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SiC polytypes have been studied for decades, both experimentally and with atomistic simulations, yet no
consensus has been reached on the factors that determine their stability and growth. Proposed governing factors
are temperature-dependent differences in the bulk energy, biaxial strain induced through point defects, and
surface properties. In this work, we investigate the thermodynamic stability of the 3C, 2H, 4H, and 6H polytypes
with density functional theory (DFT) calculations. The small differences of the bulk energies between the
polytypes can lead to intricate changes in their energetic ordering depending on the computational method.
Therefore, we employ and compare various DFT codes, i.e., VASP, CP2K, and FHI-AIMS; exchange-correlation
functionals, i.e., LDA, PBE, PBEsol, PW91, HSE06, SCAN, and RTPSS; and nine different van der Waals (vdW)
corrections. At T = 0 K, 4H-SiC is marginally more stable than 3C-SiC, and the stability further increases with
temperature by including entropic effects from lattice vibrations. Neither the most advanced vdW corrections nor
strain on the lattice have a significant effect on the relative polytype stability. We further investigate the energies
of the (0001) polytype surfaces that are commonly exposed during epitaxial growth. For Si-terminated surfaces,
we find 3C-SiC to be significantly more stable than 4H-SiC. We conclude that the difference in surface energy
is likely the driving force for 3C-nucleation, whereas the difference in the bulk thermodynamic stability slightly
favors the 4H and 6H polytypes. In order to describe the polytype stability during crystal growth correctly, it is
thus crucial to take into account both of these effects.
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I. INTRODUCTION

Silicon carbide (SiC) is a wide band-gap IV-IV semicon-
ductor with a polymorph-dependent gap between 2.3 and
3.3 eV [1], and has been touted to pave the route towards a new
generation of semiconductor devices. It exhibits a plethora of
advantages over conventional Si-based technologies, includ-
ing a high electrical breakdown field of 2.5 MV/cm [2], up to
10 times higher than that of Si [3], which enables a reduction
in material use and lowers the on-state resistance. SiC also has
a high thermal stability, which allows for operations at high
temperature with little to no degradation [3]. The commercial
production of a SiC-based metal-oxide semiconductor field-
effect transistor (MOSFET), the most common and important
semiconductor device, has already been achieved [4].

One of the biggest challenges in SiC processing is the
growth of low-defect crystals due to the competing poly-
morphs that can form during synthesis. There exist over
200 SiC polymorphs, called polytypes, which crystallograph-
ically only differ in the stacking order of the SiC bilayers. The
most relevant and well-studied polytypes are the cubic 3C and
the hexagonal 2H, 4H, and 6H polytypes. Their crystal struc-
tures are shown in Fig. 1 and their lattice parameters are listed
in Table I. The difference in stacking patterns can be best
visualized by viewing along the direction of the tetrahedral
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bonds for each bilayer in relation to the other layers. In Fig. 1,
when a tetrahedron is leaning towards the same direction as
the lower bilayer (the same color), it is a cubic k site, whereas
when it is rotated by 180◦ (change in color), it is a hexagonal
h site. The polytype’s hexagonality is defined by the relative
fraction of such h sites: Nh/(Nh + Nk). The 3C, 4H, and 6H
polytypes have all been observed at similar growth conditions,
complicating monocrystalline growth of the desired polytype
[5–7].

In the past decades, enormous advancements have been
made in the fabrication of commercial substrate and low-
defect epitaxial layer growth technology [7–9]. The industry
standard for SiC epitaxy is growth on 4H-SiC 4◦ off-axis
Si-face substrates [7,10] at process temperatures of around
1800 K. The formation of defects such as stacking faults [11]
and triangular defects [12,13], however, remain a major issue
since they limit performance, cause leakage currents, lower
the breakdown voltage, and increase the on-state resistance
[14–16]. Such defects consist of a foreign polytype, often
3C, grown into the epitaxial layer during step-flow growth
[10–13,17–19]. Their origin has been attributed to different
effects, such as step bunching [20–23], downfall particles
[12], and substrate defects [15,17,24]. Yet, no conclusive con-
sensus regarding the detailed mechanism of defect nucleation
has been reached, a crucial requirement to develop advanced
strategies to mitigate defect formation.

