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Impact of in situ controlled disorder screening on fractional quantum Hall effects
and composite fermion transport
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We examine the impact of random potential due to remote impurites (RIs) and its in situ controlled screening
on fractional quantum Hall effects (FQHEs) around Landau-level filling factor ν = 1/2. The experiment is made
possible by using a dual-gate GaAs quantum well (QW) that allows for the independent control of the density
ne of the two-dimensional electron system in the QW and that (nSL) of excess electrons in the modulation-
doping superlattice. As the screening is reduced by decreasing nSL at a fixed ne, we observe a decrease in the
apparent energy gap of the FQHEs deduced from thermal activation, which signifies a corresponding increase
in the disorder broadening � of composite fermions (CFs). Interestingly, the increase in � is accompanied by a
noticeable increase in the longitudinal resistivity at ν = 1/2 (ρ1/2), with a much stronger correlation with � than
electron mobility μ has. The in situ control of RI screening enables us to disentangle the contributions of RIs
and background impurities (BIs) to ρ1/2 with the latter in good agreement with the CF theory. We construct a
scaling plot that helps in estimating the BI contribution to ρ1/2 for a given set of ne and μ.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] that clean
two-dimensional electron systems (2DESs) exhibit in a strong
perpendicular magnetic field (B) at low temperatures is a
quintessential example of many-body topological phase and
is, thus, attracting interest for the rich physics contained [2–4]
and as a building block for fault-tolerant topological quantum
computation [5,6]. FQHEs can be understood, both intuitively
and quantitatively, by the composite-fermion (CF) theory [7],
which maps FQHEs to integer quantum Hall effects of a CF,
an electron with an even number of flux quanta attached. The
theory explains in a clear way the Landau-level filling factor
ν (= hne/eB) at which FQHEs develop around ν = 1/2 and
their relative strength [8,9] (h is Planck’s constant, ne is the
electron density, and e is the elementary charge). At the same
time, the CF model maps the system of strongly interacting
electrons at ν = 1/2 to that of weakly interacting CFs at a zero
effective magnetic field, providing a theoretical framework
to study the scattering of CFs and calculate the resistivity at
ν = 1/2 [10].

Whereas FQHEs have been observed in various material
systems [11–28], GaAs remains the platform where the clean-
est 2DESs can be materialized [29–31]. In typical 2DESs
formed in modulation-doped GaAs/AlGaAs heterostructures
or quantum wells (QWs), two main scattering sources limit
electron mobility μ: background ionized impurities and re-
mote ionized impurities, the latter introduced by modulation
doping [32]. As GaAs samples used for FQHE studies gener-
ally have thick spacer layers, which separate the 2DES from
remote impurities (RIs), μ primarily reflects the background
impurity (BI) concentration and has been used as the qual-
ity indicator of 2DESs. However, recent studies have shown
that in addition to improving μ by reducing BIs properly
screening the random potentials arising from RIs is mandatory

for observing fragile FQHEs with a small energy gap [30,33].
Superlattice (SL) doping [34,35] with Si donors incorporated
in a narrow GaAs layer flanked by thin AlAs layers is an
effective way to implement this. Some of the doped electrons
occupy the X valleys of AlAs where these “excess” electrons
remain mobile and screen the RI potential without causing
unwanted parallel conduction [36,37]. Recently, we demon-
strated the effect of RI screening on μ by controlling the
excess electron density in situ using a gate [38]. This suggests
that the same technique can be used to study the impact of RI
screening on FQHEs and CF transport.

In this paper, we study the impact of disorder and its
screening on FQHEs in a GaAs 2DES by controlling in situ
the strength of RI screening. We measure the energy gap
�ν of several FQHEs at ν = p/(2p ± 1) (p is an integer)
around ν = 1/2 and the resistivity at ν = 1/2 (ρ1/2) under
different screening conditions. We observe that ρ1/2 as well
as �ν vary with the degree of screening. We extract the
disorder broadening � of CFs from the measured �ν and
find that it is much more strongly correlated with ρ1/2 than
with 2DES mobility μ, indicating that the former is a better
quality indicator for FQHEs. With the in situ control of RI
screening, we are able to disentangle the contributions of
RIs and BIs to ρ1/2. We use the CF theory to calculate the
contribution of BIs to ρ1/2 to find a good agreement with
experiment. Based on these results, we construct a scaling
plot, which allows one to estimate the contribution of BIs
to ρ1/2.

