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Importance of coupling strength in shaping electron energy
loss and phonon spectra of phonon-plasmon systems
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A systematic analysis of phonon-plasmon coupled excitations in three-dimensional (3D) polar systems is
provided through the prism of both raw and integrated electron energy loss spectroscopy (EELS) and phonon
spectra in the whole relevant parametric space, spanned by the adiabaticity parameter and the electron-phonon
interaction (EPI) strength. We show that the EPI strength plays a prominent role in distributing spectral weights
among excitations, providing an experimentally convenient way to estimate it from integrated spectra. By
projecting the excitations onto the phonon degree of freedom, we also report for strong couplings large phonon
production contributions, which are of very different origins depending on the adiabaticity parameter. In parallel
to this thorough spectral weights analysis, excitations’ dispersion evolutions, dampings, and various limiting
behaviors are qualitatively and quantitatively correctly accounted for in the whole parametric space.
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I. INTRODUCTION

The electron-phonon interaction (EPI) accounts for a great
variety of enthralling physical phenomena observed in con-
densed matter systems. In semiconductors with low electron
densities, it can lead to a polaron formation where itinerant
charges move along the crystal lattice dressed by a cloud of
virtual phonons [1–3]. It has also been recognized that in
a weakly doped semiconductor the electron and the phonon
scattering on a polaronic impurity may greatly affect transport
properties of a material [4,5]. Peculiar effects of the EPI are
also prominent in systems with high electron densities. In
metallic systems, for instance, the EPI may result in a transi-
tion to a conventional BCS superconducting [6] or a charge
density wave state [7–9]. Influences of the EPI are notice-
able in spectral features of heavily doped semiconductors as
well. While the photoemission spectra feature phonon side-
bands below the quasiparticle band [10–14], both the Raman
and the infrared spectroscopy measurements on doped po-
lar semiconductors contain fingerprints of a phonon-plasmon
coupling [15–26].

The coupling of a longitudinal optical (LO) phonon with
a longitudinal plasma oscillation in three-dimensional (3D)
polar semiconductors was addressed as early as the 1960s in
seminal works by Yokota [27], Varga [28], Singwi et al. [29],
and Cochran et al. [30]. By varying the electron density,
the frequency of long-wavelength plasma oscillation can be
tuned, allowing it to be in a resonance with the phonon fre-
quency, which results in a level repulsion of two boson modes.
This phenomenon was oftentimes observed experimentally
in the Raman [15–20] and infrared spectroscopy [21–23]
measurements of a highly doped GaAs, as well as of some
transition metal oxides [24–26], giving an excellent agreement
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with theoretical predictions [31]. In the past few years, the
level repulsion of modes was captured in ultrafast transient re-
flectivity measurements of III-IV semiconductors [32–35] as
well, leading to the renewed interest in studying the phonon-
plasmon coupled excitations in 3D systems.

Apart from the examination of level repulsion in the long-
wavelength limit, several studies analyzed the dispersions
of coupled modes outside the electron-hole continuum, ex-
amined by considering zeros of the longitudinal dielectric
function or extracted from the simulated electron energy loss
spectroscopy (EELS) spectra [28,30,31,36,37]. The level of
influence of the continuum on coupled modes remained thus
unclear; there were attempts to resolve this by considering
scattering of electrons on collective excitations [38,39], but
a definite answer about excitations’ damping was still not
provided.

Another important question of the excitations’ character
was addressed in [31] and [39] by considering phonon and
plasmon strengths in the total dielectric function and EELS
spectra, respectively. These results were further supplemented
by considering phonon strengths of coupled modes in the
long-wavelength limit [28,29,38]. However, the full phonon
spectrum in the presence of the phonon-plasmon coupling was
seldom analysed. We may mention a work by Yi et al. [40],
which, however, overlooks the spectral weight of collective
excitations outside the continuum and lacks the very interest-
ing resonant regime. Actually, in all of the works, to the best
of our knowledge, only the adiabaticity parameter, i.e., the
electron density, was recognized as a quantity which separates
quantitatively different coupling regimes, while the influence
of the EPI strength was completely overlooked.

In this paper, we provide a systematic and thorough anal-
ysis of phonon-plasmon coupled excitations in the whole
two-dimensional parametric space, spanned by both the adi-
abaticity parameter and the EPI strength. In particular, we
distinguish six very different regimes, which come as a
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product of three adiabaticity regimes: (a) antiadiabatic, (b)
resonant, and (c) adiabatic, and two EPI strength cases: (A)
weak and (B) strong. Characteristics of all the regimes are
studied by means of fully momentum and energy resolved
raw and integrated EELS and phonon (corresponding to the
LO phonon) spectra, providing for the first time a side by
side comparison of coupled excitations’ projections onto the
electron and the phonon degree of freedom. To cover all
the parametric space, we refer to two polar semiconducting
materials that are of particular interest, the bulk GaAs, which
is on the weak EPI side of the phase diagram, and TiO2 with
the considerably stronger EPI.

As anticipated, the damping of excitations by the con-
tinuum is enhanced as the EPI strength increases. However,
here we report that in some regimes one collective excitation
may stay coherent throughout the whole continuum, even for
strong coupling strengths. This is manifested as a weak spread
of the excitation’s weight among the continuum in raw spec-
tra, which as well guide us to correctly account for excitations’
dispersions across the whole continuum.

Differences between the weak and the strong coupling
cases become even more apparent when integrated spectra
are considered. In particular, the strong EPI favors the total
EELS spectral weight confined only within the single excita-
tion, while for the weaker coupling both coupled excitations
may share appreciable EELS spectral weight. This renders the
integrated EELS spectra a very convenient tool for the experi-
mental analysis of the phonon-plasmon coupling, particularly
the EPI strength, even with the current energy resolution
limitations in experiments. Namely, at the present time the
energy resolution �E ∼ 30–100 meV is not high enough to
fully spectrally resolve characteristic frequencies of coupled
modes. Accordingly, the raw EELS measurements cannot be
efficiently exploited to study the phonon-plasmon coupled
excitations, like for example highly energetic plasmons in
metals [41–43], and, recently, in heavily doped semicon-
ductors [44,45]. While new techniques that overcome these
technical difficulties are appearing [46], our analysis based on
integrated spectra may circumvent the problem of the limited
experimental resolutions to a great extent.

