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Editors’ Suggestion

Desktop laboratory of bound states in the continuum in metallic waveguide with dielectric cavities
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We consider dielectric cavities whose radiation space is restricted by two parallel metallic planes. The TM
solutions of the Maxwell equations of the system are equivalent to the solutions of periodical arrays of dielectric
cavities. The system readily allows to achieve bound states in the continuum (BICs) of any type including

topological BICs as dependent on position and orientation of the cavities relative to the planes and that extremely
facilitates experimental studies in comparison to infinite arrays of the cavities. We show the effect of merging
of topologically protected BICs that pushes the square asymptotic of the Q factor into the power degree 4 or

even 6.
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I. INTRODUCTION

Since the famous paper by Gustav Mie

[1] engineering of dielectric cavities in optics and photon-
ics has been a long-standing area of implementation various
ideas and approaches to enhance the quality factor Q due to
its paramount importance in both applied and fundamental
research. Conventionally, light can be confined in closed or
Hermitian system where access to radiation channels is pro-
hibited due to, for example, metallic covering or embedding
the resonant frequencies of cavity into band gap of photonic
crystal [2]. However, that conflicts with necessity of easy
manipulation of light confined in the cavity. On the other
hand, although the compact dielectric resonator is in air, its
Q factor is very restricted due to embedding into the radiation
continuum whose spectrum is given by light cone w = ck with
no cutoff. In principle the problem can be solved cardinally,
if addressed to infinitely long periodical structures, for ex-
ample, gratings. The periodicity quantizes the directions of
radiation leakage by means of diffraction orders and brings
cutoffs. As a result, the periodical structures support bound
states in the radiation continuum (BICs) [3-16]. However,
in practice, increasing the number of cavities in periodical
arrays is limited by material losses [17] and structural fluc-
tuations [18]. Moreover grating slabs yield isolated dielectric
cavities in compactness. In view of that breakthrough in
the engineering of dielectric cavities was achieved owing to
avoided crossing of resonances of single cavity [19-23] or
different cavities [24,25].

In spite of reporting unprecedent values of the Q fac-
tor in these cavities that cannot achieve infinity because the
isolated cavity in air cannot support the true BICs [26,27].
In other words, although the multipolar radiation with low
orders of orbital momentum can be suppressed due to avoided
crossing of resonances the higher order multipolar radiation
still remains [23,24,28,29]. In the present paper we propose
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a compromise solution of the problem by restriction of ra-
diation space by two parallel metallic planes separated by
a distance d. Then, for instance, the single dielectric cylin-
der inserted between the planes, as depicted in Fig. 1(a), is
equivalent to the infinite periodical array of cylinders with
the period d in which BICs were considered by many re-
ports [7,10,12,13,16,30-36]. The equivalency follows from
the Dirichlet boundary conditions at perfectly conducting
metal surface for the TM solutions of the Maxwell equations.
Two identical cavities between the planes are, respectively,
equivalent to two periodical arrays of rods which support
Fabry-Perot BICs [8,37].

Moreover, the case of metallic waveguide of rectangular
cross section allows to remove another typical theoretical
approximation of infinitely long cylinders rods as shown in
Figs. 1(a)-1(d). Examples of equivalent arrays of dielectric
cavities are sketched in Fig. 2. Thus, the metallic waveguide
with one or two dielectric insets is converting into desktop
laboratory of variety of BICs. While achievement of the BICs
in gratings often requires tuning of geometrical parameters,
the present case of desktop laboratory allows to achieve the
BICs by simple variation of the waveguide’s width, posi-
tion, or orientation of dielectric inset inside the waveguide.
However, the main advantage of this laboratory is related to
material losses and structural fluctuations, which fast saturate
growth of the Q factor with the number of cavities in periodic
arrays [17,18,38] that prevents to clearly unveil the BICs.