II. EXPERIMENT AND ANALYSIS

A. Sample and measurement procedure

The sample consists of a 30-nm-wide GaAs QW sand-
wiched between Al0.27Ga0.73As barriers, grown on a n-type
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FIG. 1. Rxx vs ν−1 at fixed density ne = 1.2 × 1015 m−2 with
different VFG’s at 0.27 K. B was swept from 0 to 15 T. Red, black,
and blue traces were taken under strong, intermediate, and weak
screening conditions, respectively. The inset: VFG dependence of
screening effect defined by fsc = nSL/NSi.

GaAs (001) substrate. The QW with its center located
207 nm below the surface is modulation-doped on one side
with Si δ-doping (NSi = 1 × 1016 m−2) at the center of the
AlAs/GaAs/AlAs (2/3/2 nm) SL located 75 nm above the
QW. The wafer was processed into a 100-μm-wide Hall bar
with voltage probe distance of 120 μm and fitted with a Ti/Au
front gate. The n-type substrate was used as a back gate. The
front-gate voltage (VFG) affects the densities of both the excess
electrons in the SL (nSL) and the 2DES in the QW (ne) in
a manner determined by the relevant geometrical and quan-
tum capacitances [38]. However, it takes time for the excess
electrons in the SL to reach their equilibrium density. The
transient time ranges from minutes to a few days depending
on VFG at 4.3 K and further increases at lower temperatures.
To reach equilibrium within an acceptable range of time, we,
therefore, set VFG at 4.3 K and wait long enough for ne (and,
hence, nSL) to stabilize before cooling the sample to 0.27 K.
After the sample had cooled, we applied a back-gate voltage
to adjust ne to the desired value. We measured FQHEs under
different degrees of disorder screening by repeating the above
procedure each time we set VFG to a different value. We use
the quantity fsc = nSL/NSi as the parameter representing the
degree of screening. Although nSL is not directly measurable,
we can estimate nSL and, hence, fsc by analyzing the VFG

dependence of ne using a circuit model that takes into account
the relevant geometrical and quantum capacitances [38]. The
estimated fsc varies almost linearly with VFG as shown in
the inset of Fig. 1. More details of the estimation of fsc are
described in Ref. [38].

B. Impact of screening on FQHEs

Figure 1 shows the longitudinal resistance Rxx measured
at a fixed density of ne = 1.2 × 1015 m−2 with VFG = −0.8,
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FIG. 2. (a) Arrhenius plot for Rxx at ν = 1/3 (filled circles) and
2/5 (open circles) under different screening conditions. (b) Scaling
of activation energy for FQHEs around ν = 1/2 under different
screening conditions, deduced from the Arrhenius plot. The solid
lines represent fits using Eq. (1). The magnitude of the negative
intercept of these lines with the y axis gives �. (c) � obtained from
the scaling law fitting, plotted as a function of fsc.

−1.1, and −1.3 V, corresponding to strong, intermediate,
and weak screening ( fsc = 0.42, 0.24, and 0.13), respec-
tively, plotted as a function of ν−1. Around ν = 1/2, the
FQHEs at ν = 2/5, 3/5, 3/7, 4/7, and 4/9 clearly become
weaker as the screening is reduced. Similar behavior is seen
around ν = 3/2 where the FQHEs at ν = 5/3, 7/5, and
8/5 weaken as the screening is reduced [39]. Whereas the
FQHEs at ν = 1/3 and 2/3 appear to be unaffected at the
base temperature due to their large energy gaps, the effect of
screening becomes evident at higher temperatures as shown
below.

To characterize the impact of the screening on FQHEs
quantitatively, we measured the temperature (T ) dependence
of Rxx and deduced the energy gap �ν . Figure 2(a) plots
ln(Rxx) vs 1/T at ν = 1/3 and 2/5, corresponding to p =
1 and 2, measured under three different screening condi-
tions. We obtain �ν by fitting the data in the temperature
range where the activated behavior is seen with Rxx ∝
exp(−�ν/2T ). In the same way, we also estimated �ν for
FQHEs at ν = 2/3, 3/5, 4/7, and 3/7 (corresponding to
p = −2, −3, −4, and 3, respectively) under different screen-
ing conditions. To systematically analyze the obtained �ν

for different p’s, we used the scaling law introduced in
Ref. [9],

�ν = κ

|2p + 1|
e2

4πε
B
− �, (1)