Besides the standard Raman and the infrared spectroscopy
for momenta close to the center of the Brillouin zone, an
alternative with a sufficient energy resolution to capture
dispersions of phonon-plasmon coupled modes [47] is ex-
periments based on the inelastic neutron scattering [48,49],
highlighting the importance of the projection of coupled exci-
tations on the phonon degree of freedom. By conducting the
in-depth analysis of phonon spectral features, we show that the
strong-coupling case is accompanied by large phonon produc-
tion contributions, which makes us especially emphasize the
importance of a distinction between phonon softening effects
and effects caused by a virtual cloud of phonons attached to
charge fluctuations.

II. GENERAL

We analyze a single band model that describes a semicon-
ductor with a bottom/top of conduction/valence band doped,
such that a dispersion of electrons/holes may be assumed
quadratic εk = h̄2k2

2m∗ , characterized by an effective mass m∗. In

addition to the Coulomb interaction between itinerant charges,
we investigate effects of the electron/hole interaction with
lattice phonons, assuming that the latter is dominated by the
polar coupling to a dispersionless LO phonon branch with the
frequency ωLO.

Our model Hamiltonian for bulk 3D materials is given
by [50]

Ĥ =
∑

k

εkc†
kck + h̄ωLO

∑
k

a†
kak + 1

2

∑
q

v∞
q ρ̂qρ̂−q

+
∑

q

Mqρ̂q[a†
q + a−q], (1)

where c†
k and a†

k are the creation operators of the electron/hole
and the phonon with the wave vector k, respectively, and
ρ̂q = ∑

k c†
k+qck is the charge density operator. The screening

from high-energy excitations across band gaps is taken into
account through the high-frequency dielectric constant ε∞,
characterizing the interaction between the electrons in Eq. (1),
v∞

q = vq/ε∞, with vq = e2/ε0q2V the Coulomb potential,
where ε0 is the vacuum permittivity. Due to this screening,
the interband excitations renormalize the plasmon frequency,
�∞

PL = �PL/
√

ε∞, where �PL =
√

ne2/ε0m∗ would be the
plasmon frequency in the absence of other bands, and n is the
density of itinerant charge carriers.

As far as the EPI is concerned, corresponding to the last
term in Eq. (1), we assume a polar coupling described by the
Fröhlich model [51]

Mq = −i
√

v∞
q

√
h̄ωLO

2

√
1 − ε∞

ε0
. (2)

Here, ε0 is the static dielectric constant of a polar crystal,
measured well below the phonon frequency ωLO (not to be
confused with ε0). In the spirit of polaron theories for an elec-
tron doped in an empty band, we introduce a dimensionless
electron-phonon coupling constant [51]

α = e2

4πε0 h̄

√
m∗

2h̄ωLO

(
1

ε∞
− 1

ε0

)
, (3)

characterizing the strength of the EPI across the phase dia-
gram. In particular, the values α � 1 and α ≈ 1 correspond
to the weak and the strong EPI case, respectively, as found in
standard semiconducting materials. In the case of the polaron
problem, α defines the leading contribution to the polaron
binding energy, Epol ≈ α h̄ωLO. It should be emphasized that
all the bare model parameters in Eq. (1) may be determined ei-
ther from experiments or by performing ab initio calculations
for the undoped polar semiconductor of interest.

A. EELS spectrum

The inelastic scattering cross section of electrons measured
in an EELS experiment is related via the fluctuation-
dissipation theorem to the system’s charge density-density
correlation function [52], and hence an EELS spectrum is
directly proportional to the imaginary part of the inverse of
the system’s total dielectric function

S(q, ω) ∝ −π−1Im[ε−1(q, ω)]

= π−1 Im ε(q, ω)

[Re ε(q, ω)]2 + [Im ε(q, ω)]2
. (4)
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In order to simulate EELS spectra, in this paper we adopt
the random phase approximation (RPA) kind of scheme for
the total dielectric function of the system. Within this scheme,
the electron and the phonon contributions to the dielectric
function are additive, yielding [50]

ε(q, ω) = ε∞ − vqχ0(q, ω) + ε∞
ω2

pl

ω2
T O − ω2

= ε∞

[
εRPA(q, ω) + ω2

pl

ω2
T O − ω2

]
. (5)

The first term in the first row of Eq. (5) accounts for the high-
energy interband excitations, the second term for the intraband
excitations, and the last term for the phonon contribution. In
the second row of Eq. (5), we simply exploited the standard
RPA form for the electron dielectric function

εRPA(q, ω) = 1 − v∞
q χ0(q, ω). (6)

Here, as well as in Eq. (5), χ0(q, ω) is the polarization bub-
ble (the Lindhard function), contributed by electron-hole pair
excitations

χ0(q, ω) = 2

V

∑
k

fk − fk+q

h̄ω − εk+q + εk + iη
. (7)

The factor 2 accounts for the electron spin degeneracy, and
fk is the Fermi-Dirac distribution. In the zero-temperature
limit analyzed in this work, fk = 1 and fk = 0 below and
above the Fermi level, respectively. The frequency of the
transversal optical (TO) phonon is given by the LO phonon
frequency through the Lydanne-Sachs-Teller (LST) relation
ω2

T O = ω2
LOε∞/ε0, or through the ionic plasma frequency

ω2
pl = ω2

LO − ω2
T O [50].

