recombine with ⇑ holes to a
R photon. Note that these processes change the parity in the
electronic and hole subsystem, see Fig. 3(b). Importantly, we
use a hole refilling rate 	h > Wmax, so that holes on average
are refilled before the next photon is emitted and are mostly
doubly occupied in the stationary state (for an exception,
see Appendix C). Other processes, i.e., spin relaxation and

3We note that incoherent spin-flips are in principle also possible
due to the coupling of QD electrons to the SC continuum with the
simultaneous emission of a photon (with an energy shifted by �S)
[63]. We neglect here these weak processes but mention that the spin-
relaxation part of these processes could be included in 	R.
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FIG. 3. Relevant transitions in electronic and hole subsystems.
We show the six relevant uncoupled electronic states in (a) and
the four hole eigenstates in (b), respectively. Rates included in the
master equation are optical transitions for emission of L/R photons
with rates W L/W R (red/blue), spin relaxation processes with rate 	R

(green), QP with rate 	QP (yellow), and hole refilling with rate 	h

(violet).

QP, only act in the electronic subsystem, see Fig. 3(a). Spin

relaxation induces transitions |↑, 0〉(|↑, 1〉)
	R−→ |↓, 0〉(|↓, 1〉)

with rate 	R since ↑ electrons relax to ↓ electrons preserving
the parity. On the other hand, QP with rate 	QP connects
states with the same QD occupation but a different occu-
pation of the nonlocal fermion. Therefore it connects states

|ndσ , 0〉 	QP←→|ndσ , 1〉 and changes the parity. When the QD
and the MBSs are not coupled, electrons can not be refilled on
the QD. Hence, the stationary state of the whole system only
contains ρstat

|0,0〉|↑⇓〉 and ρstat
|0,1〉|↑⇓〉, such that in this case there is

no photon emission in the stationary state.

IV. RESULTS

We now discuss the photon emission of the coupled QD-
MBSs system, where we focus on the signatures of the MBSs
and their nonlocality when the QD electrons and MBSs are in
resonance. Additionally, we investigate the influence of spin
relaxation and QP on the PEI and the photon shot noise. In
all cases, we assume |t1↓| > |t1↑|, which is the case for the
coupling to a Majorana nanowire in a magnetic field under
realistic wire parameters [60]. We start with the regime where
resonances of ↑ and ↓ electrons with the MBSs are well
separated. In this case, we can consider them separately with
an effectively spinless model. Then we investigate the regime
where the resonances are close together which leads to emis-
sion processes involving both electron spins.

A. Decoupled spins

In the case �Z,e � t1, t2, ξ , the ↑ and ↓ electrons on the
QD remain approximately decoupled when they are coupled
to the MBSs. Hence, we can consider the spins separately and

use an effectively spinless model

Hσ = εeσ d†
σ dσ + ξ

(
n̂c − 1

2

)

+ (tPσ dσ c + tT σ dσ c† + H.c.), (18)

which is Eq. (3) for a single spin σ = ↑,↓. In the product
basis |ndσ , nc〉, the four normalized eigenstates are

|Eσ±〉 =
(
EEσ∓ + ξ

2

)|0, 0〉 + tPσ |σ, 1〉√(
EEσ∓ + ξ

2

)2 + t2
Pσ

, (19a)

|Oσ±〉 =
(
EOσ∓ − ξ

2

)|0, 1〉 + tT σ |σ, 0〉√(
EOσ∓ − ξ

2

)2 + t2
T σ

, (19b)

with eigenenergies

EEσ± = 1
2

(
εeσ ±

√
4t2

Pσ + (εeσ + ξ )2
)
, (20a)

EOσ± = 1
2

(
εeσ ±

√
4t2

T σ + (εeσ − ξ )2
)
. (20b)

To solve the rate equation in Eq. (9) analytically, we
assume a large hole refilling rate 	h → ∞. This means that
after emitting a photon, the hole refilling is so fast that the
system always ends up in the doubly occupied hole state
|↑ ⇓〉 before the next photon is emitted. In this limit, we
only need to include the electronic degrees of freedom in the
master equation. Hence, the reduced density matrix is a 4 × 4
matrix with diagonals ρ|Eσ±〉(τ ) and ρ|Oσ±〉(τ ), where we
suppress the hole index. In this case, the rate equation
becomes

ρ̇|Eσn〉(τ ) =
∑
m=±

[ − (
W P

|Oσm〉←|Eσn〉 + 	
|Oσm〉←|Eσn〉
QP

)
ρ|Eσn〉(τ )

+(
W P

|Eσn〉←|Oσm〉 + 	
|Eσn〉←|Oσm〉
QP

)
ρ|Oσm〉(τ )

]
,

(21a)

ρ̇|Oσn〉(τ ) =
∑
m=±

[ − (
W P

|Eσm〉←|Oσn〉 + 	
|Eσm〉←|Oσn〉
QP

)
ρ|Oσn〉(τ )

+(
W P

|Oσn〉←|Eσm〉 + 	
|Oσn〉←|Eσm〉
QP

)
ρ|Eσm〉(τ )

]
,

(21b)

for n = ±. Here, we calculate the recombination rates
W P

|ψ〉←|ψ ′〉 with Eq. (12) and the QP rates

	
|ψ〉←|ψ ′〉
QP = 	QP(|〈ψ |cP|ψ ′〉|2 + |〈ψ |c†P|ψ ′〉|2), (22)

according to Eq. (14). Note that we do not include spin
relaxation processes within the spinless model which would
couple the two spin sectors. Without QP (	QP = 0), we find
that the total PEI is given by

Iσ
Imax
P

= I0
d2

d2 + (εeσ − ε0)2
(23)

with Imax
P = Wmax/2, which has the form of a Lorentzian with

I0 = t2
Pσ + t2

T σ

t2
Pσ + t2

T σ + ξ 2
, (24a)

d2 = 4t2
Pσ t2

T σ

(
t2
Pσ + t2

T σ + ξ 2
)

(
t2
Pσ + t2

T σ

)2 , (24b)
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ε0 = t2
Pσ − t2

T σ

t2
Pσ + t2

T σ

ξ , (24c)

where I0, 2d, and ε0 correspond to the height, width and
location of the peak, respectively. Here, the Lorentzian shape
of the PEI reflects the coherent coupling between QD elec-
trons and MBSs. In the following, we will investigate the
results of our numerical calculations and compare them to the
effectively spinless model.

1. Separated MBSs

First, we consider the case of well separated MBSs with
ξ = t2 = 0. In Fig. 4(c), we show the total PEI integrated
over all photon energies IP using Eq. (17) for the ideal case
(	R = 	QP = 0). Whereas for L photons a sharp peak appears,
the emission of R photons occurs over a wider range of εe.
This is due to the larger hybridization with the ↓ electron,
since γ1 is nearly polarized in ↓ direction (antiparallel to
the magnetic field). This hybridization effect is also reflected
in Fig. 4(e), where we show the frequency-dependent PEI
using Eq. (16). Here, we plot ip over the QD and photon
energy and the gray lines represent the excitation spectrum
of the coupled QD-MBSs-system corresponding to the en-
ergy differences �Ee. The MBSs (horizontal gray lines) are
well-separated and have no overlap. The QD states (diagonal
gray lines) form anticrossings at resonance due to the finite
tunnel coupling t1 which is larger for ↓ electrons leading
to a broader emission of R photons. The resonances in the
PEI for L and R photons correspond to transitions which
are illustrated in Figs. 4(a) and 4(b), respectively. The oc-
cupied QD levels have to be in resonance with the MBSs
so that electrons can be coherently refilled on the QD from
the TSC after photon emission. Therefore only eigenstates
which are superpositions of empty and occupied QD lev-
els can contribute to photon emission. When the ↑ electron
is in resonance with the MBSs (εe = −�Z,e), the states
|E1〉 ≈ |↓, 1〉 and |O1〉 ≈ |↓, 0〉 cannot contribute to emission
(off-resonant states). However, from the spinless model, see
Eq. (19), we find |E2,3〉 ≈ |E↑∓〉 = (|0, 0〉 ± |↑, 1〉)/

√
2 and

|O2,3〉 ≈ |O↑∓〉 = (|0, 1〉 ± |↑, 0〉)/
√

2, which are equal su-
perpositions of an empty and occupied QD state. Therefore
there exists a closed emission cycle for emission of L pho-

tons with rate W L, |E2〉 W L←→|O2〉 W L←→|E3〉 W L←→|O3〉 W L←→|E2〉,
as shown in Fig. 4(a). Since these states are equal su-
perpositions of an empty and occupied QD level, the
transitions have the same rates in both directions. Hence,
they contribute equally to the stationary state, which leads
to maximal PEI. When ↓ electrons are in resonance
(εe = +�Z,e), the eigenstates are approximately given by
|E1,2〉 ≈ |E↓∓〉 = (|0, 0〉 ± |↓, 1〉)/