where ε = εrε0 with ε0 the vacuum permittivity and εr = 13
for (Al)GaAs, 
B = (h̄/eB)1/2 is the magnetic length with
h̄ = h/2π , κ is a dimensionless parameter representing the
strength of the Coulomb interaction, and � denotes the gap
reduction due to disorder. By plotting �ν’s for different
p’s as a function of (e2/4πε
B)/(2p + 1) [Fig. 2(b)] and
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FIG. 3. (a) ρ1/2 under different screening conditions at ne =
1.2 × 1015 m−2. The dashed line shows the contribution of BI scat-
tering to ρ1/2 calculated using Eq. (2) modified for BIs. The inset:
Resistivity at ν = 3/2, 5/2, and 7/2 under different screening con-
ditions. (b) Plots of � with respect to ρ1/2 under different screening
conditions. The solid line indicates as a guide the fitting using the
(ρ1/2)0.5 function. The inset: Plots of � with respect to the zero-field
resistivity ρ0.

fitting them using Eq. (1), κ and � are obtained from the
slope and intercept, respectively. The data for the weak and
strong screening can be fitted using the same κ value (=
0.197 ± 0.007), indicating that the excess electrons in the
SL do not discernibly affect the strength of the intralayer
Coulomb interaction responsible for the FQHEs. In contrast,
the impact on � is obvious—� decreasing upon increasing
screening. Measurements for various fsc values, summarized
in Fig. 2(c), reveal that � increases from 3.6 to 5.8 K as fsc

decreases from 0.55 to 0.13. As � can be viewed as rep-
resenting the Landau-level broadening for CFs, these results
confirm that the in situ control of the visibility of the FQHEs
demonstrated in Fig. 1(a) is due to the controlled screening of
disorder.

C. Resistivity at ν = 1/2

Another important observation in Fig. 1 is that, with de-
creasing fsc, Rxx increases not only in the FQHE regions
but also in regions between them. We focus on the state at
ν = 1/2 and plot ρ1/2 as a function of fsc in Fig. 3(a). ρ1/2

increases noticeably with decreasing fsc below 0.42 (VFG <

−0.8 V), whereas it is almost constant for fsc � 0.42. Similar

fsc dependences are observed for other half-integer fillings
ν = 3/2, 5/2, and 7/2 [inset of Fig. 3(a)]. To examine the
correlation between FQHEs and CF transport, we plot � vs
ρ1/2 in Fig. 3(b). Their relation can be fitted approximately
by � ∝ ρ0.5

1/2 as shown by the solid line [40]. For comparison,
we plot � against ρ0, the resistivity at the zero magnetic
field, a quantity directly related to μ (= 1/eneρ0) [inset of
Fig. 3(b)]. When � varies by 38%, ρ0 only changes by 13%
(μ = 191–219 m2V−1s−1), whereas ρ1/2 changes by 51% for
the same � range, demonstrating that ρ1/2 is more strongly
correlated with the visibility of FQHEs. This result bears an
intriguing similarity with the recent report that the resistivity
at ν = 5/2 in the high-temperatures regime serves as an in-
dicator of the strength of the ν = 5/2 FQHE that emerges at
low temperatures [41].

Now we discuss the scattering mechanism that determines
ρ1/2. In the CF model, at ν = 1/2 CFs experience a zero
effective magnetic field in the mean field and form a Fermi
surface. According to Ref. [10], scattering of CFs at ν =
1/2 is dominated by fluctuations in the electron density in-
duced by the charged impurities randomly distributed in the
modulation-doped layer, which translate into fluctuations in
the Chern-Simons gauge field and act as random magnetic
fields with zero mean. The ρ1/2 due to this scattering mech-
anism is given by [10]

ρ1/2 = nimp

ne

1

kF ds

4π h̄

e2
, (2)

where nimp is the sheet density of the ionized impurities, kF =
(4πne)1/2 is the Fermi wave number of spin-polarized CFs,
and ds is the distance between the 2DES and the doped layer.
In the ideal case of no BIs or charge traps, we have nimp = ne,
where ρ1/2 takes a minimum value determined solely by the
factor kF ds (= ds/
B at ν = 1/2).