Outside the electron-hole continuum, Im ε(q, ω) is zero
and Im[ε−1(q, ω)] has the form of delta peaks at frequencies
of system collective excitations ωi, with the corresponding
spectral weights given by

si(q) =
[
∂ε(q, ω)

∂ω

]−1∣∣∣∣
ω=ωi

. (8)

Once the continuum is reached, the EELS spectrum ac-
quires an incoherent contribution from electron-hole pair
excitations se−h(q, ω) as well. By integrating the spectrum
over frequencies, one obtains the total spectral weight as a
function of q

stot (q) =
∫ +∞

0
dω{−π−1Im[ε−1(q, ω)]}

=
∑

i

si(q) + se−h(q). (9)

In the long-wavelength limit and in the absence of the EPI, the
EELS spectrum is dominated by the plasmon excitation

stot (q → 0) ≈ s�∞
PL

(q → 0) = h̄�∞
PL

2ε∞
. (10)

With the introduction of finite EPI, the electrons scatter on
phonons at the rate proportional to the strength of the EPI. As
shown in Appendix A, the EELS spectral weight at ω = ωLO,

characterizing this scattering, is given by

sωLO (q → 0) = h̄ωLO

2

(
1

ε∞
− 1

ε0

)
. (11)

However, for the itinerant charge concentrations when the
plasmon and the phonon frequencies become comparable,
the two kinds of excitations are strongly coupled, resulting
with significantly renormalized energies of coupled excita-
tions. They do not necessarily have predominantly a phonon
or a plasmon character, but rather a hybridization of exci-
tations is generally expected. In such circumstances, in the
long-wavelength limit the EELS spectrum shows two peaks
at energies E− and E+, hereafter referred to as to the lower
frequency excitation (LFE) and higher frequency excitation
(HFE), respectively. With s− and s+ we denote the corre-
sponding spectral weights of the two coupled excitations in
EELS spectra.

B. Phonon spectral function

To discuss the mixing between the plasmon and the phonon
nature of collective excitations, in parallel to the EELS spec-
trum it is very useful to consider an experimentally relevant
dynamical quantity that involves a projection of system exci-
tations on phonon degrees of freedom. In particular, here we
analyze the phonon spectral function that may be investigated
by neutron scattering experiments, defined by

B(q, ω) = −π−1ImD(q, ω), (12)

where D(q, ω) is the LO phonon propagator. The integrated
spectral weight satisfies the sum rule given by∫ ∞

−∞
B(q, ω)dω = 2MωLO

h̄
〈0|x̂qx̂−q|0〉, (13)

where x̂q = (a†
q + a−q)

√
h̄/2MωLO is the lattice displacement

operator, and M the characteristic ion mass. According to
Eq. (13), the total spectral weight is defined by the lattice
quantum fluctuations in the ground state of the interacting
system |0〉. In general, this spectral weight may be distributed
among different excitations of the system.

The spectral function of the bare phonon propagator

D(0)(q, ω) = 1

ω − ωLO + iη
− 1

ω + ωLO − iη
(14)

is characterized by the LO phonon frequency only,

B(0)(q, ω) = [δ(ω − ωLO) + δ(ω + ωLO)]. (15)

By accounting for interaction, the full phonon propagator may
be expressed in terms of the phonon self-energy �(q, ω)
through the Dyson equation

[D(q, ω)]−1 = [D(0)(q, ω)]−1 − �(q, ω). (16)

The phonon self-energy contains the both contributions, from
the EPI and the electron-electron interaction.

Since the phonon propagator is even in ω, it is sufficient
to analyze positive frequencies only. In the absence of inter-
actions, �(q, ω) = 0, the phonon spectral function Eq. (15)
satisfies the sum rule∫ +∞

0
dωB(0)(q, ω) = 1, (17)
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corresponding to the zero-point motion of the ωLO phonon.
With the interactions included, the phonon spectral func-

tion develops new peaks corresponding to collective system
excitations, given by the poles of Eq. (16). This is accom-
panied by the appearance of an incoherent contribution from
electron-hole pair excitations, yielding

D(q, ω > 0) =
∑

i

zi(q)

ω − ωi(q) + iη
+ De−h(q, ω > 0).

(18)

Here, zi measures directly the projection of system excitations
to the bare phonon, providing the information about their
phonon character. The crucial observation to make is that in
addition to the spectral weight redistribution among excita-
tions and incoherent continuum, an additional spectral weight
might appear,∫ +∞

0
dωB(q, ω) =

∑
i

zi(q) + ze−h(q) � 1, (19)

where ze−h(q, ω > 0) denotes the phonon spectral weight
associated with the incoherent continuum. This additional
spectral weight, which we call a phonon production, depends
on the model parameters and itinerant charge concentration. It
has been discussed in the context of polaron physics and the
Huang scattering [53,54], when it corresponds to the polaronic
lattice deformation present in the ground state of EPI systems.

In analogy to the EELS spectra, due to the phonon-plasmon
coupling, in the long-wavelength limit two excitations
with finite energies, E±, appear in the phonon spectral func-
tion. Each of these two excitations is characterized by their
own spectral weight z±. The cases with the phonon produc-
tion, z+ + z− > 1, deserve a special attention since they may
be caused by different physical mechanisms, ranging from the
standard phonon softening to the presence of a permanent, yet
dynamical lattice deformation which does not break the trans-
lational symmetry. In the context of phonon-plasmon coupled
systems, to the best of our knowledge the phonon production
has not been discussed previously, with the exception of the
seminal work by Varga [28].

To treat on an equal footing the EELS and the phonon
spectra, we adopt the RPA kind of scheme for calculations
of the phonon propagator. Diagrammatically, this scheme is
shown in Fig. 1. The first row in Fig. 1 represents the standard
Dyson equation for the phonon propagator, with the phonon
self-energy being represented by the bubble involving two
double lines ending by the pair of electron-phonon vertices
(dots). The bubble in the first row stands for the standard RPA
approximation for the density-density correlation function in
a system with the electron-electron interaction, shown in the
second row in Fig. 1, with the dashed line representing the
instantaneous electron-electron interaction. It is easy to verify
that the scheme in Fig. 1 corresponds to an infinite series of di-
agrams for the phonon propagator, where the series consists of
the diagrams with all different number of polarization bubbles
connected either with phonon or electron-electron interaction
lines in all possible combinations. It is worth mentioning that
the scheme in Fig. 1 can be utilized to obtain the total di-
electric function, Eq. (5), simply by reinterpreting the double
wavy line as the effective electron-electron interaction and

FIG. 1. Diagrammatic representation of our RPA kind of scheme
for the phonon propagator (double wavy line). The bare phonon
propagator is represented with a single wavy line, while the phonon
self-energy consists of the density-density correlation function (dou-
ble bubble) ending with the EPI vertices represented by black dots. In
the RPA, the density-density correlation function can be pictorially
represented by the infinite chain of bubble diagrams coupled with the
Coulomb interaction (dashed line), as shown in the second row.

interchanging the phonon (together with the EPI vertices) and
the Coulomb interaction propagators.