The fact that foreign polytypes have been found in 4H-
SiC homoepitaxy [6,7,25–27] demonstrates the importance
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FIG. 1. The unit cells of the polytypes investigated in this work.
The direction of the polyhedra, to the left (red) and right (blue), is
directly related to the hexagonal h sites and cubic k sites of the Si
and C atoms; when the color from one layer to the next remains
unchanged, it indicates a k site, whereas when the color changes it
indicates an h site.

of the thermodynamic stability and other influencing factors
on the polytype specific growth. The surface termination of
the substrate strongly correlates with the grown polytype [5].
In addition, thermal effects [6,7,28,29] and the influence of
the gas composition and supersaturation [30–33] have been
studied. Sublimation growth experiments have shown that 3C
occurs at low temperatures, and 4H and 6H are only observed
at high temperatures [6,25,27,34].

Over the years, atomistic simulations have been used to
study the phase stability, surface energetics, and growth kinet-
ics of SiC polytypes. Many earlier ab initio studies [35–46]
have reported on the thermodynamic stability using various
methods [47–53], and we compiled a list of these results in
Table I of the Supplemental Material (SM) [54]. In contrast to
experimental findings, those reports predict that at T = 0 K,
the 4H and 6H polytypes are slightly more stable (i.e., a few
meV/SiC) than 3C, which indicates that the formation of 3C
inclusions cannot be explained by such 0 K bulk energies
alone.

Several other determining factors that govern polytype
stability and growth have been proposed in the literature.
Scalise et al. [55] highlight the importance of employing an
empirical van der Waals dispersion correction [46,56] and
considering the effect of lattice vibrations, which leads a
polytype ordering consistent with temperature-dependent ex-
perimental data. Mercier and Nishizawa [43] showed that the
3C Si-terminated surface is more stable than the hexagonal
surfaces, which could explain the high stability of 3C. Kang
et al. [60] modeled the growth with a modified embedded
atom method (MEAM) interatomic potential and reported that
external conditions strongly influence the formation of point
defects, which induce biaxial strain and could change the rela-
tive polytype stability. In view of all these possible mechanism
at play, it remains a challenge to produce a model that reflects
the correct materials behavior.

The goal of our work is twofold. First, we benchmark
the performance of different density functional theory (DFT)
methods by considering the influence of the exchange-

TABLE I. Overview of the crystal structures of SiC polytypes.
For each polytype, the Ramsdell notation [57], bilayer stacking, or-
dering of h and k sites, hexagonality h/(h + k), and lattice constants
a and c from Ref. [58] (3C, 6H, 4H) and from Ref. [59] (2H) are
shown.

Polytype Stacking Hexagonality a (Å) c (Å)

3C (k)∞ 0 4.3596 4.3596
6H (k2k1h)∞ 1/3 (33%) 3.0805 15.1151
4H (kh)∞ 1/2 (50%) 3.0798 10.0820
2H (h)∞ 1 (100%) 3.0763 5.0480

correlation (XC) functional, pseudopotentials, basis sets, and
van der Waals (vdW) corrections on various thermodynamic
properties. Second, we study the energetics by comparing
the bulk, thermal, elastic, and surface properties of the most
relevant SiC polytypes.

II. COMPUTATIONAL METHODS

In this work, different flavors of density functional theory
(DFT) [61,62] are employed to investigate the thermody-
namic properties of SiC. Three implementations of DFT are
compared: the Vienna Ab initio Simulation Package (VASP)
[63–66], the CP2K code [67,68], and the all-electron code
FHI-AIMS [69,70].

VASP and CP2K both only treat the valence electrons explic-
itly and employ either the projector augmented wave (PAW)
formalism [71,72] or pseudopotentials, respectively, to rep-
resent the core states. For both methods, the four valence
electrons, which participate in forming the covalent bonds
in SiC, are treated as valence states. We employ the latest
PAW-GW potentials (2015) for VASP with improved repro-
ducibility [73]. CP2K implements the Gaussian plane-wave
(GPW) [74] method and we employ the norm-conserving
Goedecker-Teter-Hutter (GTH) pseudopotentials [75].

Within CP2K, we compare the double-zeta valence po-
larized short-range (DZVP-SR) basis set to the triple-zeta
valence (TZV2PX) basis set, which stem both from the
MOLOPT series [76]. The number of Gaussian functions to
describe the valence part of the wave function increases with
the amount of valence splitting. The DZVP-SR basis employs
four and five Gaussian functions, for Si and C, respectively,
whereas the TZV2PX basis employs six and seven. Moreover,
the TZV2PX basis has two sets of polarization functions in-
stead of one in DZVP-SR.