√
2 and |O1,2〉 ≈ |O↓∓〉 =

(|0, 1〉 ± |↓, 0〉)/
√

2, see Eq. (19), while |E3〉 ≈ |↑, 1〉 and
|O3〉 ≈ |↑, 0〉 are now off-resonant. Hence, we find a closed

emission cycle |E1〉 W R←→|O1〉 W R←→|E2〉 W R←→|O2〉 W R←→|E1〉, il-
lustrated in Fig. 4(b). The two closed emission cycles lead
to strong emission of L and R photons at εe = −�Z,e and
εe = +�Z,e, respectively. Here, L and R PEIs have the same
peak height Imax

P , see Fig. 4(c), which is consistent with the

FIG. 4. Photon emission for separated MBSs (ξ = t2 = 0). Tran-
sition schemes for εe = −�Z,e (a) and εe = +�Z,e (b). Here, W L and
W R are recombination rates giving L and R photons, respectively,
whereas 	R is the spin relaxation rate. The total PEI IP is shown for
	R = 0 in (c) and for 	R = 10Wmax in (d). (e) Frequency-dependent
PEI iP over the QD energy εe and the photon energy h̄ω for same
parameters as in (c), where �EL/R

h = Uh + εh⇓/⇑. Shown are only
transitions from the doubly occupied hole state. Gray lines corre-
spond to the excitation spectrum of the coupled QD-MBSs system.
Further parameters are 10t1↑ = t1↓ = 0.025�Z,e, 	h = 100Wmax, and
	QP = 0.

PEI

I↑,↓
Imax
P

= 2t2
1↑,↓

2t2
1↑,↓ + (εe ± �Z,e)2

, (25)

in the effectively spinless model, see Eq. (23). The width of
each resonance 2d = 2

√
2|t1↑,↓| is proportional to the abso-

lute value of the tunneling amplitude between QD electrons
and the MBS γ1. Therefore the relative widths of the PEI
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FIG. 5. Photon emission for overlapping MBSs. In (a) and (b), we show the total PEI IP and the PEI Iσ calculated from the spinless model
for t2 = 0 and for including a nonlocal coupling t2 �= 0, respectively. In (c) and (d), we show the frequency-dependent PEI iP over the QD
energy εe and the photon energy h̄ω for the same parameter regimes as in (a) and (b), respectively, where �EL/R

h = Uh + εh⇓/⇑. Shown are
only transitions from the doubly occupied hole state. Gray lines correspond to the excitation spectrum of the coupled QD-MBSs-system. In
(e) and (f), we show the total PEI IP where we add a QP with 	QP = Wmax again for t2 = 0 and t2 �= 0, respectively. In the case for t2 = 0,
we used ξ = 0.04�Z,e and 10t1↑ = t1↓ = 0.025�Z,e. In the case for t2 �= 0, we used ξ = 0.04�Z,e, 10t1↑ = t1↓ = 0.03�Z,e, it2↑ = 0.0009�Z,e,
and it2↓ = −0.009�Z,e. Other parameters are 	h = 100Wmax and 	R = 0.

peaks give direct access to the MBS spinor-polarization of γ1

(for the specific example of a Majorana nanowire, see Sec. V).
If we add spin relaxation with rate 	R on the QD, we

find additional R photons at the resonance with ↑ electrons
(εe = −�Z,e), while IL is decreased. For 	R/Wmax = 1, L
and R photon emission at εe = −�Z,e is balanced, since half
of ↑ electrons relaxes to ↓ electrons before being emitted
as L photons. But for 	R/Wmax > 1, R photon emission is
favored. Here, the maximum of IR is even larger than the
maximal PEI without spin relaxation, see Fig. 4(d). At the
resonance with ↓ electrons (εe = +�Z,e) IR stays unchanged.
In Fig. 4(a), we show the emission cycle at εe = −�Z,e.

Here, finite spin relaxation leads to transitions |E3(O3)〉 	R−→
|E1(O1)〉 and |E2(O2)〉 	R−→ |E1(O1)〉 that preserve the parity.
Therefore the contributions of |E1〉 and |O1〉 in the stationary
state increase, while contributions from the other states de-
crease. The additional transition paths due to spin relaxation

give a new closed emission cycle |E1〉 W R−→ |O2〉 	R−→ |O1〉 W R−→
|E2〉 	R−→ |E1〉. Now that the off-resonant states |E1〉 ≈ |↓, 1〉
and |O1〉 ≈ |↓, 0〉 have a finite occupation in the steady state,
the only possible process for the ↓ electrons on the QD
which do not couple to the MBSs is to recombine to pho-
tons. Therefore spin relaxation can lead to a larger PEI (up
to 2Imax

P for 	R → ∞) compared to the ideal case where
occupied QD states only have 50% occupation probability in
the eigenstates. However, at the resonance with ↓ electrons

(εe = +�Z,e) the PEI remains unchanged compared to the
ideal case, see Fig. 4(c). Spin relaxation does not affect
the emission cycle between |E1〉, |O1〉, |E2〉 and |O2〉 at εe =
+�Z,e, see Fig. 4(b), since ↓ electrons cannot relax. We
conclude that in the separated MBSs regime, without spin
relaxation max(IL ) = max(IR) and the width of the emission
peaks is proportional to the tunneling amplitudes between
MBSs and QD. A suppressed L photon emission in favor of
a strong R photon emission is an indication of a finite 	R

of the order of the optical recombination rate. Usually, spin
relaxation times are large compared to photon emission times.
Experimentally, spin relaxation rates in QDs are found to be
of the order of 	R = 10−5 ns−1 [92,93].

2. Overlapping MBSs

Now, we discuss the regime of a finite MBSs splitting
ξ . First, we consider the case without a tunnel coupling t2
to the second MBS. In this regime, there are two avoided
crossings each for even and odd parity in the spectrum at
εe = ±�Z,e − ξ and εe = ±�Z,e + ξ , respectively, see
Fig. 2(b). In Fig. 5(a), we show the total PEI IP (solid lines)
for the full model compared to Iσ (dashed lines) for the
effectively spinless model, see Eq. (23). Since the spinless
model only describes a single spin, whereas the full model
includes both spin-states, the difference between the two
models comes from a coupling of both spins, which we will
discuss in detail in Sec. IV B. For the case discussed here,
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FIG. 6. (a) Emission cycles involving the uncoupled QD-MBSs
states |ndσ , nc〉 for εeσ = −ξ . Here, even states are maximally hy-
bridized due to resonant tunneling, whereas odd states are not well
hybridized, so PEI is weak and the system stays mostly in the un-
occupied QD state |0, 1〉. A finite QP leads to a large PEI, since the
weakly hybridized odd states are now connected to the even states
via 	QP. (b) Fano factor F for overlapping MBSs. We show F over
the QD energy εe. Without QP the system is in the super-Poissonian
regime with F � 1 (green). A finite QP leads to sub-Poissonian
noise with F � 1 (orange). These effects are strongest at εeσ =
±ξ where odd, respectively, even states hybridize. We used ξ =
0.04�Z,e, 10t1↑ = t1↓ = 0.025�Z,e t2 = 0, 	h = 100Wmax, 	R = 0,
	QP = 0 (green), and 	QP = Wmax (orange) [cf. PEIs in Figs. 5(a) and
5(e)].

both models compare very well, see Fig. 5(a), and hence,
the spins are to a large degree uncoupled. Here, a finite ξ

leads to a reduced maximal L and R PEI while the peak
width is increased. Even in the presence of a finite splitting
ξ , the peaks of IL and IR remain located at εe = −�Z,e and
εe = +�Z,e, respectively. Furthermore, the maximum of IL

is smaller by one order of magnitude compared to IR, since
|t1↑| < |t1↓|. The properties of the peaks are well explained
by the spinless model, see Eq. (24), where the height and
width of the PEI peaks are given by I0 = 2t2

1σ /(2t2
1σ + ξ 2)

and 2d = 2
√

2t2
1σ + ξ 2, respectively, and are located at

εeσ = 0. The decreased peak height and increased peak width
compared to the case of ξ = 0 can be understood best by
considering transitions between the product states |nd , nc〉
for the spinless model. At the anticrossing of even states
(εeσ = −ξ ) without QP, see Fig. 6(a), a possible emission

cycle is |σ, 1〉 W P−→ |0, 1〉 ↔ |σ, 0〉 W P−→ |0, 0〉 ⇔ |σ, 1〉. Here,
the arrows with W P indicate optical transitions with emission
of a photon with polarization P = L, R and the other arrows
correspond to the hybridization between the product states
due to tunneling, which can be strong (⇔) or weak (↔).
The strength of the hybridization in this case can be seen

from the spectrum in Fig. 2(b) and can be calculated from the
occupation probabilities in the eigenstates. If an eigenstate
is an equal superposition of an occupied and empty QD
level, the occupation probability for each product state is 1/2
which determines the maximal hybridization (⇔), otherwise
the hybridization is weaker (↔). At εeσ = −ξ , the even
eigenstates |Eσ±〉, see Eq. (19a), are given by an equal
superposition of an empty and occupied QD level, hence the
occupation probability |〈Eσ±|0, 0〉|2 = |〈Eσ±|σ, 1〉|2 = 1/2.
However, the odd states |Oσ±〉 are given by Eq. (19b)
leading to an occupation probability of |〈Oσ±|σ, 0〉|2 =
|〈Oσ∓|0, 1〉|2 = (1 ∓ ξ/