By recalling that the electron dielectric function in the
standard RPA takes the form given by Eq. (6), the phonon
self-energy corresponding to Fig. 1 may be written as

�(q, ω) = |Mq|2
v∞

q

[
1

εRPA(q, ω)
− 1

]
. (20)

This expression is especially appealing, since it readily allows
for the calculation of phonon self-energy beyond the RPA.
Namely, replacing χ0(q, ω) with χirr (q, ω) in εRPA(q, ω),
where χirr (q, ω) denotes the sum of irreducible polarization
bubble diagrams, allows for the inclusion of self-energy and
vertex corrections due to both the electron-electron and the
electron-phonon interaction.

Before moving to the detailed analysis of the results, we
emphasize that the RPA kind of scheme used here is gen-
erally valid in describing high electron density liquids. In
doped semiconductors, an actual density of itinerant charge
carriers is usually quite low in comparison to metals, albeit
due to the smallness of effective masses and large values of
effective Bohr radii, effective carrier densities may be even
larger than in metals, making many semiconductors a suitable
environment to implement the RPA [50]. The use of the RPA
for the phonon propagator is further supported by Migdal’s
theorem [55], which justifies the omission of electron-phonon
vertex corrections for sufficiently high electron densities.
Moreover, as long as Migdal’s theorem may be applied, it
may be argued that electron self-energy contributions bring
only quantitative corrections to spectra, for example through
the (weak) renormalization of effective masses or damping of
excitations [56], while qualitatively no new features should be
expected.

III. ADIABATICITY PARAMETER AND LIMITING
BEHAVIORS

A normal electron liquid involves the electron-hole pair
excitations and the collective plasmon excitation. In the pres-
ence of the EPI, those excitations may strongly mix with
the phonon degree of freedom. This complex mixing is cap-
tured by Eqs. (5) and (20), accounting for the full dynamical
treatment of the total dielectric function and the phonon
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self-energy in the presence of electrons coupled to the lattice.
However, for a better understanding of the interplay between
the lattice and the electron subsystem, it is particularly useful
to consider limiting cases first.

The plasmon frequency �∞
PL sets the frequency scale for

the electron subsystem, similarly to the way the phonon fre-
quency ωLO characterizes the lattice subsystem. Thus, it is
natural to introduce the adiabaticity parameter, measuring the
ratio of those two frequency scales κ = ωLO/�∞

PL. Depending
on the value of κ , three different regimes may be distin-
guished, followed by three limiting choices for the electron
dielectric function εRPA(q, ω) in Eqs. (5) and (20).

The large-κ case corresponds to the antiadiabatic regime,
when the plasmon frequency is significantly lower than that
of the phonon. Apart from the polaronic effects [57–61],
the phonon remains unrenormalized, since the slow electron
plasma oscillations, �2

PL ∝ n, cannot influence the fast lattice
vibrations. This readily follows from Eq. (20), by noting that
only the high-frequency part of the electron dielectric function
εRPA(q, ω ≈ ∞) → 1 contributes in the frequency window
situated around the phonon frequency.

By increasing the electron density the resonant regime sets
in, when the electron density is tuned so that the plasmon fre-
quency approximately matches that of the phonon, κ ≈ 1. In
such situations, the full frequency dependence of the electron
dielectric function should be considered.

Lastly, for small κ , corresponding to the adiabatic limit,
the density of itinerant charges is high and electron degrees of
freedom are much faster than the phonon. Correspondingly,
the electron dielectric function in Eqs. (5) and (20) may be
approximated by its static value εRPA(q, ω ≈ 0). This sug-
gests that the correct way of approximating the total dielectric
function or the phonon self-energy is to first determine their
dynamical properties through the electron dielectric function
εRPA(q, ω) depending on the adiabaticity parameter κ , and
only after that eventual approximations on their wave vector
dependence can be made.

Resonant regime

The resonant regime naturally serves as a starting play-
ground for studying the phonon-plasmon mixing, since then
the frequencies of two excitations are nearly degenerate. Spe-
cially, in the long-wavelength limit, the physics of the resonant
regime reduces solely to the phonon-plasmon coupling due to
the absence of the continuum and the corresponding polaronic
effects. In particular, the dynamical long-wavelength limit of
electron dielectric function takes the form εRPA(q → 0, ω) =
1 − (�∞

PL )2/ω2, yielding for the phonon self-energy

�(q → 0, ω) = h̄�∞
PL|Mq|2
2v∞

q

2h̄�∞
PL

(h̄ω)2 − (h̄�∞
PL − iη)2 . (21)

The second factor on the right-hand side of Eq. (21) has the
form of the free boson propagator, while the first factor may be
interpreted as the effective matrix element of phonon-plasmon
coupling.

By inserting Eq. (21) into the Dyson equation in Eq. (16)
and by looking for the poles of the phonon propagator, the
biquadratic equation is obtained, describing the coupling of

two boson modes. Its solutions are given by

2ω2
± = ω2

LO + [�∞
PL]2

±
√(

ω2
LO − [

�∞
PL

]2)2 + 16|M̃q|2ωLO�∞
PL/h̄2, (22)

corresponding to the frequencies of the collective excitations
of the coupled phonon-plasmon system. The same solutions
are obtained from the zeros of Eq. (5), assuming in Eq. (22)
the polar coupling given by Eq. (2). Here, it should be stressed
that in describing the phonon-plasmon coupled system via the
total dielectric function, Eq. (5), the polar coupling is explic-
itly assumed. On the other hand, the approach involving the
phonon propagator allows for the general type of EPI matrix
elements Mq.