In our sample, the density of excess electrons in the SL
doping layer can be varied via VFG. This can be thought of
as effectively varying nimp in Eq. (2), which enables us to
disentangle the contribution of RIs to ρ1/2 from other ones.
In Fig. 3(a), ρ1/2 first decreases with increasing fsc and then
becomes almost constant for fsc > 0.4. Thus, we can clearly
identify the increase in ρ1/2 at fsc < 0.4 as due to RI scat-
tering. On the other hand, this suggests that at fsc > 0.4 the
screening is sufficient to make the contribution of RIs insignif-
icant. To examine the mechanism that determines ρ1/2 in this
well-screened regime, we estimated the contribution of BIs
by modifying Eq. (2). We replaced nimp and ds in Eq. (2)
with nBI(z)dz, the sheet density of BIs within a slice dz at
each position z along the growth direction, and with 〈d (z)〉,
the expectation value of the distance from that position to
the 2DES, respectively, and integrated Eq. (2) over z [42].
A calculation using a constant nBI of 1.7 × 1014 cm−3, de-
duced from the analysis of mobility, gives ρ1/2 = 0.56 k�/�
[shown by the horizontal dashed line in Fig. 3(a)], which
accounts for the ρ1/2 values at fsc > 0.4 surprisingly
well.

Next, we quantitatively investigate the contribution of
RIs to ρ1/2 and the impact of controlled screening therein.
We examined the ne dependence of ρ1/2 by varying ne

with the back gate at a fixed VFG. Note that the back gate
barely affects nSL, which ensures that the screening condition
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FIG. 4. (a) ne dependence of ρ1/2. Red and blue symbols are data
taken under strong and weak screening conditions, respectively. The
solid curve is a calculation of BI contribution to ρ1/2. (b) Scaling plot
of CF and 2DES mobilities normalized by n0.5

e and ne, respectively.
Circles are replots of the data in (a) taken under strong (red) and weak
(blue) screening conditions. As a reference, other reported values
are also plotted (diamonds). The solid, dashed, and dotted lines
are the calculation results for ne = 1.0, 2.0, and 3.0 × 1015 m−2,
respectively, obtained with varying nBI.

remains nearly constant upon varying ne. The results for
VFG = −1.2 and −0.6 V, which correspond to the weak
( fsc = 0.18) and strong ( fsc = 0.55) screening, respectively,
are shown in Fig. 4(a). The solid line indicates the calculated
ρ1/2 due to BI scattering, assuming the same nBI as above.
The calculation well accounts for the data for fsc = 0.55,
consistent with the expected n−3/2

e dependence, which cor-
roborates that in our sample ρ1/2 in the well-screened regime
is dominated by BI scattering. On the other hand, we are
able to unambiguously ascribe the difference between the ρ1/2

values for fsc = 0.18 and 0.55 to RI scattering. We find that
the difference can be well fitted by Eq. (2). Taking ds to be
the center-to-center distance 90 nm between the QW and the
doping SL, we obtain nimp = 1.0 × 1014 m−2 from the fit.
We note that this is only 2.7% that of the difference in the
remote ionized impurity density if we simply evaluate it as
NSi − nSL = (1 − fsc)NSi. Although it is known that Eq. (2)
tends to overestimate ρ1/2 compared to experimental values
for high-quality 2DESs [43] (e.g., by a factor of ∼3 [8,10]),
the above reduction factor of 2.7% is much more signifi-
cant. It indicates that the screening by the excess electrons is

effective even in the weak screening case, making the simple
analysis regarding RIs as an ensemble of unscreened charges
inadequate, similarly to what has been reported for 2DES
mobility [36–38].

Whereas ρ1/2 varies with fsc and correlates with � (and,
hence, �ν), we note that the quantum lifetime (τq) de-
duced from low-field Shubnikov–de Haas oscillations did
not show a discernible change with fsc [38]. On one hand,
this does not contradict the result of Ref. [44] that the τq

does not correlate with the measured gap �5/2 of the ν =
5/2 FQHE. On the other hand, a recent theory suggests a
possible proportionality between 1/τq and ρ1/2 from their
mathematical expressions [45]. Therefore, further investiga-
tion is necessary to clarify the relation between τq and other
quantities.

D. Mobility scaling for electrons and composite fermions

Finally, we examine the relation between CF mobility
μCF = 1/eneρ1/2 and 2DES mobility μ. As we have shown,
μCF is governed by both RIs and BIs, whereas in typical
high-mobility GaAs 2DESs with large ds, μ is governed
mostly by BIs [32]. This suggests that one can take μ as a
measure of nBI and use this nBI to estimate μCF limited by
BIs. Then, deviation of measured μCF from this value can be
ascribed to RI scattering. To do this at one go for different
densities, we construct a scaling plot as follows. As kF ∝ n1/2

e
in Eq. (2), we have ρ1/2 ∝ n−3/2

e and, hence, μCF ∝ n1/2
e .