√
t2
T σ + ξ 2 )/2 representing a weaker

hybridization. So, for ξ > 0, the odd states are approximately
|Oσ+〉 ≈ |0, 1〉 and |Oσ−〉 ≈ |σ, 0〉. Because of the weak
hybridization between odd states, the system stays mostly
in the unoccupied QD state |0, 1〉, see Fig. 6(a). At the
anticrossing of odd eigenstates (εeσ = +ξ ), the system is

in the cycle |σ, 0〉 W P−→ |0, 0〉 ↔ |σ, 1〉 W P−→ |0, 1〉 ⇔ |σ, 0〉,
where the stationary state has a large contribution of the
unoccupied state |0, 0〉. In both cases, the system stays mostly
in a state with no electron on the QD, so the emission is
small. Here, the correlations in the electronic subsystem
lead to a super-Poissonian Fano factor F � 1 [94] of the
PEI, see Fig. 6(b) (green). This effect is due to two different
timescales for the emission of photons. Since the occupation
probabilities of electrons on the QD in the even and odd parity
sector are different, also the recombination rates become
different. At the anticrossing of even states (εe = −ξ ), the
rates obey W P

|Oσ+〉←|Eσ±〉 > W P
|Oσ−〉←|Eσ±〉, which leads to two

different timescales for emitting a photon from an even
state (this also holds for the emission from an odd state
where W P

|Eσ±〉←|Oσ−〉 > W P
|Eσ±〉←|Oσ+〉). This effect is strongest

at εeσ = ±ξ , see Fig. 6(b) (green), where the hybridization
between even and between odd states is most different,
leading to maximally different recombination rates and a
maximum of the Fano factor. If we compare the Fano factor
for each spin, it is larger at the resonance for ↑ electrons
(εe = −�Z,e) than for ↓ electrons (εe = +�Z,e). Since the
coupling |t1↑| < |t1↓| and the hybridization between MBSs
and ↑ electrons is weaker, the system needs more time to
return into a state that can emit a photon. Additionally, we
can show that there exists a process that leads to bunching of
emitted photons on timescales larger than the time τ ∼ 1/	h

that the system needs to refill a hole on the QD. This process
is reflected in the g(2)(τ ) correlation function [95] which
measures the correlation between two photon emissions in a
given time τ . The details of the calculation of the Fano factor
F and g(2)(τ ) are shown in Appendix C, where we employ a
generalized master equation approach [96–98].

Note that for slow holes (	h < Wmax) the dynamics of
the system would be governed by the dynamics in the hole
subsystem, since the slowest process determines the dynam-
ics. Here, the Fano factor would be sub-Poissonian, see
Fig. 11. This can be easily seen from Fig. 3(b). If, for example,
the ↓ electron is in resonance (W L is almost 0), mostly ⇑
holes will recombine to photons. Thus the hole subsystem

is in the emission cycle |↑ ⇓〉 W R−→ |↓〉 	h⇑−→ |↑ ⇓〉, which can
be effectively described as a single resonant level between
two reservoirs, where the Fano factor is sub-Poissonian and
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emitted photons are antibunched. An exception constitutes
the case where both spins can contribute to photon emission
(finite 	R or in the spin-mixing regime). Then, even for slow
holes, the Fano factor can reach the super-Poissonian regime.
Additionally, for slow holes, the PEI would be decreased since
the maximal PEI is given by min(Wmax/2, 	h) without spin
relaxation.

Since the system changes parity after emitting a photon,
the largest PEI is at εeσ = 0, see Fig. 5(a), where the emission

cycle is |σ, 1〉 W P−→ |0, 1〉 ∗↔|σ, 0〉 W P−→ |0, 0〉 ∗↔|σ, 1〉 with an
intermediate hybridization strength marked by a star (

∗↔).
Here, the hybridization between even and between odd states
is equally strong leading to the most favorable emission cycle
and the maximal PEI in the regime of overlapping MBSs.
Here, the maximum is smaller than for the regime of separated
MBSs (ξ = 0) since the eigenstates are not equal superpo-
sitions of an empty and an occupied QD level and, as a
consequence, the states |0, 1〉 and |0, 0〉 have a larger contri-
bution to the stationary state than |σ, 0〉 and |σ, 1〉.

Now, we consider a finite coupling t2 to the second MBS in
addition to a finite splitting ξ . For this regime, the spectrum is
shown in Fig. 2(d). Again we show IP (solid lines) compared
to Iσ (dashed lines) from the spinless model, which shows
only small deviations from IP, see Fig. 5(b), and will not be
discussed here. Compared to the case of t2 = 0, the PEI peak
for IL is shifted in negative εe direction, whereas the peak
of IR is shifted to larger εe. The shift of the emission peaks
only occurs for ξ �= 0 and t2 �= 0 (tPσ �= tT σ ). In particular,
the PEI peaks are shifted in negative (positive) εe direction
if |tPσ | < |tT σ | (|tPσ | > |tT σ |) where the maximal shift is ξ ,
since the location of the peaks is given by Eq. (24c) which
evaluates to ε0 = −2t1σ (it2σ )ξ/(t2

1σ + (it2σ )2). For the choice
of t1↑, it2↑, ξ > 0 in Fig. 5(b), we have |tP↑| < |tT ↑|, such that
the IL peak is shifted in negative εe direction. The shift can be
understood from the fact that now the coupling between even
parity states is different from the coupling between odd parity
states. Here, the hybridization between odd states is stronger
than between even states at εe = −�Z,e and since the largest
PEI is given where even and odd states can emit photons
equally likely, the peak is shifted towards the anticrossing of
the more weakly hybridized even states. At the resonance with
↓ electrons (εe = +�Z,e), the peak is shifted to larger εe, since
for t1↓, ξ > 0 and it2↓ < 0, we have |tP↓| > |tT ↓|. Here, the
hybridization between even states is stronger than between
odd states at resonance, so that the peak is shifted towards
the anticrossing of odd states. The emission peak shift is a
signature of the nonlocality of the MBSs as it only occurs
for finite t2. The effect of a finite t2 can also be seen in the
frequency-dependent PEI. In Figs. 5(c) and 5(d), we show iP
for overlapping MBSs, where the MBSs have a finite splitting
(difference between horizontal lines) and iL 
 iR (note the
different scales). Whereas without t2 the excitation spectrum
resembles a bowtie form [58], where photon emission is sym-
metric around the resonances, see Fig. 5(c), a finite t2 leads
to an asymmetric excitation spectrum and shifts the emission
maximum to the less hybridized states (smaller anticrossing),
see Fig. 5(d). Note that in the absence of QP the PEI for
t1σ = ±it2σ would be zero, since this case would correspond
to the coupling to an ordinary complex fermion where super-
conductivity is effectively suppressed [59].

We now investigate the influence of QP. In Fig. 5(e), we
show the total PEI for ξ �= 0, t2 = 0 and 	QP = Wmax. For
finite 	QP, the total PEI calculated with the spinless model
without nonlocal coupling t2 (tPσ = tT σ = t1σ ) is given by

Iσ
Imax
P

= D1 + D2ε
2
eσ

D3 + (
ε2

eσ − D2
4

)2 . (26)

The coefficients Di, i = 1, . . . , 4 are shown in Appendix D.
Note that Iσ can never exceed the maximal PEI Imax

P . At the
resonances (εeσ = 0), the total PEI simplifies to

Iσ (εeσ = 0)

Imax
P

= 2t2
1σ (1 + 2	̃QP)

2t2
1σ (1 + 2	̃QP) + ξ 2

, (27)

with the dimensionless rate 	̃QP = 	QP/Wmax. Compared to
the case without QP, it effectively changes the tunneling am-
plitudes t̃1σ = t1σ

√
1 + 2	̃QP at εeσ = 0 and the PEI Iσ (εeσ =

0) increases linearly with 	̃QP, see Eq. (27). Furthermore,
under the condition that

	̃QP >
t2
1σ

3ξ 2 − 2t2
1σ

> 0, (28)

the function Iσ has two peaks which are symmetric around
εeσ = 0 and split by

�Esplit =
∣∣∣∣2ξ − (1 + 2	̃QP)2

4	̃2
QPξ

3
t4
1σ + O(t6

1σ )