Although Eq. (22) is strictly speaking obtained in the res-
onant regime, it provides the excitations’ frequencies of the
phonon-plasmon coupled system around q ≈ 0, irrespectively
of the adiabaticity parameter. In particular, in the antiadia-
batic κ � 1 regime, two solutions of Eq. (22) are ω+ = ωLO

and ω− = �0
PL = �PL/

√
ε0. That is, the phonon frequency

remains unchanged, while the plasmon gets screened by both
the interband excitations and the lattice vibrations. As shown
in Appendix A, the corresponding plasmon spectral weight in
an EELS spectrum then equals

s�0
PL

(q → 0) = h̄�0
PL

2ε0
. (23)

When the electron density is high enough so that the adi-
abatic regime is reached, the electron subsystem completely
screens long-range interactions between ions. This reduces
the frequency of the LO phonon to that of the TO phonon.
Accordingly, for κ � 1, two solutions of Eq. (22) are ob-
tained, ω− = ωT O and ω+ = �∞

PL. Since only the interband
excitations are fast enough to screen the plasmon, ω+ is char-
acterized by ε∞.

In order to obtain the momentum dependence of the ω−
mode for κ � 1, one may take the static limit of the electron
dielectric function in Eq. (20). As shown in Appendix B,
with εRPA(q → 0, ω ≈ 0) = 1 + q2/q2

T F , where qT F is the
Thomas-Fermi wave vector, one obtains

ω− =
√

ω2
T O + ω2

pl

q2

q2
T F

. (24)

For metals in the jellium model ε0 diverges [62], and
Eq. (24) may be used to obtain ω− by setting ωT O = 0. The
ionic plasma oscillations get screened, acquiring an acoustic
dispersion ω−/ωpl = q/qT F , with ωpl = ωLO.

IV. RESULTS

The behaviors discussed in Sec. III correspond to the
long-wavelength limit, with nothing said about the large-q
behaviors or the character of the corresponding excitations.
Without the electron-hole continuum in Eq. (22), the damping
effects are absent as well. To overcome these limitations, by
preserving the full momentum and frequency dependence in
Eqs. (4) and (20), we investigate in detail the structure of
EELS spectra and phonon spectral functions, along with the
distribution of spectral weights among different excitations.
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FIG. 2. EELS spectra (upper row) and phonon spectral functions (corresponding to the LO phonon) (lower row) of the bulk GaAs for three
different electron densities n. The first column corresponds to n = 1016 cm−3, the second to n = 5 × 1017 cm−3, and the third to n = 1019 cm−3,
depicting the antiadiabatic (κ � 1), resonant (κ ≈ 1), and adiabatic (κ � 1) regime, respectively. Note that MAX on the intensity scale takes
a different absolute value for each of the panels.

Our results show that in addition to the adiabaticity parameter,
the EPI strength is essentially important for the shape of
spectra of phonon-plasmon coupled systems, motivating us to
discuss regimes, with the experimentally relevant, the weak
and the strong EPI, separately. From the technical point of
view, we use the analytical expression for the 3D Lindhard
function χ0(q, ω) [63], which simplifies the numerical work.

A. Weak coupling

All our calculated spectra correspond to actual materials.
As a first model of a bulk polar semiconductor, we consider
the frequently studied GaAs. With the effective mass m∗ =
0.0657m, the energy of the LO phonon h̄ωLO = 36.77 meV,
and the dielectric constants ε∞ = 10.9 and ε0 = 12.83 [64], it
qualifies as a material with a weak polar coupling α ≈ 0.07.

1. Spectral functions

In Fig. 2, we show the EELS spectra, Figs. 2(a)–2(c),
and the phonon spectral functions of the LO phonon,
Figs. 2(d)–2(f), of the doped bulk GaAs for three differ-
ent electron densities n = 1016 cm−3 (kF = 6.6 × 10−3 Å−1),
5 × 1017 cm−3 (kF = 2.4 × 10−2 Å−1), and 1019 cm−3 (kF =
6.6 × 10−2 Å−1). In all the figures, the red and the blue
dashed lines denote the phonon frequencies ωT O and ωLO,
respectively. The plasmon frequencies �0

PL and �∞
PL in the

long-wavelength limit are denoted by the dot-dashed red and
the dot-dashed blue lines, respectively, while the boundaries
of the electron-hole continuum are denoted by the turquoise
dotted lines.

From Figs. 2(a) and 2(d), for q = 0 we see two well-
defined excitations at frequencies �0

PL and ωLO, indicating

clearly that the electron density n = 1016 cm−3 corresponds
to the antiadiabatic regime. As q increases, the LFE follows a
plasmon-like dispersion and gets Landau damped upon enter-
ing the continuum. The HFE stays a well-defined excitation of
constant frequency ωLO up to the highest values of q shown.

Upon increasing the electron density, the resonant regime
is reached, shown in Figs. 2(b) and 2(e). The strong level
repulsion of coupled excitations is evident for smaller mo-
menta q < kF , because of which neither of two excitations
in Figs. 2(b) and 2(e) exhibit long-wavelength limiting be-
haviors denoted by horizontal lines. With increasing q, both
excitations develop a considerable dispersion and get strongly
Landau damped by the continuum. For q � kF , a well-defined
collective excitation emerges again, which frequency ap-
proaches the LO phonon frequency ωLO and whose lifetime
becomes longer as q increases.

For the highest electron density, the EELS spectrum shows
only the HFE for low q, Fig. 2(c). The LFE is, however, well
captured by the phonon spectral function in Fig. 2(f), with
exactly the frequency of the TO phonon for q ≈ 0, suggesting
the adiabatic behavior of the system for the corresponding
density. The absence of the LFE in the long-wavelength limit
in the EELS spectrum is in accordance with the vanishing
spectral weight at ωT O, when, as shown in Appendix A, the
total dielectric function diverges. In Fig. 2(c), the HFE ev-
idently follows the plasmon dispersion �∞

PL, unaffected by
the phonon and gets Landau damped in the continuum. As
seen from Fig. 2(f), the frequency of the LFE continuously
increases from ωT O to ωLO and remains a well-defined excita-
tion for all momenta, although weakly damped upon entering
the continuum [the large energy scale set by the HFE partially
hinders these details in Fig. 2(f)].
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FIG. 3. Integrated EELS spectra (upper row) and integrated phonon spectra (lower row) shown in Fig. 2.