For GaAs 2DESs, it is known that the approximate relation
μ ∝ nα

e holds for BI-limited mobility with α ≈ 1 for ne = 1
to 2 × 1015 m−2 [32]. We, therefore, make a plot of μCF/n1/2

e
vs μ/ne as shown in Fig. 4(b) where we plot the experimental
data in Fig. 4(a) together with calculations for several den-
sities obtained with varying nBI. Data in the literature for
GaAs 2DESs with conventional modulation doping with both
ρ1/2 and μ available [46–48] are also plotted for comparison.
The advantage of this scaling plot is that data for different
densities can be plotted together and compared in the same
framework. The effectiveness of the scaling is confirmed by
noting that our data for various ne’s almost converge to two
representative points corresponding to the weak and strong
screening conditions. We observe that all the experimental
data lie below the calculated curves, which suggests the influ-
ence of RI scattering. Among all the data plotted here, our data
for the strong screening lie closest to the calculated curves,
indicating efficient screening of RIs. This is reasonable as the
samples in the literature employed conventional modulation
doping. It would, therefore, be interesting to add data for
recent ultra-high-quality samples with SL doping [31] to this
plot, which will be possible if ρ1/2 is available. We believe
that our analysis and the basic idea of the scaling plot are
helpful in identifying the mechanisms limiting the visibility
of FQHEs and improving sample design and growth of vari-
ous materials not limited to modulation-doped GaAs QWs or
heterostructures.

III. CONCLUSION

To summarize, we investigated the impact of in situ con-
trolled disorder screening on FQHEs. We found that the
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screening of RIs impacts not only the visibility of the FQHEs,
but also ρ1/2, the resistivity at ν = 1/2, or CF mobility. In
the well-screened regime, the measured ρ1/2 agrees well with
that due to BIs estimated using the CF theory. The strong
correlation between the strength of FQHEs and ρ1/2 proves
ρ1/2 or CF mobility to be a better quality indicator for FQHEs
than 2DES mobility.

ACKNOWLEDGMENTS

We thank Y. Huang and B. Shklovskii for providing the
explanation for the relation between � and ρ1/2, M. Kamiya
for measurement support, and H. Murofushi for processing the
device. This work was supported by JSPS KAKENHI Grant
No. JP15H05854.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional
Magnetotransport in the Extreme Quantum Limit, Phys. Rev.
Lett. 48, 1559 (1982).

[2] G. Moore and N. Read, Nonabelions in the fractional quantum
Hall effect, Nucl. Phys. B 360, 362 (1991).

[3] X.-G. Wen, Topological orders and edge excitations in frac-
tional quantum Hall states, Adv. Phys. 44, 405 (1995).

[4] D. E. Feldman and B. I. Halperin, Fractional charge and frac-
tional statistics in the quantum Hall effects, Rep. Prog. Phys.
84, 076501 (2021).

[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[6] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, P.
Fendley, C. Nayak, Y. Oreg, A. Stern, E. Berg, K. Shtengel, and
M. P. A. Fisher, Universal Topological Quantum Computation
from a Superconductor-Abelian Quantum Hall Heterostructure,
Phys. Rev. X 4, 011036 (2014).

[7] J. K. Jain, Composite-Fermion Approach for the Fractional
Quantum Hall Effect, Phys. Rev. Lett. 63, 199 (1989).

[8] R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and
K. W. West, Experimental Evidence for New Particles in the
Fractional Quantum Hall Effect, Phys. Rev. Lett. 70, 2944
(1993).

[9] H. C. Manoharan, M. Shayegan, and S. J. Klepper, Signatures of
a Novel Fermi Liquid in a Two-Dimensional Composite Particle
Metal, Phys. Rev. Lett. 73, 3270 (1994).

[10] B. I. Halperin, P. A. Lee, and N. Read, Theory of the half-filled
Landau level, Phys. Rev. B 47, 7312 (1993).