The existence of symmetry protected (SP) BICs near rigid
symmetric obstacle cylinder placed symmetrically in between
parallel walls with Neumann or Dirichlet boundary conditions
imposed upon them was proven in the literature [39—41].
Thereafter, Linton et al. [42] and Duan et al. [43] have
examined the cases of accidental BICs for slender rods of ar-
bitrary cross section placed nonsymmetrically in waveguide.
We develop these results for the case of dielectric rods of
circular and rectangular cross section and find a threshold
for dimensions and permittivity of the rod below which the
BICs do not exist. Once the rod is shifted relative to center
line we obtain equivalent dimerised chain of rods as shown in
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FIG. 1. Single (a) and two parallel (b) infinitely long dielectric
cylinders between two metallic planes. The same for cylinders of
finite length inside waveguide of rectangular cross section [(c),(d)].

Fig. 2(c). There are only a few reports of BICs in dimerised
arrays of dielectric cavities [44,45]. Moreover, the rectangular
rod inserted between metallic planes brings new parameter to
vary, the angle of orientation of the rod as shown in Fig. 2(d).
That, in turn, opens a way for realization of topologically pro-
tected BICs with winding numbers m = %1 in two-parametric
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space of angle and frequency or angle and distance between
rods.

II. CYLINDER BETWEEN TWO METALLIC PLANES

We start by considering single dielectric cylinder of the
radius R inserted parallel to metallic planes as depicted in
Fig. 1(a). In what follows all quantities are measured in terms
of the distance between plates d with x axis is directed along
the waveguide and z axis is directed along the rod. Because
of boundary conditions for the electric field E,(x = 0,d) =0
the solutions of the Maxwell equations of the system are
equivalent to the solutions in periodical infinite array of rods
at the I" or X point as sketched in Fig. 2(a).

There are two distinct cases for these solutions. The case of
dielectric inset symmetrically disposed between two parallel
metallic planes is equivalent to periodical array of rods with
the period d as shown in Figs. 2(a) and 2(b). Figure 2(c)
presents the case of cylinder shifted from the center line
of waveguide by distance A. Then the TM solutions of the
system coincide with the solutions of the binary array of cylin-
ders with double period 2d. The equivalence of the solutions
allows us to use well-known analytical approaches developed
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FIG. 2. Periodical arrays of dielectric rods whose solutions at the I" point are equivalent to the solutions of Maxwell equations of rods
placed between two parallel metallic planes shown by solid-thick lines. The original rod is shown by red while its images at metallic planes are
shown by gray. Cylindrical (a) and rectangular (b) rods positioned symmetrically between planes are equivalent to the periodical array of rods
with period d. Cylindrical rod shifted by distance y, from center line (c) and rectangular rod rotated by the angle ¢ makes the system equivalent
to dimerised chain. (e) Two rods positioned symmetrically make the system equivalent to double array of rods which can support FPR BICs.
Two circular rods, positioned nonsymmetrically (f) or two rotated rectangular rods (g) and (h) are equivalent to two dimerised chains.
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FIG. 3. Curves of existence of the SP BICs vs refractive index
and radius of circular rod. Insets show patterns of SP BICs (electric
field E.).

for periodical arrays of dielectric resonators [46,47]. We
complement these approaches by COMSOL MultiPhysics nu-
merical calculations for the rods of circular and rectangular
cross sections.

In Fig. 3 we show typical examples of the SP BICs with
azimuthal indices m = 1 and m = 2 for the case of symmet-
rical position of dielectric cylinder with the refractive index n
[Fig. 2(a)]. It is clear that in order the dielectric rod could trap
the EM wave with definite wavelength 27” its radius R has to
be comparable with the characteristic wavelength inside the
rod i—’; Therefore the curve of existence of the SP BICs can
be evaluated as Rnkgjc(n, R) ~ 1. Numerical behavior and
comparison with this evaluated formula is shown in Fig. 3.
Since the diameter of rod cannot exceed distance between
mirrors we obtain that BICs cannot exist for nkg;c > 2. For
nonsymmetric position of the rod inside the waveguide the SP
BICs transform to accidental BICs at tuned rod’s radius or
refractive index. In the equivalent system of binary periodical
array of rods [see Fig. 2(c)] these BICs correspond to the BICs
at I" point. Phase diagrams of existence of the accidental BICs
are plotted in Fig. 4.