2. Integrated spectra

In order to get a better insight into the nature of excita-
tions in Fig. 2 as a function of q, in Fig. 3 we consider the
corresponding integrated EELS spectra (9) and the phonon
spectral weight (19) over the relevant frequency ranges. In
particular, aside from the total spectral weight, we have con-
sidered spectral weights in the two specific frequency regions.
The first corresponds to the frequency window ω− < ω < ω+,
while the second to ω > ω+ [65]. This should provide an
estimation of the spectral weights s± and z±, even in the pres-
ence of stronger damping or a limited experimental resolution.
In Fig. 3, the spectral weights corresponding to the limiting
behaviors, Eqs. (10), (11), and (23), are indicated by straight
lines as well, normalized to the spectral weight at ω = ωLO.
The momenta for which in Fig. 2 the LFE and the HFE get
damped are shaded by the red and the blue color, respectively.
These two shaded areas overlap in Figs. 3(b) and 3(e), i.e., in
the resonant regime.

For small momenta q, it is clear from Fig. 3(a) that,
in the antiadiabatic regime, both the LFE and the HFE
contribute significantly to the total EELS spectral weight,
matching perfectly the predictions of Eqs. (23) and (11),
respectively. For larger q, the spectral weight of the LFE
vanishes, while in the HFE case it stays roughly constant well
described by Eq. (11), with a slight enhancement for q �
3kF that should be attributed to the electron-hole continuum
se−h. Thus, the plasmon and the phonon character of the LFE
and the HFE, respectively, is unquestionable for the antia-
diabatic case. This is further confirmed by Fig. 3(d), with
almost all the phonon spectral weight being associated with
the HFE.

On the contrary, for the highest density case shown
in Fig. 3(c), the HFE spectral weight is almost purely

plasmon-like. As predicted by Eq. (10), it accounts for al-
most all of the total spectral weight at small momenta. For
higher momenta, the spectral weight in the frequency win-
dow ω > ω+ should rather be attributed to the electron-hole
continuum. On the other hand, the LFE spectral weight may
be completely ascribed to the phonon subsystem. Indeed, the
LFE contribution to the EELS spectrum appears in Fig. 3(c),
when LFE approaches ωLO, due to the electron scattering by
the LO vibrations, as described by Eq. (11). At the same time,
the phonon spectral function in Fig. 3(f) is fully dominated by
the LFE.

The results become slightly more difficult for interpreta-
tion in the resonant regime, Figs. 3(b) and 3(e). For small
momenta, both collective excitations involve a strong mixture
of the phonon and the plasmon component, signaling strongly
hybridized modes. However, as seen from Fig. 3(e), for q �
0.4kF , the dominant character of excitations is unambiguous.
In particular, the LFE is dominated by the phonon, while the
HFE with the plasmon component.

The common property for all three phonon spectra in Fig. 2
is a phonon production effect, manifested as a small increase
of the total phonon spectral weight around q ≈ 0. For larger q,
this additional phonon spectral weight vanishes and the total
spectral weight approaches the value given by Eq. (17). As we
shall show, the phonon production contributions may become
very large for the stronger EPI, with a very different origin
depending on the adiabaticity parameter.

B. Strong coupling

In contrast to III-IV semiconductors, bulk transition metal
oxides may host much stronger polar couplings. As a rep-
resentative system with a significant EPI, we take anatase
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FIG. 4. EELS spectra (upper row) and phonon spectral functions (corresponding to the LO Eu phonon) (lower row) of the bulk anatase
TiO2 for three different electron densities n. The first column corresponds to n = 1017 cm−3, the second to n = 1.47 × 1019 cm−3, and the third
to n = 5 × 1021 cm−3, depicting the antiadiabatic (κ � 1), resonant (κ ≈ 1), and adiabatic (κ � 1) regime, respectively. Note that MAX on
the intensity scale takes a different absolute value for each of the panels. To emphasize the role of electron-phonon coupling strength, the
resonant regime is shown for the same value of κ as in Fig. 2.

TiO2, whose electrons upon doping the conduction band,
characterized by the effective mass m∗ = 0.42m [66], couple
to a LO Eu phonon with the energy h̄ωLO = 108 meV [10].
The corresponding dielectric functions read ε∞ = 5.82 and
ε0 = 45.1 [67], resulting in the much larger EPI con-
stant α ≈ 1.09 than in GaAs. From the experimental point
of view, TiO2 is very appealing, since ωLO and Fermi
wave vectors kF corresponding to relevant electron densi-
ties are a few times larger than for GaAs, making it more
suitable for experiments with low energy and wave vector
resolutions.

1. Spectral functions

In Fig. 4, we show the EELS spectra, Figs. 4(a)–4(c), and
the phonon spectral functions corresponding to the LO Eu

phonon, Figs. 4(d)–4(f), of the bulk anatase TiO2, consider-
ing three different electron densities n = 1017 cm−3 (kF =
1.4 × 10−2 Å−1), 1.47 × 1019 cm−3 (kF = 7.6 × 10−2 Å−1),
and 5 × 1021 cm−3 (kF = 0.53 Å−1). As in the already dis-
cussed weak-coupling case of GaAs, this choice of electron
densities corresponds to the antiadiabatic, the resonant, and
the adiabatic regime, respectively. The structure of spectra
remains overall similar to that in the weak-coupling limit.
However, it should be immediately emphasized that in the
antiadiabatic and the resonant regime the excitations get much
strongly damped within the continuum. Additionally, in the
antiadiabatic regime, the HFE develops a visible kink as it
enters the continuum, which may well be seen in Figs. 4(a)
and 4(d).

2. Integrated spectra

Because of the strong damping, which completely blurs
some parts of the EELS and the phonon spectra, for stronger
couplings it is particularly useful to analyze the integrated
spectra shown in Fig. 5. From Fig. 5(a), corresponding to the
antiadiabatic regime, it is evident that the total spectral weight
of the EELS spectrum is dictated by the constant spectral
weight of HFE due to the strong EPI, Eq. (11), pointing to the
phonon character of excitation, well supported by Fig. 5(d).