∣∣∣∣. (29)

Otherwise, Iσ has one peak at εeσ = 0. In Fig. 5(e), IL has two
peaks and IR has two broader overlapping peaks. The peaks
for a given photon polarization are approximately split by
2|ξ |, see Eq. (29), and are symmetric around the resonance
εe = ±�Z,e, as t2 = 0 in this case. Also the maximal PEI is
strongly enhanced, especially at εe = −�Z,e ± ξ , if we com-
pare this to the case without QP, see Figs. 5(a) and 5(e). This
difference to the ideal case can be understood with the emis-
sion cycle at εeσ = −ξ , illustrated in Fig. 6(a). Quasiparticle
poisoning leads to additional paths, so that the new emis-

sion cycle |σ, 1〉 W P−→ |0, 1〉	QP↔|0, 0〉 ⇔ |σ, 1〉 is created. Now,
the weak hybridization between odd states at εeσ = −ξ can
be overcome by changing the parity via QP, which strongly
enhances the PEI. Likewise, at εeσ = +ξ where even states

are weakly hybridized, the new emission cycle |σ, 0〉 W P−→
|0, 0〉	QP↔|0, 1〉 ⇔ |σ, 0〉 enhances the emission. Here, the Fano
factor becomes sub-Poissonian, see Fig. 6(b) (orange). Again
this effect is strongest at QD energies where even or odd states
are strongly hybridized. Since QP changes the occupation of
the nonlocal fermion, see Fig. 6(a), even and odd parity eigen-
states are mixed. Since parity is not conserved, the electronic
subsystem becomes effectively a two-level system with |0〉
and |σ 〉 on the QD, so that the emission cycle is effectively

|0〉 ⇔ |σ 〉 W P−→ |0〉. For such a single resonant level system,
the Fano factor is sub-Poissonian and emitted photons are
antibunched for all times τ . This effect emerges if 	̃QP >

|t1σ |/2
√

t2
1σ + ξ 2 . Further details are shown in Appendix C.

In Fig. 5(f), we show the PEI for finite 	QP and t2.
For IL, t2 changes the relative width of the two peaks at
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FIG. 7. Photon emission in the spin-mixing regime. [(a) and (b)] The total PEI IP shows two additional peaks at εe = −�Z,e ± ξ due to a
spin-mixing effect which do not appear in the spinless model PEI Iσ . We used ξ = 0.5�Z,e, 10t1↑ = t1↓ = 0.05�Z,e, and respectively t2 = 0
in (a) and it2↑ = 0.01�Z,e, it2↓ = −0.01�Z,e in (b). Further parameters are 	h = 100Wmax and 	QP = 	R = 0. (c) In the emission cycle for
εe = −�Z,e − ξ , we show the strength of hybridization (black/gray arrows) between the states |ndσ , nc〉 and optical transitions with emission
of L (red arrows) or R photons (blue arrows). In the spin-mixing regime, the most likely emission cycle is denoted by red/blue solid arrows,
whereas the dotted paths are rather unlikely.

εe = −�Z,e ± ξ . Here, odd states are more hybridized at εe =
−�Z,e + ξ than even states at εe = −�Z,e − ξ . QP enhances
the emission more where states of one parity hybridize less
than states of the other parity because it allows the parity to
change. Since at εe = −�Z,e + ξ even states hybridize less
than odd states, the largest effect of QP can be seen around
this resonance. Here, the IL peak at εe = −�Z,e + ξ is more
broadened, see Fig. 5(f). For IR, the peak height of the two
peaks at εe = +�Z,e ± ξ is different now and the peaks are
overall broadened. Due to the coupling to the second MBS,
the PEI gets shifted to larger εe which merges together with
the QP into a double-peak PEI, where the peak at larger εe

is higher. The shift and asymmetry of the double-peak PEI is
much less visible for IL, since there the PEI is much weaker
without QP, so that QP is the leading mechanism.

In summary, for overlapping MBSs the PEI peaks are
decreased in height and broadened compared to the case of
separated MBSs, since even and odd states are separated in
energy by ξ . The coherent coupling between electrons on the
QD and the MBSs leads to a super-Poissonian Fano factor due
to two different timescales for recombination rates in the even
and odd subspace and for timescales larger than τ ∼ 1/	h

emitted photons are bunched. A finite t2 leads to a shift of
the emission peaks which is a signature of nonlocality of the
MBSs. Additionally, QP leads to a significant increase of the
PEI and can lead to the emergence of two peaks that are
split by ∼2|ξ |, as a weak hybridization between states can
be overcome by changing the parity of the system via QP.
A similar splitting and enhancement of a transport peak due
to QP has been also reported in charge transport through a
QD coupled to a Majorana nanowire [79]. Furthermore, QP
leads to a sub-Poissonian Fano factor and antibunching of
photons for all times τ . We conclude that in this regime, a
super-Poissonian Fano factor is a signature of a Majorana sys-
tem where 	̃QP < |t1σ |/2

√
t2
1σ + ξ 2 and thus the parity in the

system is conserved on timescales of the order of the photon
emission. The timescale for QP becomes comparable to the
photon emission time for a light-matter-interaction energy of

g ∼ √
h̄	QP/Nph. A typical QP rate stated in the literature is

	QP = 10−3 ns−1 [88].

B. Spin-mixing regime

When �Z,e � t1 and/or �Z,e � ξ , the resonances of ↑ and
↓ electrons in the total PEI have a significant overlap. In
this regime, the model of decoupled spins in Eq. (18) is not
expected to be a good approximation, since the two spins
are strongly coupled via the MBSs. In this subsection, we
consider the example of a MBS splitting ξ that is smaller but
on the order of �Z,e. Note that spin-mixing effects also occur
for smaller splittings, if the tunnel couplings are large enough.
In Fig. 7(a), we show the total PEI IP (solid lines) compared to
the spinless model Iσ (dashed lines) for the ideal case with a
finite splitting ξ and t2 = 0. Here, IR has a broad peak centered
around εe = +�Z,e, a small peak at εe = −�Z,e + ξ and a
dip at εe = −�Z,e − ξ . IL has two peaks at εe = �Z,e ± ξ .
Interestingly, IL and IR are nearly equal at εe = −�Z,e ± ξ .
In the regime of �Z,e � t1, t2, ξ with 	QP = 0, the PEI had
only one peak for each photon polarization. The extra peaks
have to emerge due to the coupling of different spins which
leads to an emission cycle where L and R photons both are
emitted, as illustrated in Fig. 7(c), where red and blue arrows
correspond to emission of L and R photons, respectively.

Without spin-mixing, emission of L photons at εe =
−�Z,e − ξ would be weak, since this would correspond to
the emission cycle in Fig. 6(a). In contrast, in the spin-mixing
regime, tunneling of ↓ electrons is now also present. Hence, a

new emission cycle is possible, |↑, 1〉 W L−→ |0, 1〉 ∗↔|↓, 0〉 W R−→
|0, 0〉 ⇔ |↑, 1〉, see solid red and blue lines in Fig. 7(c). Here,
one L photon and one R photon are emitted in a full cycle.
This leads to equal PEIs IL and IR. At εe = −�Z,e + ξ , spin-

mixing leads to the new cycle |0, 0〉 ∗↔ |↓, 1〉 W R−→ |0, 1〉 ⇔
|↑, 0〉 W L−→ |0, 0〉. Note that these cycles are the most likely
paths, but other paths [dotted arrows in Fig. 7(c)] are also
possible, which can lead to IL �= IR depending on the relation
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between the couplings t1σ and the splitting ξ . The peaks of IP

at εe = −�Z,e − ξ are smaller than at εe = −�Z,e + ξ , since
the further the QD energy is detuned from the resonance at
εe = +�Z,e, the weaker is the hybridization with ↓ electrons.

A finite nonlocal coupling t2 can influence the spin-mixing
effect, since it changes the tunneling amplitudes between even
and between odd states, which affects the emission paths and
can lead to different emission peak widths and heights. In
Fig. 7(b), we show the total PEI in the spin-mixing regime
with a nonlocal coupling. Now, the broad IR peak is shifted to
larger εe and both the height and width of the two spin-mixing
peaks are modified compared to the case of t2 = 0 in Fig. 7(a).
Interestingly, at εe = −�Z,e − ξ , we observe that IL > IR. The
additional emission of L photons corresponds to the path

|0, 1〉 ↔ |↑, 0〉 W L−→ |0, 0〉, see dotted red line in Fig. 7(c),
which is now more likely. We note that spin relaxation in
the case of decoupled spins can lead to R photon emission
at the resonance with ↑ electrons as well. However, in the
spin-mixing regime both spin species contribute to photon
emission so that L and R photon emission reinforce each other
which increases both the L and R PEI.