III. RECTANGULAR ROD BETWEEN
TWO METALLIC PLANES

First of all, the rectangular rod is interesting; Linton
et al. [42] have shown existence of accidental BICs under
assumption that the aspect ratio a/b is sufficiently large and
the rod is metallic. Moreover, rectangular rod brings new pa-
rameter to vary, rotation angle relative to the frame of metallic
waveguide as shown in Fig. 2(d). Figure 5(a) shows curves
of accidental BICs versus dimensions of rectangular quartz
rod a x b. Insets show evolution of two accidental BIC modes
(electric field E, directed along the rod). In fact, there are
more curves, which differ by number of nodal lines cross to
the waveguide. TM propagating channels are given by simple
formula k> = k2 + n2p*, p=1,2,3, ... where k, is the wave
vector of TM waves along the waveguide. We consider only
the BICs embedded into the continuum of the first propagating
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FIG. 4. Curves of existence of accidental BICs in two-parametric
space of refractive index of the rod and (a) frequency, (b) radius of
the rod for A = 0; (c) frequency, (d) displacement of the rod for R =
0.18; (e) frequency, (f) radius of the rod for A = 0.3. Insets show the
accidental BICs for certain parameters.

channel of the waveguide with p = 1 and frequencies below
the cutoff of the second propagating channel & < k < 2.

First, one can see that the curves of BICs follow the
analysis of Linton et al obtained by different mathematical
techniques [42] for the case of Dirichlet BC at the walls
of rectangular rod, i.e., metallic rod. These accidental BICs
shown in Fig. 5(a) have clear physical origin. Far from the rod,
accidental BICs follow the evanescent mode p = 2, which is
orthogonal to the first propagating channel p = 1 and there-
fore cannot go out. The dielectric rod perturbs the evanescent
mode and the perturbation strength depends on size and re-
fractive index of the rod. The more the index and size, the
more perturbation. In spite of difference between the metallic
and dielectric rods, the accidental BIC exists at b — 0. How-
ever, BIC’s frequency is limited by the cutoff 27 of the second
channel and the localization range diverges for k — 27 as
insets in Fig. 5(b) show.

IV. FABRY-PEROT BICS: TWO RODS INSIDE WAVEGUIDE

Two identical circular rods inserted symmetrically in-
side the waveguide as shown in Fig. 1(e) make the system
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FIG. 5. Curves of existence of the accidental BICs. (a) As de-
pendent on cross section of rectangular quartzrod a x bat A = 0.25
with refractive index n = 2.05. (b) The frequency of BICs vs aspect
ratio of rectangular rod.

equivalent to periodic double arrays of subwavelength di-
electric cylinders. Such arrays were studied by Ndangali and
Shabanov with analytic TM solutions for BICs in the limit
of thin cylinders [37]. Underlying physical mechanism for
BICs is the Fabry-Perot one [48] in which each array perfectly
reflects electromagnetic waves at definite frequency k.. Then,
two arrays serve as ideal mirrors, which are able to capture
electromagnetic wave with frequency k. at discrete distances
roughly equal to integer number of half wavelength = /k..
Figure 6 demonstrates the effect of total reflection of TM
waves by (a) cylindrical and (b) rectangular rods positioned
symmetrically inside the waveguide. The effect of total re-
flection by rod inserted into waveguide exists irrespective to
position of the rod inside the waveguide. In Fig. 6(b) one can
see the well-known effect of collapse of Fano resonance for
¢ — 0and A = 0 at which the scattering function tends to the
SP BIC [49]. Figure 6(c) shows that total reflection (7' = 0) is
achieved owing to variation of cylindrical rod radius. How-
ever, the variation of the rod size is difficult in the experiment.
Figure 6(d) demonstrates that the problem can be easily solved
by orientation of rectangular rod relative to waveguide.