The all-electron code FHI-AIMS employs the linear com-
bination of atomic orbitals (LCAO) basis, with numerical
atomic orbitals (NAO) to represent the wave function [69,70].

In addition to the basis sets and pseudopotentials, we in-
vestigate the influence of the XC functional on the thermody-
namic and geometrical properties of SiC with the VASP-PAW
method. We employ the local density approximation (LDA)
[77], the generalized gradient approximation (GGA) [78], one
hybrid functional, and meta-GGAs [79–81]. For LDA, we use
the Ceperley-Alder (CA) functional [82], while for GGA, we
compare the Perdew-Wang (PW91) [83], the Perdew-Burke-
Ernzerhof (PBE) [84], and the Perdew-Burke-Ernzerhof for
solids and surfaces (PBEsol) [85] parametrizations. LDA is
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known to exhibit overbinding (i.e., prediction of lattice param-
eters smaller than experimental values), whereas the GGAs
PW91 and PBE show underbinding. PBEsol was specifically
parametrized to resolve these issues and provide lattice con-
stants in better agreement with experiments. Furthermore,
we employ the Heyd-Scuseria-Ernzerhof 06 (HSE06) [86,87]
hybrid functional, and two meta-GGA functionals, i.e., the
revised Tao-Perdew-Staroverov-Scuseria (RTPSS) [88] and
the Strongly Constrained and Appropriately Normed (SCAN)
[89,90] functional.

For each polytype, we evaluate the bulk and (0001) sur-
face properties. For the bulk calculations, we fully relax the
lattice parameters and atomic coordinates with the conjugate
gradient algorithm, making sure that the Pulay forces are well
converged [91]. For the hybrid HSE06 functional, we took the
PBE lattice and did not perform ionic or cell relaxations, to
reduce computational costs. The surface structures are created
with the obtained relaxed lattice constants. For the surface
calculations, we follow the approach of Ref. [43] by including
7 SiC bilayers and 12 Å vacuum along the surface normal. We
relax the atomic positions of the upper four bilayers, while
keeping the bottom three bilayers and the lattice parameters
fixed. All calculations are carried out with periodic boundary
conditions. We compare VASP, CP2K, and FHI-AIMS with the
commonly used PBE functional.

Well-converged total energies are essential because the en-
ergy differences between the various polytypes are very small,
of the order of 1 meV/SiC. We adopt the same convergence
criterion as in Ref. [92], with an self-consistent field (SCF)
convergence of 10−8 eV and structural relaxations are per-
formed until the change of the total energy is smaller than
10−6 eV between two ionic steps. The convergence of the k
mesh and plane-wave cutoff energy is shown in Fig. 1 of the
SM [54]. The bulk calculations are converged to an energy
change of <0.1 meV/SiC. We employ a �-point centered
k mesh. The k-mesh values are converged for the cubic 3C
cell and adjusted for the cell sizes of the different polytypes.
We choose a k-point density of 4096 k points per reciprocal
atom, which results in the values shown in Table II. For
the surface calculations, we create 1 × 1 7-bilayer cells and
employ a k mesh of 13 × 13 × 1. Within VASP, a very high
cutoff of 1500 eV is required to reach the convergence criteria
of <0.1 meV/SiC and to obtain smooth energy-strain curves.
Cutoff energies of 850 and 1200 eV are sufficiently accurate
for the phonon and surface calculations, respectively, because
the energy differences between the polytypes are much larger
for these attributes.

Besides the conventional DFT methods, we compare seven
vdW energy correction methods. We employ three versions
of the pairwise DFT-Dn methods by Grimme et al.: the DFT-
D2 [56], DFT-D3 [93], and DFT-D3/BJ, which is a version
that includes Becke and Johnson damping [93,94]. Next, we
consider two additional pairwise methods: the Tkatchenko-
Scheffler (vdW-TS) [95] method, with and without iterative
Hirshfeld (HI) partitioning [96–98]. Lastly, the many-body
dispersion (vdW-MBD) method is the only correction method
considered that goes beyond pairwise interactions [99,100].