V. MAJORANA NANOWIRE

In this section, we comment on how our proposed pn junc-
tion could be implemented using a semiconducting nanowire
with Rashba spin-orbit coupling in the presence of a magnetic
field along the wire direction. The wire has three separated
regions, see Fig. 1(a). The n side is in proximity to an s
wave SC forming a TSC, where in the topologically nontrivial
phase MBSs emerge at the ends, while the p side is a normal
conducting reservoir for holes. The QD confines electrons and
holes and is embedded in the pn junction. Electrons on the
QD are coupled to the MBSs at the left side of the n side TSC
and holes can be refilled from the p side. Via electron-hole
recombination, photons of L or R polarization are emitted in
the wire direction, since the magnetic field is applied along the
wire direction. The location of the QD on the nanowire axis
exhibits an efficient photon emission in wire direction, if the
wire acts as a waveguide for the emitted photons [76,99].

For a Zeeman energy �Z >
√

E2
F + �2

S with EF the Fermi
energy of the wire and �S the induced superconducting (s
wave) pairing the n side is in the topologically nontrivial
phase, where MBSs emerge at the ends of the TSC [77,78].
Note that �Z in the wire and �Z,e on the QD can be different,
either due to different g-factors (different materials), differ-
ent external magnetic fields or by implementing the Zeeman
splitting in the wire in situ via the exchange interaction with
a ferromagnetic insulator [100]. Since we neglected the SC
continuum in our considerations, we need �Z,e < �S in order
to have both spin-levels within the SC gap �S .4 This condi-
tion can be relaxed if the coupling energy of the ↓ electron

4If �Z,e > �S and the ↑ electron is in resonance with the MBSs,
the coherent tunneling of ↑ electrons can become blocked by the
tunneling of a ↓ electron onto the empty QD by the simultaneous
creation of a quasiparticle in the SC. Phenomenologically, this pro-
cess is similar to the spin relaxation process with rate 	R with the
difference that the parity of the low-energy states does switch.

QD level to the continuum states above �S is small (i.e.,
smaller than h̄Wmax and min(|tP↑|, |tT ↑|)).5 One can obtain the
electronic components of the Majorana wave functions u(i)

σ

at the left side of the n side wire for γi, i = 1, 2, σ = ↑,↓.
By choosing the magnetic field in z direction and the Rashba
spin-orbit coupling in y direction, the spins of the electronic
components of the MBSs are polarized in the z-x plane, so
that their spin at the left end can be parameterized by a single
angle

�i = 2arccot

(
u(i)

↑
u(i)

↓

)
, (30)

i = 1, 2 [58,60,62]. The tunneling amplitudes between QD
electrons and MBSs are tiσ ∝ u(i)

σ [58,61,62], which corre-
spond to the tunneling amplitudes we introduced in Eq. (2).
Since γ1 (γ2) is exponentially localized at the left (right) end
[83,101], the coupling to γ2 is only finite if its wave function
can reach the left end. The strength of the couplings can be
tuned by the strength of the tunneling barrier between QD and
wire.

For sufficiently long n side wires, the Majorana splitting ξ

and the coupling t2 to the more distant MBS γ2 are negligibly
small, which corresponds to the regime of separated MBSs.
From the effectively spinless model (decoupled spins), we find
from Eq. (25) a relation between the width 2d of the emission
peaks and the Majorana angle �1 in Eq. (30) as

�1 = 2arccot

(
d (IL )

d (IR)

)
. (31)

For shorter wires, the splitting ξ [83,102] and the tunneling
amplitudes t2σ [58] become finite, which corresponds to the
regime of overlapping MBSs. Additionally, ξ and the tunnel-
ing amplitudes tiσ oscillate with increasing �Z . By decreasing
the wire length further or tuning the tunnel barrier between
QD and wire, one can also reach the spin-mixing regime.
Here, the Zeeman energy on the QD has to be tuned such
that the Majorana splitting and/or tunneling amplitudes are
smaller but on the order of the Zeeman energy, i.e., �Z,e � ξ

and/or �Z,e � t1.

VI. CONCLUSION

We considered an effective model for the coupling of two
Majorana bound states (MBSs) to electrons on a quantum dot
(QD). We introduced holes which do not interact with the
MBSs but are coupled to a normal conducting reservoir to cal-
culate electron-hole recombination with emission of left (L)
and right (R) polarized photons governed by selection rules.
We used a master equation to calculate the dynamics of the
system, where we included spin relaxation and quasiparticle
poisoning (QP).

The photon emission intensity (PEI) behaves differently
depending on the MBSs regimes. For spatially separated

5This coupling energy can be smaller than min(|tP↑|, |tT ↑|) since
the Majorana wave function is localized within the superconducting
coherence length which is much smaller than the quantization length
of the continuum states.
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MBSs, the height of the PEI obeys max(IL ) = max(IR) and
the width is proportional to the tunneling amplitudes between
electrons on the QD and MBSs. When the wave functions
of the MBSs overlap significantly, the PEI peaks obey
max(IL ) �= max(IR) and are shifted away from resonance if
a finite tunnel coupling to the more distant MBS is present,
which is a signature of the nonlocality of a pair of MBSs.
Additionally, we showed that for overlapping MBSs the
system dynamics leads to bunching of photon emission
events resulting in a super-Poissonian Fano factor (F � 1).
The reason can be linked to two different timescales for the
emission of photons, since the hybridization between MBSs
and QD states in the even and odd parity sector is different
and bunching of emitted photons appears on timescales larger
than the hole refilling time τ ∼ 1/	h. Furthermore, a finite
spin relaxation on the QD leads to an enhanced emission of R
photons at the tunneling resonance of ↑ electrons, which can
be larger than the maximal emission without spin relaxation.
A finite QP leads to an enhancement of the PEIs and can
split the L and R photon resonances into two peaks each,
separated in energy approximately by |2ξ |. Due to mixing of
the parities via QP, the system is in the sub-Poissonian regime
(F � 1) and emitted photons are always antibunched. We
conclude that in this regime, a super-Poissonian Fano factor
is a signature of a Majorana system where QP is slow enough,
so that the parity in the system is conserved on timescales on
the order of the photon emission. Moreover, for larger tunnel
couplings between the QD and MBSs and/or larger Majorana
splittings, the two spin levels on the QD become effectively
coupled by the MBSs which leads to spin-mixing effects in
the PEI. For a large MBSs splitting and |t1↓| > |t1↑|, this gives
rise to additional R photons at the tunneling resonance for ↑
electrons where one has to carefully distinguish between the
cases of spin-mixing and spin relaxation, as we can find R
photons at the resonance with ↑ electrons in both cases.

Our proposed pn junction could be implemented using a
semiconducting Rashba nanowire proximitized to an s wave
superconductor (n side) and subjected to a Zeeman field, that
hosts a MBS at each end. The QD can be embedded in a pn
junction between the n side TSC and a normal conducting
p side reservoir. For long wires, the MBSs have only little
overlap and are well-separated. In that case, the Majorana spin
angle of γ1 can be directly calculated from the emission peak
widths. For shorter wires, also the regimes of overlapping
MBSs and spin-mixing can be reached by tuning the Zeeman
energy appropriately.

The mapping of MBS properties to photons is an alter-
native route to transport measurements to investigate MBSs.
Furthermore, the detection provides direct access to the polar-
ization of the photons and allows to distinguish between QD
electrons of different spins, which is not readily achievable in
charge transport. With our proposed scheme we can clearly
distinguish the different MBSs regimes and get access to pa-
rameters like the Majorana spin angle, splitting of the MBSs
and the order of QP times in the system. Given the existing
successful combination of nanowires, SCs and QDs in the
Majorana realm [18,24] as well as the integration of optically
active QDs into nanowires [75] with spin-selective PEI [103]
and directional emission of photons [76,99], we believe that
our proposal is experimentally feasible.

Currently, it is discussed how to distinguish MBSs from
nontopological zero-energy states. Our proposal has the ad-
vantage that we have direct access to the spin structure of the
probed states from the resulting polarization resolved PEIs.
With our setup we can probe the Majorana overlap as well
as their nonlocality, which are crucial for the demonstration
of MBSs. But since topologically trivial zero-energy states
such as quasi-MBSs [104] can have a nontrivial spin structure
as well, our local probe cannot unambiguously distinguish
these states from MBSs (for a review on this topic, see
Ref. [105]).