In Fig. 7(a) we show results of numerical calculations for
the case of two circular quartz rods inserted symmetrically
[see Fig. 2(c)] with patterns of Fabry-Perot BICs for different
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FIG. 6. Transmittance vs frequency (upper panels) for (a) cylin-
drical rod with R =0.4, A =0, (b) rectangular rod with cross
section 0.6 x 0.3 and A = 0.01. Transmittance zeros (bottom pan-
els) vs frequency of incident wave and (c) radius of cylindrical rod,
(d) orientation angle of rectangular rod for A = 0. The refractive
index of the rods is n = 2.05 in all cases.

distances between cylindrical rods. That case is equivalent to
the case of two periodic arrays considered in Refs. [37,50].
It is interesting that similar type of BICs exist even for non-
symmetrical position of circular rods an one can see from
Fig. 7(b). In Fig. 8 we show curves of the Fabry-Perot BICs in
two-parametric space of the rotation angle of rods ¢ and dis-
tance between them L for two distinct cases of rods rotation:
in-phase and antiphase.

One of the ways to experimentally confirm BICs is obser-
vation of singularities in the wave transmission in waveguide.
At the BIC point the total reflection coalesces with the full
transmission [51], which can be defined as collapse of Fano
resonance [49]. In Fig. 9 we present typical examples of such
singular points in parametric space of incident light frequency
and orientation angle of rectangular rods. Moreover, one can
see that the transmission peaks follow the resonant frequen-
cies of the system shown by solid lines in Fig. 9. There are two
equivalent cases ¢ = 0 and ¢ = 7 /2, which were considered
in Refs. [8,52]. In both cases we observe two solutions for
BICs whose frequencies are considered as splitting due to
interaction of rods. As a result we obtain the symmetric and
antisymmetric hybridized solutions shown in insets of Fig. 9.
If the rods were in air the splitting of frequencies would
decrease as 1/L? [53]. However, the presence of parallel metal

DNE N

FIG. 7. Patterns of Fabry-Perot BICs for the case of two cylin-
drical rods (shown by green circles) positioned (a) symmetrically
(R =0.4,n =2.05) and (b) shifted across to the waveguide inside
the waveguide by A = 0.25, R = 0.15.
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FIG. 8. Curves of existence of topologically protected BICs for
two rectangular rods inside the waveguide. (a) Vs distance between
rectangular rods and angle of rotation, (b) vs frequency and distance
between insets at A = 0. Points of merging are marked by open
circles.

planes cardinally changes the interaction between two rods to
cancel L dependence.

V. TOPOLOGICALLY PROTECTED BICS MERGE
INTO SP OR ACCIDENTAL BICS

Topologically protected (TP) BICs were reported by many
researchers [31,54-59], which originate from the merging of

¢(deg)

k/m

FIG. 9. Transmittance of electromagnetic waves over the waveg-
uide vs frequency and rotation angle of rods as shown in insets. Lines
show resonant frequencies as function of the rotation angle ¢. The
parameters are a = 0.6, b =03, L = 1.
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FIG. 10. The phase of function 6 = Arg(E%) vs frequency and
the rotation angle of dielectric rectangular rod 0.6 x 0.3 for the case
of in-phase rotation for the parameters highlighted by open circle in
Fig. 9.