In addition, we employ three vdW XC functionals, the
vdW-DF2 functional [101–103], and the optimized optPBE-
vdW and optB88-vdW functionals [104,105].

TABLE II. k mesh employed for each polytype used for all
calculations with VASP, CP2K, and FHI-AIMS.

Polytype 3C 6H 4H 2H

k mesh 8 × 8 × 8 13 × 13 × 3 13 × 13 × 4 13 × 13 × 8

The thermal properties of SiC have been evaluated by
Scalice et al. [55]. We follow their approach and, in addition,
assess the influence of the XC functional by employing LDA
and PBE. Thermal effects are included by evaluating the vi-
brational energy contributions to the Helmholtz free energy
within the harmonic approximation, Fvib(T ) = Uvib − T Svib,
where Uvib|T =0K is the zero-point energy (ZPE) and T Svib is
the entropy contribution. Configurational entropy is not con-
sidered here because it is negligible in highly ordered crystals
such as SiC. The electronic contribution to entropy is small,
and we neglect it completely [55,106].

To obtain the lattice’s vibrational free energy, we first com-
pute the interatomic force constants with density functional
perturbation theory (DFPT) [107,108]. Thereafter, the dynam-
ical matrices, phonon dispersion, and thermal properties are
determined using PHONOPY [109]. To obtain the interatomic
force constants, we perform the DFPT calculation with VASP

at the � point in supercells of dimensions 3 × 3 × 1 for 4H
and 6H, 3 × 3 × 2 for 2H, and 2 × 2 × 2 for 3C.

We also compute the elastic properties with the DFPT
method as implemented in VASP. The stiffness tensor is de-
termined by performing six finite distortions of the lattice
[110]. The elastic constants are derived from the stress-strain
relationship according to Hooke’s law σi = Ci jε j , where Ci j

denote the elastic constants using Voigt notation, σi the stress,
and ε j the strain. The bulk (K) and shear (G) moduli are
calculated using the Voigt-Reuss-Hill (VRH) average [111].
First, the Voigt upper bound and Reuss lower bound are de-
termined. These two bounds are simply averaged to obtain
KVRH and GVRH. The Poisson ratio can be derived as ν =
(3K − 2G)/(6K + 2G), and the Young’s modulus as E =
(9KG)/(3K + G). We keep the same supercells and computa-
tional settings as employed for the calculation of the thermal
properties.

III. RESULTS AND DISCUSSION

A. Polytype stability of the bulk

We compute the relative thermodynamic stability of the
SiC polytypes at T = 0 K by comparing the internal energy
of 3C, 2H, 4H, and 6H. In this section, we first compare
the results of the LDA, PBE, PBEsol, and PW91, the hybrid
HSE06, and the meta-GGA SCAN and RTPSS functionals
within the VASP-PAW method. Next, the different ab initio
methods, i.e., VASP-PAW, CP2K-GPW, and FHI-AIMS–LCOA,
are compared. Lastly, we study the influence of the chosen
basis set with CP2K-GPW and FHI-AIMS–LCAO.

An overview of the polytype’s stacking and hexagonality is
given in Table I. The xH polytypes are compared to 3C using
�ExH = ExH − E3C, for x = 2, 4, 6. When the �ExH/SiC-pair
is positive (negative), the cubic (hexagonal) polytype is more
stable. The relative energies versus hexagonality are plotted
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in Fig. 2 and listed in Table II of the SM [54]. The results
are obtained for the relaxed lattice parameter for each com-
putational method. The effect of the lattice parameter on the
energy differences is negligible and does not change the rel-
ative ordering. We included the same study with fixed lattice
parameters from Refs. [58,59] in Fig. 2 of the SM [54].

Contradictory to experimental findings, conventional DFT
predicts that the 4H and 6H polytypes are slightly more stable
than 3C. All methods besides the meta-GGA SCAN func-
tional show a similar relative polytype stability, where the
4H and 6H polytypes are −1 to −5 meV/SiC more stable
than 3C. For each method, the difference between �E4H and
�E6H is <0.25 meV/SiC. The relative stability of 4H and
6H differs with the employed method. 2H is the least stable
polytype by 1 to 8 meV/SiC compared to 3C. These results
correspond well to other DFT computations in the literature
[35–40,42,43,45,46].