In the resonant regime, the spectral weight of HFE con-
tinues to dominate the EELS spectrum for small q, albeit
higher spectral weight is confined within it than predicted by
Eq. (11), suggesting the appreciable plasmon component in
addition to the phonon one. In the adiabatic regime, similarly
to the weak-coupling case, the plasmon-like spectral weight
of the HFE dominates the EELS spectrum for small q, while
for larger momenta the total spectral weight is contributed by
the LFE at ωLO, as described by Eq. (11), and the electron-hole
continuum. The latter is also true in the resonant regime. In all
the regimes, for small q, despite the change in the character of
excitations, the HFE contributes much more to the total EELS
spectral weight than the LFE. Thus, unlike for weak cou-
plings, the spectrum in the resonant regime in Figs. 4(b) looks
qualitatively similar to the spectra in the adiabatic regime in
Figs. 2(c) and 4(c). Therefore, if the electron-phonon inter-
action strength is unknown, one may easily misinterpret to
which regime does the EELS spectrum belong. However, if
phonon measurements are available, the resonant regime may
be identified without any ambiguity even for strong couplings.
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FIG. 5. Integrated EELS spectra (upper row) and integrated phonon spectra (lower row) shown in Fig. 4.

Even bigger discrepancies between the weak and the strong
coupling case are evident from the integrated phonon spectral
functions, Figs. 5(d)–5(f). The first striking result is that the
additional phonon spectral weight, associated with the phonon
production, is very large for small q. This large contribution
in Fig. 5 characterizes the LFE for all considered electron
densities. However, the physical origin of this effect might
be quite different depending on the adiabaticity parameter. In
particular, in the antiadiabatic regime, the phonon production
is apparently associated with the plasma oscillations. Indeed,
by comparing the three curves in Fig. 5(d), we see that all the
additional phonon spectral weight due to the phonon produc-
tion clearly involves only the plasmon-like LFE, and not to the
HFE, the latter having the predominantly phonon character.
This additional phonon spectral weight scales sublinearly with
the electron density, indicating that it involves a collective
effect rather than being related to a simple polaronic dress-
ing of individual electrons. On the other hand, in Fig. 5(d),
one as well observes a small contribution to the phonon
production belonging to the electron-hole continuum. This
stems from polaronic effects, corresponding to the phonon
dressing of itinerant electrons, contributing to the Huang
scattering [68].

In the adiabatic limit, the electrons are faster and denser,
for small q almost fully screening the LO phonons. For this
reason, ωT O instead of ωLO defines the small-q LFE frequency
in Fig. 4(f). As q increases, the LFE frequency approaches the
LO phonon frequency, while the effects of the phonon produc-
tion weaken. Our analysis of this additional phonon spectral
weight in Fig. 5(f), with details presented in Appendix C, con-
firms that in the adiabatic limit the LFE should be interpreted
as the pure harmonic excitation of the lattice subsystem; i.e.,
in Fig. 5(f), as a function of q, the values obtained for the
phonon production scale with the LFE frequency exactly as
expected for the adiabatic phonon softening effect. For softer

phonons with the LFE frequency the space uncertainty of
lattice vibration increases, which through Eq. (13) explains
the phonon production observed in Fig. 5(f).

V. CONCLUSIONS

Our study systematically analyzes and compares features
of EELS spectra and spectral functions corresponding to a LO
phonon of 3D doped polar semiconductors. The results are
obtained in the zero-temperature limit when the spectra are
the sharpest, by referencing to actual materials, namely GaAs
and anatase TiO2. While for the latter the EPI is strong, the
former belongs to the weak-EPI limit. Thus, the comparison
of these two cases permits us to identify the most important
spectral features that depend on the strength of EPI, in parallel
with the commonly studied influence of the electron density,
i.e., the adiabaticity parameter.

In the adiabatic limit, the frequency of LFE smoothly
changes from ωT O to ωLO, as the electron screening be-
comes ineffective for q � kF , while the HFE follows the
plasmon dispersion �∞

PL before being completely damped by
the continuum. The phonon-like LFE, on the other hand, is
a well-defined excitation across the whole electron-phonon
continuum, irrespective of the EPI strength. In the antiadia-
batic limit, however, the phonon remains unscreened for all
momenta, exhibiting the kink which gradually evolves into
the continues LFE as the electron density increases. While
the plasmon-like LFE gets completely Landau damped for
all couplings, the broadening of the phonon-like HFE in the
electron-hole continuum becomes significant only for strong
EPIs. This dramatic influence of the EPI strength on damping
is persistent in the resonant regime as well. Specifically, while
the LFE for weak couplings behaves as a well-defined excita-
tion through almost the whole continuum, for the strong EPIs
it gets completely damped. The latter holds true for the HFE
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irrespective of the EPI strength, meaning that the existence
of well-defined collective excitations over a broad range of
momenta of the order of magnitude of the Fermi wave vector
is heavily influenced by both the adiabaticity parameter and
the EPI strength.

Apart from dictating the damping within the continuum,
the EPI strength significantly influences the distribution of the
EELS spectral weight among the excitations. In particular,
for strong EPIs the HFE accounts for almost all the EELS
spectral weight in the long-wavelength limit irrespective of
the adiabaticity parameter, which appears as a robust feature
of the strong-coupling regime. For the weak EPIs the same is
true only in the adiabatic limit. In the antiadiabatic and the
resonant regime, the EELS spectral weight is rather approx-
imately equally redistributed among the LFE and the HFE,
which opens the possibility of estimating the EPI strength
from (integrated) EELS spectra, even from data with very
limited energy resolutions.

On the other hand, the study of phonon spectral weight
emphasizes that the additional insight on the character of exci-
tations may be obtained by identifying the phonon production
contribution. In particular, in the adiabatic limit, the calcu-
lated phonon production confirms that the LFE is associated

with the harmonic lattice vibrations, softened by the electron
screening. On contrary, in the antiadiabatic limit, the phonon
production effect is of a different origin, being associated with
the LFE plasmon-like mode, indicating that due to the EPI the
cloud of virtual phonons accompanies the plasma oscillations.