several BICs in the momentum space. Very recently Huang
et al. [60] have demonstrated TP BICs in coupled acoustic
resonators, which arise from the merging of BICs in paramet-
ric space of frequency and coupling strength. The importance
of the TP BICs is that they are robust to the fabrication im-
perfection, and that the degree of enhancement of the Q factor
of quasi-BICs changes from standard quadratic to the fourth
or even to the sixth degree. Here we demonstrate the cases
of merging of two accidental BICs with winding numbers
m = =1 into one nonrobust accidental BIC with m = 0. The
phase singularities arise if some complex function W(k, ¢) =
u(k, ¢) +iv(k, ) = |V(k, ¢)lexp(if(k, ¢)) has nodal point
in some two-dimensional parametric space, for example, fre-
quency and angle of orientation (k, ¢) or (k, A). Then the
winding number of the singularity is given by

du dv du dv
m=sgn| —— — —— Q8
ok o¢p  0¢ ok
or
ﬁ
m= %d [ V0. 2)
x107
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FIG. 11. Half width of resonances vs shift of cylindrical rod
relative to center of waveguide and radius of rod for n = 3.87. Insets
show patterns of BICs (E; of electric field).
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FIG. 12. Dependence of Q factor vs position of rod in waveguide
in log-log scale at the points of merging of topologically protected
BICs. (a) The case of circular rod shown in Fig. 11 and (b) the case
of rectangular rod with cross sectiona = 0.3, b = b, = 0.911 shown
in Fig. 11.

As the parametric space we have chosen the frequency k and
the angle of rotation ¢ while for the function ¥ we have
chosen %(x, y) at some fixed space point (x,y) where E,
is the zth component of electric field for the TM solution
of the Maxwell equations. Figure 10 shows as the phase of
this function in an anticlockwise sense, i.e., gives us m = 1.
The merging is shown in Fig. 11 in which evolution of TP
BIC with m = +£1 in two-parametric space of radius and shift
of dielectric cylinder is plotted by solid-green line while the
accidental BIC with m = 0 occurs only at R = 0.1656 and
A =0.

These two TP BICs with m = £1 are not distinguish-
able because are related by the inverse y — —y. However,
Fig. 12(a) brightly demonstrates effect of annihilation of two
TP BICs which merge into the SP BIC with zero-winding
number when rod with the critical radius R, = 0.1656 takes
the symmetrical position A — 0. Owing to log-log scale of
dependence we obtain Q ~ ﬁ. If the radius of rod were dif-
ferent from the critical one we would have standard quadratic
behavior O ~ ﬁ. First, these phenomenon was demonstrated
in periodical array of cylindrical rods in which two off-I'
BICs with winding numbers m = +1 were merged into the SP

%107

FIG. 13. Half width of resonances vs shift of rectangular rod
a x b with n = 2.05 and length a at b = 0.3. Insets show patterns
of BICs (E, of electric field).
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FIG. 14. Dependence of Q factor vs rotation angle of two rect-
angular rods with a = 0.6, b = 0.3 positioned symmetrically in
waveguide in log-log scale at the points (a) beyond merging of topo-
logically protected BICs marked by star in Fig. 8(b) at L = 0.9 and
(b) at the point of merging marked by open green circle in Fig. 8(b) at
L =0.989.

BIC at I" point with m = 0 [31]. This phenomenon is similar
to the case of merging of BICs observed in the photonic
system, where topological charges move toward the I point
in first Brillouin zone at momentum space [30,54,57,61,62].
It is important to note that the merging of BICs does not
mean existence of two BICs at the same point of parametric
space, i.e., degeneracy of BICs. In fact, for approaching to
the merging point accidental BICs vanish compared to the SP
BIC.

Figure 13 demonstrates similar effects for the case of rect-
angular rod a x b in two-parametric space of length a and
position A. At the merging point of two TP BICs with SP
BIC the behavior of Q factor turns into Q ~ ﬁ as shown in
Fig. 12 (b).

The case of two rectangular rods brings a novelty of the
merging of three BICs, two Fabry-Perot BICs with winding
numbers m = £1 and one SP BIC with m = 0. Beyond the
point of merging [marked by star in Fig. 8(b)] we have stan-
dard quadratic behavior of the Q factor as demonstrated in
Fig. 14(a). However, at the points of merging marked by open
circles in Fig. 8(b) we obtain strong dependence Q ~ ﬁ as
Fig. 14(b) shows.