During writing of the manuscript we became aware of a
related publication [106], where a spinless optical QD con-
nected to MBSs in a cavity is considered. The QD is dressed
by the coupling to the cavity photons which, in turn, influ-
ences the charge transport (without a pn junction) through the
QD, all very different from our scheme.
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APPENDIX A: RECOMBINATION RATES

Electrons and holes on the QD recombine to photons via
optical recombination. For the total recombination rates in
Eq. (12) we have to calculate all possible matrix elements
MP

f ,i in Eq. (11). The eigenstates of the full system are
product states of the form |ndσ , nc〉 × |nhσ 〉 × |nph〉, where
n̂ph = a†

k,Pak,P is the occupation number operator of pho-
tons. The hole eigenstates are simply given by |ψ〉h =
{|0〉h, |↑〉, |↓〉, |↑ ⇓〉}. We can show that transitions |↑ ⇓〉
W L (W R )−−−−→ |↑(⇓)〉 and |↓(⇑)〉 W L (W R )−−−−→ |0〉h in the hole subsystem
lead to the same recombination rates and since [d (†)

σ , a(†)
k,P] =

[h(†)
σ , a(†)

k,P] = 0, we can simplify

W L
|ψ f 〉e|↑〉←|ψi〉e|↑⇓〉 = W L

|ψ f 〉e|0〉h←|ψi〉e|↓〉 = W L
|ψ f 〉e←|ψi〉e

,

W R
|ψ f 〉e|↓〉←|ψi〉e|↑⇓〉 = W R

|ψ f 〉e|0〉h←|ψi〉e|↑〉 = W R
|ψ f 〉e←|ψi〉e

. (A1)

Therefore we suppress the hole index in the recombination
rates and the photon polarization only appears as an in-
dex. The electronic eigenstates have a fixed parity |ψ〉e =
|Em(Om)〉 and are superpositions of the product states |ndσ , nc〉
of QD electrons and the nonlocal fermion. So even and odd
eigenstates are respectively given by

|Em〉 = ϕe
1m

∣∣0, 0
〉 + ϕe

2m

∣∣↑, 1
〉 + ϕe

3m

∣∣↓, 1
〉 + ϕe

4m

∣∣↑ ↓, 0
〉
,

(A2a)

|Om〉 = ϕo
1m

∣∣0, 1
〉 + ϕo

2m

∣∣↑, 0
〉 + ϕo

3m

∣∣↓, 0
〉 + ϕo

4m

∣∣↑ ↓, 1
〉
.

(A2b)
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FIG. 8. Relevant recombination rates over QD energy εe for different MBSs regimes at the resonance with ↓ electrons (εe = �Z,e).
(a) Separated MBSs. Even and odd states are degenerate, which leads to the same rates for each parity. Parameters are ξ = 0, 10t1↑ =
t1↓ = 0.025�Z,e, and t2 = 0. (b) Overlapping MBSs with finite splitting. Parameters are ξ = 0.04�Z,e, 10t1↑ = t1↓ = 0.025�Z,e, and t2 = 0.
(c) Overlapping MBSs with finite coupling to γ2. Parameters are ξ = 0, 10t1↑ = t1↓ = 0.03�Z,e, it2↑ = 0.0012�Z,e, and it2↓ = −0.012�Z,e.
(d) Overlapping MBSs with finite splitting and finite coupling t2. Parameters are ξ = 0.04�Z,e, 10t1↑ = t1↓ = 0.03�Z,e, it2↑ = 0.0009�Z,e,
and it2↓ = −0.009�Z,e.

Since the master equation is written in terms of the co-
herently coupled QD-MBSs-states, we have to calculate the
contribution of every eigenstate by its components. For the
recombination rates in Eq. (12), we obtain explicitly

W L
|Om〉←|En〉 = 2π

h̄

∣∣g(ϕo∗
1mϕe

2n + ϕo∗
3mϕe

4n

)∣∣2
Nph, (A3a)

W R
|Om〉←|En〉 = 2π

h̄

∣∣g(ϕo∗
1mϕe

3n − ϕo∗
2mϕe

4n

)∣∣2
Nph, (A3b)

W L
|Em〉←|On〉 = 2π

h̄

∣∣g(ϕe∗
1mϕo

2n + ϕe∗
3mϕo

4n

)∣∣2
Nph, (A3c)

W R
|Em〉←|On〉 = 2π

h̄

∣∣g(ϕe∗
1mϕo

3n − ϕe∗
2mϕo

4n

)∣∣2
Nph. (A3d)

In Fig. 8, we show the recombination rates over the QD
energy εe for different MBSs regimes at the resonance with
↓ electrons (εe = �Z,e). Away from resonance, the recom-
bination rates are either 0 or Wmax = 2π |g|2Nph/h̄ because
here electronic eigenstates correspond to uncoupled states
|ndσ , nc〉 (off-resonant states). If electrons on the QD are
in resonance with the MBSs, it follows for the rates that
0 < W P

|ψ f 〉e←|ψi〉e
< Wmax. In this εe range, the eigenstates that

contribute to photon emission are superpositions of the un-
coupled QD-MBSs-states. Only for those eigenstates photon
emission is possible, since a maximal emission rate would
lead to zero occupation in the stationary state and thus the
contribution to the intensity defined in Eq. (16) would be
zero. The same holds for a recombination rate of zero which
immediately gives zero intensity. Note that off-resonant states
can contribute to emission, if they are coupled to the resonant
states via other processes, which is, e.g., the case for a finite
spin relaxation.

APPENDIX B: MASTER EQUATION

The dynamics of the system is described by a Pauli master
equation for the 32 joint states |ψ〉 = |ψ〉e × |ψ〉h. We take
into account four different rates: The optical recombination
rates are given by Eq. (A3). The other rates for hole refilling,

QP and spin relaxation can be deduced, respectively, by taking
the expectation value in the system state |ψ〉 of the Lindblad
superoperators in Eq. (13)–(15),

〈ψ |Lhσ |ψ〉 =
∑
ψ ′

(
	

|ψ〉←|ψ ′〉
hσ

ρ|ψ ′〉 − 	
|ψ ′〉←|ψ〉
hσ

ρ|ψ〉
)
, (B1)

〈ψ |LQP|ψ〉 =
∑
ψ ′

(
	

|ψ〉←|ψ ′〉
QP ρ|ψ ′〉 − 	

|ψ ′〉←|ψ〉
QP ρ|ψ〉

)
, (B2)

〈ψ |LR|ψ〉 =
∑
ψ ′

(
	

|ψ〉←|ψ ′〉
R ρ|ψ ′〉 − 	

|ψ ′〉←|ψ〉
R ρ|ψ〉

)
. (B3)

The hole refilling rates according to Eq. (B1) are

	
|ψ〉←|ψ ′〉
hσ

= 	h|〈ψ |h†
σ |ψ ′〉|2. (B4)

Since hole eigenstates are just given by the number states, the
hole refilling rate can either be 	h if refilling is possible or 0
otherwise. So, hole refilling does not depend on εe. The QP
rates in Eq. (B2) are given by

	
|ψ〉←|ψ ′〉
QP = 	QP(|〈ψ |cP|ψ ′〉|2 + |〈ψ |c†P|ψ ′〉|2). (B5)

For the eigenstates in Eq. (A2), we obtain explicitly

	
|Om〉←|En〉
QP = 	QP

(∣∣ϕo∗
2mϕe

2n + ϕo∗
3mϕe

3n

∣∣2

+ ∣∣ϕo∗
1mϕe

1n + ϕo∗
4mϕe

4n

∣∣2)
, (B6)

	
|Em〉←|On〉
QP = 	QP

(∣∣ϕe∗
1mϕo

1n + ϕe∗
4mϕo

4n

∣∣2

+ ∣∣ϕe∗
2mϕo

2n + ϕe∗
3mϕo

3n

∣∣2)
. (B7)

The spin relaxation rates in Eq. (B3) are

	
|ψ〉←|ψ ′〉
R = 	R|〈ψ |d†

↓d↑|ψ ′〉|2, (B8)

and using the eigenstates in Eq. (A2) explicitly

	
|Em〉←|En〉
R = 	R

∣∣ϕe∗
3mϕe

2n

∣∣2
, m �= n, (B9)

	
|Om〉←|On〉
R = 	R

∣∣ϕo∗
3mϕo

2n

∣∣2
, m �= n. (B10)

Note that a spin relaxation process will always
cause a transition to another eigenstate. As we showed,
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QP and spin relaxation rates depend on εe and
require an explicit calculation via the components

of the eigenstates. The full master equation is given
by

ρ̇|En,⇑⇓〉(τ ) = −
4∑

m=1

(
W L

|Om〉←|En〉 + W R
|Om〉←|En〉

)
ρ|En,⇑⇓〉(τ ) + 	h⇑ρ|En,⇓〉(τ ) + 	h⇓ρ|En,⇑〉(τ )

+
∑
m �=n

(
	

|En〉←|Em〉
R ρ|Em,⇑⇓〉(τ ) − 	

|Em〉←|En〉
R ρ|En,⇑⇓〉(τ )