Next, we investigate the influence of the XC functional on
the thermodynamic stability with VASP. The LDA functional,
which only takes into account the local electron density,
shows an energy difference between 3C and 4H/6H of around
−2 meV/SiC. The GGA functionals PBE and PW91, which
take into account the first derivative of the electron density,
show a smaller energy difference of −1 meV/SiC. We further
employ the HSE06 hybrid functional, which incorporates a
fraction of the exact exchange energy based on the geome-
tries obtained with PBE. For 4H and 6H, the same energy
differences are observed as PBE/PW91, showing good agree-
ment with the semilocal DFT functionals. PBEsol is a GGA
functional that was parameterized to improve the descrip-
tion of solids, for which the relative energies are similar to
LDA. The meta-GGA functionals SCAN and RTPSS include
the second derivative of the electron density. RTPSS repro-
duces similar results as LDA/PBEsol. In contrast, SCAN
predicts 3C, 4H, and 6H to have close to identical energy
values. For all methods, the 2H polytype is clearly unsta-
ble compared to all other polytypes, which agrees well with
the fact that this polytype has not been observed in growth
experiments.

To study the reproducibility of our findings, we compare
the CP2K-GPW and FHI-AIMS–LCAO methods to VASP-PAW
while employing the PBE functional. Within CP2K, we inves-
tigate two basis sets which differ in their size: DZVP-SR and
TZV2PX. The results for the larger TZV2PX basis set are
expected to be more accurate. Figure 2 shows that the differ-
ences between the two basis sets are significant, especially for
2H. For 4H and 6H, the CP2K results resemble the energies
of VASP-PBE. Due to the small energy difference between
these two polytypes, the relative stability of 4H and 6H even
changes between the two basis sets. For 2H, the DZVP-SR
basis set shows a large discrepancy of up to 4 meV compared
to the other methods, VASP-PAW-PBE. For the all-electron
code FHI-AIMS, the difference between the “tight” and “really
tight” basis sets is insignificant. Generally, FHI-AIMS produces
results consistent with VASP and even more so with CP2K-
TZV2PX.

In addition to the relative stability, we analyze the influence
of the computational method on the relaxed lattice constants.
In the hexagonal structures, the lattice constants a, b, and
c correspond to the [112̄0], [12̄10], and [0001] directions,

FIG. 2. Energy differences of the relaxed 3C, 6H, 4H, and 2H
structures as a function of hexagonality for different DFT codes,
XC functionals, and basis sets. FHI-AIMS t (rt) stands for tight (really
tight). To improve visualization, we shifted the VASP data to the left
and the FHI-AIMS and CP2K data to the right.

respectively. In Fig. 3, a is plotted versus the polytype hexag-
onality. In order to compare the properties of the cubic and
hexagonal cells, we map the cubic cell onto a hexagonal lat-
tice. Then, the [111] direction in the cubic lattice aligns with
the [0001] direction of the hexagonal lattice, which results in
aH = aC/

√
2 and cH = √

3cC.
The value of a decreases for increasing polytype hexag-

onality, a trend that has been verified with x-ray diffraction
experiments [58,112]. For the non-vdW methods, we find
strong overbinding for LDA, and to a lesser extent for SCAN.
On the other hand, PBE (within all DFT implementations)
and PW91 show underbinding. The PBEsol and RTPSS func-
tionals resolve this issue and predict values very close to
experiments [58,112].

An analysis including the lattice constant along the stack-
ing direction c is shown in Fig. 4. Since the number of SiC
bilayers within one unit cell varies for the different poly-
types, the ratio of the lattice constants, c/(2xa), is calculated,
where x = 2, 4, 6 for the xH polytypes. For 3C (x = 3), this
leads to the ideal ratio c/(2xa) = √

2/3. The ratio c/(2xa)
increases linearly with hexagonality, which means that the
higher the polytype hexagonality, the narrower and more elon-
gated the lattice becomes. The visualization in Fig. 4 shows
that almost all conventional functionals reproduce the ratio
of lattice constants well compared to the experiments. Only
CP2K-DZVP-SR shows a rather large value since it overpre-
dicts the elongation and narrowing of the hexagonal cells. All
values for the lattice parameters a and c are listed in Table III
of the SM [54].