FIG. 15. Curves of existence of the Fabry-Perot BICs vs (a) dis-
tance between rectangular rods and frequency and (b) angle of
rotation and distance between rods at A = 1/2. Dash-dotted lines
show curves of Fabry-Perot SP BICs at ¢ = 0, 90°. Green-solid line
and dash-gray lines show topologically protected in-phase BICs and
antiphase BICs, respectively. Points of BICs merging are marked by
open circles.
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FIG. 16. Dependence of frequency (a) and the Q factor (b) of the
SP quasi BIC vs radius of Si rod in the GHz range with account of
material losses of rod.

Crossover of the degree of enhancement of the Q factor
is related to bifurcation of imaginary parts of TP BICs as
Figs. 11 and 13 show. That result follows from the algebra
of bifurcation [31,57,60,62,63].

One can see in Fig. 8 points in which SP BICs at ¢ = 0, 90°
(dash-dot blue lines) coalesce with Fabry-Perot BICs evolving
with angle of in phase or antiphase rotation of rods shown by
solid-green and dash-gray lines. These Fabry-Perot BICs have
morphology cardinally different from the SP BICs as seen
from insets in Fig. 8. For each angle ¢ # 0 the Fabry-Perot
BIC has to be tuned by distance between rods L making an
analogy with accidental BICs. Figure 15 demonstrates rich
variety of merging effects of BICs with different winding
numbers in the three-parametric space of frequency, distance
between the rectangular rods and rotation angle.

VI. CONCLUSIONS AND DISCUSSION

A simple system of plane waveguide consisted of two
parallel metal planes with integrated one or two dielectric
quartz or silicon rods demonstrates abundance of various BICs
classified as symmetry protected (SP), accidental, Friedrich-
Wintgen and Fabry-Perot. Moreover, we show numerous
points of merging of different topologically protected BICs
in two-parametric space. These events give rise to change
of the power degree in asymptotic behavior of the Q fac-
tor that has principal importance for numerous applications
of BICs. First, this phenomenon of BICs merging was ob-
served in the photonic system, where topological charges
move toward the I' point in first Brillouin zone at momen-
tum space [30,54,57,61,62]. Quite recently the two-parametric
space was expanded onto the frequency and coupling strength
of two acoustic resonators [60]. In the present paper we
go further by introducing parameters determining position
of rods, distance between them, orientation of rectangular
shaped rods, and frequency. It is important that all parameters

2000 f
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15001 |,
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500 ‘ :
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FIG. 17. Dependence of Q factor of the SP quasi-BIC vs wave-
length for the rod integrated into silver waveguide in the optical range
with account of surface impedance of silver.

can be easily varied experimentally in comparison to the case
of topologically protected BICs in momentum space in the
one- and two-dimensional periodical arrays of dielectric par-
ticles. It is clear that one can consider three-parametric space
in which we can observe the lines of TP BICs.

Finally, we discuss the extend to which extend the present
system of plane metallic waveguide with integrated dielectric
rod is preferable compared to periodic array of rods with
account of material losses. The comparison crucially depends
on the frequency range in which BICs are supposed to be
observed. For example, the Q factor of SP BICs in the GHz
range in the array of ceramic disks is saturated by a value
4000 [17]. While the array of Si disks with tan§ = 4 x 1074
we have O, = 2500. In this range the silver surface can be
considered as perfectly conducting material, and therefore the
main contribution is due to material losses of rod integrated
into waveguide. Figure 16 presents results of COMSOL Mul-
tiphysics computations, which show the frequency of SP BICs
and its Q factor versus the radius of rod that shows consider-
able gain of the present system compared to the periodical
array of rods in the GHz range.

In the optical range the main adverse factor is the surface
impedance of silver metal that considerably restricts the QO
factor as shown in Fig. 17 by use of data of Ref. [64]. Nev-
ertheless (in the range of red line in the figure) the Q factor of
the SP BIC can exceed a value 2000.
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