) +
4∑

m=1

(
	

|En〉←|Om〉
QP ρ|Om,⇑⇓〉(τ ) − 	

|Om〉←|En〉
QP ρ|En,⇑⇓〉(τ )

)
,

(B11a)

ρ̇|On,⇑⇓〉(τ ) = −
4∑

m=1

(
W L

|Em〉←|On〉 + W R
|Em〉←|On〉

)
ρ|On,⇑⇓〉(τ ) + 	h⇑ρ|On,⇓〉(τ ) + 	h⇓ρ|On,⇑〉(τ )

+
∑
m �=n

(
	

|On〉←|Om〉
R ρ|Om,⇑⇓〉(τ ) − 	

|Om〉←|On〉
R ρ|On,⇑⇓〉(τ )

) +
4∑

m=1

(
	

|On〉←|Em〉
QP ρ|Em,⇑⇓〉(τ ) − 	

|Em〉←|On〉
QP ρ|On,⇑⇓〉(τ )

)
,

(B11b)

ρ̇|En,⇓〉(τ ) = +
4∑

m=1

(
W R

|En〉←|Om〉ρ|Om,⇑⇓〉(τ ) − W L
|Om〉←|En〉ρ|En,⇓〉(τ )

) − 	h⇑ρ|En,⇓〉(τ ) + 	h⇓ρ|En,0〉(τ )

+
∑
m �=n

(
	

|En〉←|Em〉
R ρ|Em,⇓〉(τ ) − 	

|Em〉←|En〉
R ρ|En,⇓〉(τ )

) +
4∑

m=1

(
	

|En〉←|Om〉
QP ρ|Om,⇓〉(τ ) − 	

|Om〉←|En〉
QP ρ|En,⇓〉(τ )

)
,

(B11c)

ρ̇|On,⇓〉(τ ) = +
4∑

m=1

(
W R

|On〉←|Em〉ρ|Em,⇑⇓〉(τ ) − W L
|Em〉←|On〉ρ|On,⇓〉(τ )

) − 	h⇑ρ|On,⇓〉(τ ) + 	h⇓ρ|On,0〉(τ )

+
∑
m �=n

(
	

|On〉←|Om〉
R ρ|Om,⇓〉(τ ) − 	

|Om〉←|On〉
R ρ|On,⇓〉(τ )

) +
4∑

m=1

(
	

|On〉←|Em〉
QP ρ|Em,⇓〉(τ ) − 	

|Em〉←|On〉
QP ρ|On,⇓〉(τ )

)
,

(B11d)

ρ̇|En,⇑〉(τ ) = +
4∑

m=1

(
W L

|En〉←|Om〉ρ|Om,⇑⇓〉(τ ) − W R
|Om〉←|En〉ρ|En,⇑〉(τ )

) − 	h⇓ρ|En,⇑〉(τ ) + 	h⇑ρ|En,0〉(τ )

+
∑
m �=n

(
	

|En〉←|Em〉
R ρ|Em,⇑〉(τ ) − 	

|Em〉←|En〉
R ρ|En,⇑〉(τ )

) +
4∑

m=1

(
	

|En〉←|Om〉
QP ρ|Om,⇑〉(τ ) − 	

|Om〉←|En〉
QP ρ|En,⇑〉(τ )

)
,

(B11e)

ρ̇|On,⇑〉(τ ) = +
4∑

m=1

(
W L

|On〉←|Em〉ρ|Em,⇑⇓〉(τ ) − W R
|Em〉←|On〉ρ|On,⇑〉(τ )

) − 	h⇓ρ|On,⇑〉(τ ) + 	h⇑ρ|On,0〉(τ )

+
∑
m �=n

(
	

|On〉←|Om〉
R ρ|Om,⇑〉(τ ) − 	

|Om〉←|On〉
R ρ|On,⇑〉(τ )

) +
4∑

m=1

(
	

|On〉←|Em〉
QP ρ|Em,⇑〉(τ ) − 	

|Em〉←|On〉
QP ρ|On,⇑〉(τ )

)
,

(B11f)

ρ̇|En,0〉(τ ) = +
4∑

m=1

(
W L

|En〉←|Om〉ρ|Om,⇓〉(τ ) + W R
|En〉←|Om〉ρ|Om,⇑〉(τ )

) − (	h⇓ + 	h⇑)ρ|En,0〉(τ )

+
∑
m �=n

(
	

|En〉←|Em〉
R ρ|Em,0〉(τ ) − 	

|Em〉←|En〉
R ρ|En,0〉(τ )

) +
4∑

m=1

(
	

|En〉←|Om〉
QP ρ|Om,0〉(τ ) − 	

|Om〉←|En〉
QP ρ|En,0〉(τ )

)
,

(B11g)
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ρ̇|On,0〉(τ ) = +
4∑

m=1

(
W L

|On〉←|Em〉ρ|Em,⇓〉(τ ) + W R
|On〉←|Em〉ρ|Em,⇑〉(τ )

) − (	h⇓ + 	h⇑)ρ|On,0〉(τ )

+
∑
m �=n

(
	

|On〉←|Om〉
R ρ|Om,0〉(τ ) − 	

|Om〉←|On〉
R ρ|On,0〉(τ )

) +
4∑

m=1

(
	

|On〉←|Em〉
QP ρ|Em,0〉(τ ) − 	

|Em〉←|On〉
QP ρ|On,0〉(τ )

)
,

(B11h)

for n = 1, 2, 3, 4. The stationary state is given by ∂τρ
stat
|ψ〉 (τ ) = 0.

APPENDIX C: FANO FACTOR AND g(2) CORRELATION
FUNCTION

To calculate the Fano factor [94], we use a generalized
master equation approach [96–98] derived for charge transport
through QDs. The Fano factor is defined as F = S/eI with
the elementary charge e, the average current I and the zero-
frequency current noise S. F gives a measure of whether a
system compared to a Poisson process (F = 1) is in the sub-
Poissonian (F < 1) or super-Poissonian regime (F > 1). In
our setup, the holes flow from the hole reservoir onto the QD
via the hole refilling rate 	h and recombine with an electron to

a photon by recombination rates W P
|ψ f 〉←|ψi〉 defined in Eq. (12).

In the stationary limit, the number of holes tunneled from the
hole reservoir onto the QD is equal to the number of holes that
left the QD via photon emission [i.e., (d/dt )〈nhσ 〉 = 0]. Since
each emitted photon also annihilates an electron in the QD,
the average current of holes tunneling onto the QD equals that
of the electrons leaving the QD (with opposite sign) so that
a current I through the QD can be defined, see Fig. 9. In the
following, we focus on the contribution to the current where
holes leave the QD via photon emission. In this sense, the
charge current I can be understood as an emission intensity
of photons with

∑
P IP = I/e, introduced in Eq. (17).

We use the approach and notation according to [96]. To find the contributions to the current of interest, we decompose the
Liouvillian as L = L0 + J , where the jump superoperator J describes incoherent transitions between the system and the photon
reservoir, whereas L0 includes all remaining processes. The Liouvillian for the full model can be deduced from the full master
equation in Eq. (B11) according to ρ̇(τ ) = Lρ(τ ), where ρ(τ ) is the vector of all matrix elements ρ|ψ〉(τ ) of the reduced density
matrix. Therefore the master equation can be written as

ρ̇ (n)(τ ) = L0ρ
(n)(τ ) + J ρ (n−1)(τ ), (C1)

where ρ (n) denotes the number resolved density matrix with n the number of holes that recombined with electrons to photons,
i.e., the number of emitted photons. We identify the terms in the master equation that are responsible for these recombination
processes and show explicitly the current superoperator and the density operator

J =

⎛
⎜⎜⎝

0 0 W P
|Eσ+〉←|Oσ+〉 W P

|Eσ+〉←|Oσ−〉
0 0 W P

|Eσ−〉←|Oσ+〉 W P
|Eσ−〉←|Oσ−〉

W P
|Oσ+〉←|Eσ+〉 W P

|Oσ+〉←|Eσ−〉 0 0
W P

|Oσ−〉←|Eσ+〉 W P
|Oσ−〉←|Eσ−〉 0 0

⎞
⎟⎟⎠, ρ(τ ) =

⎛
⎜⎝

ρ|Eσ+〉(τ )
ρ|Eσ−〉(τ )
ρ|Oσ+〉(τ )
ρ|Oσ−〉(τ )

⎞
⎟⎠, (C2)

respectively, for the spinless model in Eq. (21). The current superoperator J for the full model can be constructed analogously.
Note that for the full model, where 	h is finite, we could also define the average current as the holes that tunneled from the hole
reservoir onto the QD via 	h.

From the n resolved density operator in Eq. (C1) one can obtain the complete probability distribution for n holes that
recombined with electrons to photons. The probability distribution gives access to the cumulant generating function. From
this one can obtain the first two current cumulants which are the current and the zero-frequency noise.