As a final remark, our findings suggest that EELS measure-
ment is in principal a powerful experimental tool to detect
the HFE’s dispersion, while the neutron inelastic scattering
excels in capturing the LFE’s dispersion. This highlights the
complementarity of the EELS and the phonon spectra, and
the advantages of studies of phonon-plasmon coupled systems
when the both are experimentally accessible.
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APPENDIX A: EELS SPECTRAL WEIGHTS

In the long-wavelength limit, the total dielectric function of a heavily doped polar semiconductor in the RPA reads

ε(q → 0, ω) = ε∞ − �2
PL

ω2
+ ε∞

ω2
pl

ω2
T O − ω2

. (A1)

Accordingly, one obtains

[
∂ε(q → 0, ω)

∂ω

]−1

= h̄

2

[
ω2

T O − ω2
]2

ω3

�2
PL

[
ω2

T O − ω2
]2 + ε∞ω4ω2

pl

. (A2)

It is now trivial to see that the EELS spectral weight of the TO phonon vanishes, sωT O (q → 0) = [ ∂ε(q→0,ω)
∂ω

]−1|ω=ωT O = 0.
Next, we evaluate the EELS spectral weights at plasmon frequencies �∞

PL and �0
PL, screened by dielectric constants ε∞ and

ε0, respectively, and the frequency of LO phonon ωLO,

s�∞
PL

(q → 0) =
[
∂ε(q → 0, ω)

∂ω

]−1∣∣∣∣
ω=�∞

PL

�PL�ωpl≈ h̄

2

[�∞
PL]3

�2
PL

= h̄�∞
PL

2ε∞
. (A3)

Here, we assumed �PL � ωpl , which is satisfied in the adiabatic regime, where �PL and ωpl denote frequencies of the electronic
and the ionic plasma, respectively. On the other hand, in the antiadiabatic regime both �0

PL � ωT O and �PL � ωpl hold, resulting
in

s�0
PL

(q → 0) =
[
∂ε(q → 0, ω)

∂ω

]−1∣∣∣∣
ω=�0

PL

�0
PL�ωT O≈ h̄

2

[
�0

PL

]3

�2
PL

= h̄�0
PL

2ε0
, (A4)

and

sωLO (q → 0) =
[
∂ε(q → 0, ω)

∂ω

]−1∣∣∣∣
ω=ωLO

�PL�ωpl≈ h̄

2

ω2
LO − ω2

T O

ε∞ωLO
= h̄

2

ω2
LO − ω2

LO
ε∞
ε0

ε∞ωLO
= h̄ωLO

2

(
1

ε∞
− 1

ε0

)
. (A5)

APPENDIX B: LONG-WAVELENGTH DISPERSION OF THE PHONON-LIKE MODE IN THE ADIABATIC REGIME

To get the small q dependence of phonon mode dispersion in the adiabatic regime, the static electron dielectric function

εRPA(q → 0, ω ≈ 0) = 1 + q2
T F
q2 ⇒ 1/εRPA(q → 0, ω ≈ 0) ≈ q2

q2
T F

has to be taken in Eq. (20) for the phonon polarization, with
qT F the Thomas-Fermi wave vector. Now, by solving the Dyson equation for the LFE, corresponding to the phonon-like mode,
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with the polar coupling Mq = −i
√

v∞
q

√
h̄ωLO

2

√
1 − ε∞

ε0
, one gets

ω2
− = ω2

LO + 2ωLO
|Mq|2
v

(∞)
q

[
q2

q2
T F

− 1

]
= ω2

LO

{
1 +

[
1 − ε∞

ε0

][ q2

q2
T F

− 1

]}
LST= ω2

T O + ω2
pl

q2
T F

q2. (B1)

APPENDIX C: PHONON PRODUCTION FOR SQUEEZED STATES

The Lehmann representation of the LO phonon Green’s function is given by

D(q, ω) =
∑

n

|〈0|(aq + a†
−q)|n〉|2

(
1

ω − (En − E0) + iη
− 1

ω − (E0 − En) − iη

)
, (C1)

where |0〉 and |n〉 are the exact ground and the excited states of the (interacting) system, respectively. From Eq. (C1) it is easy to
check that the integrated LO phonon spectral weight satisfies Eq. (13),∫ ∞

−∞
− 1

2π
ImD(q, ω)dω =

∑
n

|〈0|(aq + a†
−q)|n〉|2 = 〈0|(1 + 2a†

qaq + aqa−q + a†
qa†

−q)|0〉. (C2)

Assuming that the ground state of the lattice subsystem is given by squeezed states of harmonic oscillators

|0〉 = �q exp
[

1
2

(
γ ∗

q a2
q − γqa†2

q

)]|0̃〉, (C3)

with γ = |γ |ei� and |0̃〉 the LO phonon vacuum, from Eq. (C1) one obtains

〈0|x̂qx̂−q|0〉 = h̄

2MωLO
[cosh2(|γq|) + sinh2(|γq|) + 2 cos � cosh(|γq|) sinh(|γq|)]. (C4)

For � = π , the squeezed state is elongated along the real-space coordinate xq. Thus, assuming that the LO phonon is fully
screened and that the zero-point motion is characterized by the TO frequency, one gets

〈0|x̂qx̂−q|0〉 = h̄

2MωLO
e2|γ | = h̄

2MωT O
. (C5)

For GaAs and TiO2, e2|γ | = ωLO/ωT O = √
ε0/ε∞ approximately equals e2|γ | ≈ 1.08 and e2|γ | ≈ 2.78, respectively. Those are

almost the same values of the total phonon spectral weights obtained in Figs. 3(f) and 5(f) for the soft q ≈ 0 phonon, whose
frequency is very close to ωT O.
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C. Faber, O. S. Barišić, V. A. Rogalev, T. Schmitt, N. Nagaosa,
and V. N. Strocov, Nat. Commun. 7, 10386 (2016).

[12] C. Verdi, F. Caruso, and F. Giustino, Nat. Commun. 8, 15769
(2017).

[13] F. Caruso, C. Verdi, S. Poncé, and F. Giustino, Phys. Rev. B 97,
165113 (2018).

[14] J. Krsnik, V. N. Strocov, N. Nagaosa, O. S. Barišić, Z. Rukelj,
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