B. The van der Waals corrections

Long-range van der Waals (vdW) dispersion forces are
usually relevant in molecular systems and layered crystals,
but rather negligible in covalently bonded materials. How-
ever, the results of Kawanishi and Mizoguchi [46] suggest
that the SiC polytype stability is highly dependent on vdW
dispersions. They applied the DFT-D2 dispersion correction
[56,113] to the VASP-PBE method. In their calculations, the
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FIG. 3. Lattice constants a vs bulk hexagonality for the conven-
tional DFT and van der Waals corrections. FHI-AIMS t (rt) stands for
tight (really tight). Experimental x-ray diffraction results of Levin-
shtein et al. [58] and Harris et al. [59] are included.

vdW contribution to the total energy was around 3%, which
changed the relative polytype stability drastically. The DFT-
D2 method by Grimme et al. [56] is a semiempirical approach,
which does not account for any effects of the chemical en-
vironment or show the correct asymptotic behavior [114].
Generally, it is recommended to use the more recent DFT-D3
correction [115].

In this section, we investigate the bulk properties with
DFT-D2 and more advanced vdW dispersion methods. The
differences in implementation of the vdW correction are dis-
cussed in Sec. I of the SM [54] and in Ref. [116]. We compare
a total of nine vdW methods, which consist of either an added
correction applied to the VASP-PBE total energy or an inde-
pendent XC functional that incorporates the vdW dispersion.

The results for the polytype stability calculated by employ-
ing the various vdW dispersion methods are shown in Fig. 5.
The VASP-PBE energies are shown as a reference. Clearly, the
spread in energy differences is much larger compared to the
results obtained with the conventional DFT methods shown
in Fig. 2. We are able to exactly reproduce the results for the
DFT-D2 method of Ref. [46]. This method indeed strongly
stabilizes 3C. However, calculations with the more advanced
DFT-D3 method [114] have a completely different outcome;
3C is only slightly stabilized, but the relative stability remains
unchanged compared to uncorrected PBE. An explanation
could be that DFT-D2 only includes the sixth-order disper-
sion, whereas DFT-D3 also includes the eighth order. Our
results indicate that in DFT-D3, the sixth and eighth order
cancel each other, and the effect of the relative stability is very
small compared to DFT-D2. The addition of Becke and John-
son damping, DFT-D3/BJ [93,94], does not have a significant
effect on the DFT-D3 results.

To obtain a better understanding of the effect of the DFT-
Dn corrections, we also analyze the lattice constants. Figure 3
shows that all three methods correct the underbinding and
overestimation of a observed for PBE. The amount of cor-
rection differs notably though. The DFT-D2 predicted lattice
parameter is the closest to experiments among the DFT-Dn

FIG. 4. Normalized ratio of lattice constants, c/(2xa), vs bulk
hexagonality for the conventional DFT and vdW dispersion methods.
FHI-AIMS t (rt) stands for tight (really tight). Experimental x-ray
diffraction results of Levinshtein et al. [58] and Harris et al. [59]
are included.

methods. For DFT-D3, the value of a remains greater than
the experimental one, whereas for DFT-D3/BJ, the lattice
parameter is substantially smaller. The lattice ratios, shown in
Fig. 4, are substantially different between the three DFT-Dn
methods. DFT-D3 shows good agreement with experimental
values, and the addition of BJ damping results in a slight
underestimation of the lattice ratio. A large overestimation is
observed for DFT-D2, which indicates that this method might
not be well suited for SiC.

In addition to the DFT-Dn methods, we evaluate various
other vdW correction methods: vdW-TS [95], vdW-TS/HI
[96–98], and vdW-MBD [99,100]. The vdW-TS method de-
scribes the polytype stability poorly by predicting 2H and 3C
to be equally stable, which disagrees with the fact that 2H
is not observed in growth experiments [7]. Although it does
predict the lattice constant a quite accurately, the predicted lat-
tice ratio is clearly underestimated compared to experimental
values. The vdW-TS method is known to describe ionic solids
poorly [98], which can be improved by applying iterative
Hirshfeld partitioning (vdW-TS/HI). Although SiC is far from
an ionic solid, the Hirshfeld partitioning does improve both
the relative energies and the lattice constants. Now, the effect
on the relative polytype stability diminishes and the results
behave like PBE.