Following the notation in [96] taking the trace Tr(Lρstat ) =
0 corresponds to multiplying L from the right with |0〉〉 which
is the vector of the stationary state occupations ρstat

|ψ〉 and from
the left with a vector 〈〈0̃| where every element is equal to
one. With this, one can introduce the projectors P0 = |0〉〉〈〈0̃|
and Q = 1 − P0 with the properties P0L = LP0 = 0 and
QLQ = L. One can define the pseudoinverse of the Liouvil-
lian R = QL−1Q, which is needed for calculating the second
cumulant. Here, the inversion of the singular matrix L is only
executed in the Q subspace, where L is regular. With this, one

obtains for the average current

I = e〈〈0̃|J |0〉〉, (C3)

with e > 0 and for the zero-frequency current noise

S = e2〈〈0̃|J − 2JRJ |0〉〉. (C4)

Since from the Fano factor one cannot unambiguously
determine whether the emitted photons are bunched or an-
tibunched, we also calculate the second-order correlation
function g(2) which measures the correlation between two
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FIG. 9. Transitions between holes on the QD and the coupled
reservoirs. Holes tunnel onto the QD from the hole reservoir via 	h

and recombine with electrons to photons via photon emission with
rates W P. The calculated current I flows from the left to the right.

system jumps separated by a time τ . The correlation function
can be defined with the current superoperator as [95]

g(2)(τ ) = 〈〈0̃|J�(τ )J |0〉〉
〈〈0̃|J |0〉〉2

, (C5)

where �(τ ) = exp(Lτ ) is the master equation propagator. By
comparing the g(2) functions at two different times separated
by τ , one can identify

g(2)(0) > g(2)(τ ) bunching,

g(2)(0) < g(2)(τ ) antibunching. (C6)

Especially, the g(2) function is also related to the Fano factor
by [95]

F = 1 + 2I

e

∫ ∞

0
dτ (g(2)(τ ) − 1). (C7)

So if the integral over g(2)(τ ) − 1 is positive (negative) the cor-
responding Fano factor is super-Poissonian (sub-Poissonian).

For the spinless model (where we set 	h → ∞), we can
solve the model analytically. We give the analytical expres-
sions for g(2) and the Fano factor for t2 = 0 at εeσ = ±ξ ,

g(2)
spinless(τ ) = 1 + e−

(
	̃QP+ 1

2

)
τWmax

×
((

1 − 4	̃2
QP

)
ξ 2t2

1σ − 4	̃2
QPξ

4
)

2
(
2	̃QPξ 2 + (2	̃QP + 1)t2

1σ

)2

︸ ︷︷ ︸
c0

, (C8)

Fspinless = 1 − 2	̃QP

(2	̃QP + 1)2
+ t2

1σ

(
1

2	̃QPξ 2 + 2	̃QPt2
1σ + t2

1σ

− 1

(2	̃QP + 1)2
(
ξ 2 + t2

1σ

)
)

, (C9)

with 	̃QP = 	QP/Wmax. Therefore emitted photons are, ac-
cording to Eq. (C6),

bunched, if 	̃QP <
|t1σ |

2
√

ξ 2 + t2
1σ

,

antibunched, if 	̃QP >
|t1σ |

2
√

ξ 2 + t2
1σ

. (C10)

In the case of no QP, Eq. (C8) and Eq. (C9) simplify to

g(2)
spinless(τ ) = 1 + e− τWmax

2
ξ 2

2t2
1σ

, (C11)

FIG. 10. Correlation function g(2)(τ ). We show g(2)(τ ) over τ

for the QD energy εe = �Z,e − ξ for the full model (solid lines)
and g(2)

spinless(τ ) over τ according to Eq. (C8) for the spinless model
(dashed lines). The inset shows longer times τ where g(2)(τ ) →
1. For the full model, we used ξ = 0.04�Z,e, 10t1↑ = t1↓ =
0.025�Z,e t2 = 0, 	h = 100Wmax, 	R = 0, 	QP = 0 (green), and
	QP = Wmax (orange). For the spinless model, we used ξ = 0.04�Z,e,
t1σ = 0.025�Z,e, 	QP = 0 (green), and 	QP = Wmax (orange).

Fspinless = 2 − t2
1σ

ξ 2 + t2
1σ

= 2 − 2

e
Ispinless. (C12)

Interestingly, the Fano factor can be written using the average
current Ispinless. Note that for ξ = 0, where even and odd
states are degenerate, at resonance εeσ = 0 the Fano factor
Fspinless = 1 and g(2)

spinless(τ ) = 1,∀τ . Here, the system is Pois-
sonian and the emitted photons are completely uncorrelated.
In Fig. 10, we show the g(2) function of the full model (solid
lines) at εe = �Z,e − ξ in comparison to the spinless model
(dashed lines) without and with QP. For the full model, the
g(2) function starts at around 0 and increases rapidly. After
a time of the order of τ ∼ 1/	h the curves flatten and follow
g(2)

spinless. Here, g(2)(0) < g(2)(τ ),∀τ , hence emitted photons are
antibunched, according to Eq. (C6).

The difference between the full and the spinless model can
be explained by the time that holes need to get refilled on the
QD, since in the limit 	h → ∞ for the spinless model the
refilling time is zero. If we fit the g(2) function [107] for the
full model (	h > 	QP,Wmax),

g(2)(τ ) ≈ 1 + c0e−(	̃QP+ 1
2 )τWmax︸ ︷︷ ︸

g(2)
spinless (τ )

−(1 + c0)e−	hτ , (C13)

we find two exponential functions with different decay times.
Since emitting one photon is equivalent to an electron and a
hole that leave the QD, the g(2) function mirrors what happens
in the hole and electronic subsystem. Here, the dynamics at
short times τ ∼ 1

	h
and at later times τ ∼ 1

	QP+ Wmax
2

compete

[95]. At short times, we can identify that the dynamics in the
hole subsystem dominates, where hole refilling is antibunched
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FIG. 11. Fano factor and correlation function g(2)(τ ) for slow
holes. We show the Fano factor F over the QD energy εe in (a) and
g(2)(τ ) over τ for εe = �Z,e in (b). For both plots we used ξ =
0, 10t1↑ = t1↓ = 0.025�Z,e, t2 = 0, 	h = 0.001Wmax, 	R = 0, and
	QP = 0.

due to fermionic statistics. After refilling, the holes are mostly
in the doubly occupied state before the next photon is emitted
and so at later times the dynamics of the system is governed
by the dynamics in the electronic subsystem.

In the ideal case (	QP = 0) and after short times, g(2)(τ )
becomes much larger than 1 and has a negative slope, see
Fig. 10 (green, solid). Here, electrons on the QD are bunched
and thus emitted photons show bunching on timescales
τ ∼ 2

Wmax
. For 	̃QP larger than the critical value defined in

Eq. (C10), g(2)(τ ) � 1 and has a positive slope, see Fig. 10

(orange, solid), thus emitted photons are antibunched. Here,
we can also identify two processes that happen on different
timescales. The antibunching effect in the electronic subsys-
tem happens on a larger timescale τ ∼ 1

	QP+ Wmax
2

than in the

hole subsystem.
The comparison between the spinless and the full model

shows that in the electronic subsystem without QP there exists
a process that causes bunching of photons leading to a super-
Poissonian Fano factor, see Fig. 6(b) (green).

For slow holes (	h < Wmax) and decoupled spins at εe =
±�Z,e with ξ = 0 and t2 = 0, we can deduce from a fit of
the full model that g(2)(τ ) ≈ 1 − e−( Wmax

2 +	h )τ like for a single
resonant level between two reservoirs [95]. Consequently, F
can be calculated with the current formula I = e Wmax	h

Wmax+2	h
as

F = 1 − 	hWmax

(	h+ Wmax
2 )2 near the resonances between electrons and

MBSs and thus the system processes are sub-Poissonian and
emitted photons are always antibunched. In Fig. 11, we show
the Fano factor and the g(2) function for slow holes (and ξ =
0) where 	h 
 Wmax and the noise is dominated by the hole
refilling with F � 1.

APPENDIX D: TOTAL INTENSITY INCLUDING QP

The coefficients in Iσ in Eq. (26) are given by

D1 = 2(2	̃QP + 1)t2
1σ

(
	̃QPξ

2 + (2	̃QP + 1)t2
1σ

)
	̃QP

, (D1a)

D2 = 2(2	̃QP + 1)t2
1σ , (D1b)

D3 = − (2	̃QPt1σ + t1σ )2
(
(1 − 2	̃QP)2t2

1σ − 8	̃QPξ
2
)

4	̃2
QP

,

(D1c)

D2
4 = ξ 2 − (2	̃QPt1σ + t1σ )2

2	̃QP
, (D1d)

where 	̃QP = 	QP/Wmax is a dimensionless rate.
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