[11] E. P. De Poortere, Y. P. Shkolnikov, E. Tutuc, S. J. Papadakis, M.
Shayegan, E. Palm, and T. Murphy, Enhanced electron mobility
and high order fractional quantum Hall states in AlAs quantum
wells, Appl. Phys. Lett. 80, 1583 (2002).

[12] Y. J. Chung, K. A. Villegas Rosales, H. Deng, K. W. Baldwin,
K. W. West, M. Shayegan, and L. N. Pfeiffer, Multivalley two-
dimensional electron system in an AlAs quantum well with
mobility exceeding 2 × 106 cm2V−1s−1, Phys. Rev. Materials
2, 071001(R) (2018).

[13] K. Lai, W. Pan, D. C. Tsui, and Ya.-H. Xie, Fractional quantum
Hall effect at ν = 2

3 and 4
3 in strained Si quantum wells, Phys.

Rev. B 69, 125337 (2004).
[14] Xu Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei,

Fractional quantum Hall effect and insulating phase of Dirac
electrons in graphene, Nature (London) 462, 192 (2009).

[15] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and
P. Kim, Observation of the fractional quantum Hall effect in
graphene, Nature (London) 462, 196 (2009).

[16] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H.
Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L.

Shepard, Multicomponent fractional quantum Hall effect in
graphene, Nat. Phys. 7, 693 (2011).

[17] H. Polshyn, H. Zhou, E. M. Spanton, T. Taniguchi, K.
Watanabe, and A. F. Young, Quantitative Transport Measure-
ments of Fractional Quantum Hall Energy Gaps in Edgeless
Graphene Devices, Phys. Rev. Lett. 121, 226801 (2018).

[18] Y. Zeng, J. I. A. Li, S. A. Dietrich, O. M. Ghosh, K. Watanabe,
T. Taniguchi, J. Hone, and C. R. Dean, High-Quality Magneto-
transport in Graphene Using the Edge-Free Corbino Geometry,
Phys. Rev. Lett. 122, 137701 (2019).

[19] A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D.
Maryenko, A. Ohtomo, and M. Kawasaki, Observation of the
fractional quantum Hall effect in an oxide, Nat. Mater. 9, 889
(2010).

[20] J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A.
Tsukazaki, J. H. Smet, and M. Kawasaki, Even-denominator
fractional quantum Hall physics in ZnO, Nat. Phys. 11, 347
(2015).

[21] B. A. Piot, J. Kunc, M. Potemski, D. K. Maude, C. Betthausen,
A. Vogl, D. Weiss, G. Karczewski, and T. Wojtowicz, Fractional
quantum Hall effect in CdTe, Phys. Rev. B 82, 081307(R)
(2010).

[22] C. Betthausen, P. Giudici, A. Iankilevitch, C. Preis, V.
Kolkovsky, M. Wiater, G. Karczewski, B. A. Piot, J. Kunc,
M. Potemski, T. Wojtowicz, and D. Weiss, Fractional quantum
Hall effect in a dilute magnetic semiconductor, Phys. Rev. B 90,
115302 (2014).

[23] T. M. Kott, B. Hu, S. H. Brown, and B. E. Kane, Valley-
degenerate two-dimensional electrons in the lowest Landau
level, Phys. Rev. B 89, 041107(R) (2014).

[24] Q. Shi, M. A. Zudov, C. Morrison, and M. Myronov, Spinless
composite fermions in an ultrahigh-quality strained Ge quantum
well, Phys. Rev. B 91, 241303(R) (2015).

[25] O. A. Mironov, N. d’Ambrumenil, A. Dobbie, A. V. Suslov,
E. Green, and D. R. Leadley, Fractional Quantum Hall
States in a Ge Quantum Well, Phys. Rev. Lett. 116, 176802
(2016).

[26] M. K. Ma, M. S. Hossain, K. A. Villegas Rosales, H. Deng, T.
Tschirky, W. Wegscheider, and M. Shayegan, Observation of
fractional quantum Hall effect in an InAs quantum well, Phys.
Rev. B 96, 241301(R) (2017).

[27] S. Komatsu, H. Irie, T. Akiho, T. Nojima, T. Akazaki, and K.
Muraki, Gate tuning of fractional quantum Hall states in an
InAs two-dimensional electron gas, Phys. Rev. B 105, 075305
(2022).

[28] Q. Shi, E. M. Shih, M. V. Gustafsson, D. A. Rhodes, B. Kim,
K. Watanabe, T. Taniguchi, Z. Papić, J. Hone, and C. R. Dean,
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