The most advanced and expensive correction method con-
sidered in this work is the vdW-MBD correction, which
includes many-body vdW interactions based on the random
phase approximation correlation energy [99,100]. Here again,
the correction is negligible and we obtain the uncorrected PBE
results. The lattice constant a is slightly underestimated, but
the ratio of lattice constants is predicted correctly.

Lastly, three vdW XC functionals are evaluated. The vdW-
DF2 [101,102,117], optPBE-vdW [104,105], and optB88-
vdW [104,105] are all based on the same principle of
including vdW dispersion in the functional directly. The
methods differ in the exchange part of the functional but
not the correlation part, which is where the vdW dispersion
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FIG. 5. Energy differences for 3C, 6H, 4H, and 2H-SiC as a
function of hexagonality, calculated either with VASP-PBE and a vdW
correction or with a vdW XC functional.

contributes. All three functionals predict 3C to be the most sta-
ble and differ very little from each other; the minor differences
are likely caused by the exchange part of the functionals. For
both the polytype stability and the structural optimization, the
results are similar to the values obtained for DFT-D2. The
lattice parameter a is not improved with respect to the PBE
functional. In the case of optPBE-vdW, a is even more overes-
timated. For all three functionals, Fig. 4 shows that the lattice
ratio c/(2xa) is overestimated compared to experiments.

To conclude, we observe that the various vdW methods
investigated here differ significantly in outcome and the rel-
ative order of the polytype stability. The lattice ratio c/(2xa)
could serve as an indicator for how well a specific vdW
method is suited to describe the SiC system. The methods
which describe the lattice most accurately are vdW-D3(BJ),
vdW-TS/HI, and vdW-MBD, which all predict that vdW dis-
persion has an insignificant effect on the polytype stability.
The PBEsol XC functional remains the most accurate method
for geometrical properties. For this reason, we limit ourselves
to conventional, non-vdW methods throughout the rest of this
work. In general, the T = 0 K internal energies of 3C, 4H, and
6H are all within a range of merely a few meV/SiC, so that we
have to consider other effects such as the thermal, mechanical,
and surface properties to explain experimental observations.

C. Temperature contributions

SiC crystal growth processes take place at very high tem-
peratures. Sublimation growth requires temperatures as high
as 2650 K, whereas the chemical vapor deposition (CVD) epi-
taxial growth occurs at 1800 K [7]. Therefore, it is important
to evaluate the temperature contribution to the thermodynamic
stability of the polytypes. Scalise et al. [55] assert that the
temperature-dependent polytype specific growth (i.e., 3C at
lower T , 4H and 6H at higher T ) can be explained by taking
into account this contribution. We follow their approach by
calculating the phonon spectrum with DFPT [107,108] as de-
scribed in Sec. II. Since the static internal energy differences
between the polytypes (�U0) vary for different computational
methods, as discussed in Secs. III A and III B, we focus here
on the vibrational contribution to the free energy, Fvib(T ) =
Uvib − T Svib. Furthermore, we study the influence of the XC
functional by comparing the LDA and PBE functionals.

FIG. 6. The phonon vibrational free energy of the xH polytypes
relative to 3C, calculated for the LDA and PBE XC functional in
the harmonic approximation. The inset shows the difference in vi-
brational entropy.

In Fig. 6, the relative phonon vibrational contribution to
the free energy is shown with respect to the 3C polytype. We
find that �Fvib is negative and decreases with temperature for
all hexagonal polytypes, which means that increased temper-
atures stabilize the hexagonal polytypes. Both XC functionals
PBE and LDA show the same trend overall, but the stabiliza-
tion of the hexagonal polytypes is slightly stronger for PBE.

The zero-point energy differences (�Uvib|T =0K) between
3C and the hexagonal polytypes is small, around −0.5 meV.
The values of �Svib among the polytypes are shown in the
inset of Fig. 6. In the temperature range T < 300 K, �Svib in-
creases steadily from zero to its maximum value. In this range,
�Fvib remains close to �Uvib|T =0K. For T > 300 K, �Svib

approaches a constant value, which results in �Fvib increasing
linearly. The highest entropy is found for the 2H polytype. The
4H and 6H polytypes exhibit very similar behavior; the 4H
polytype, with a higher hexagonality than 6H, shows a higher
�Svib and lower �Fvib.

At the CVD processing temperature of around 1800 K,
the phonon vibrational energy stabilizes the hexagonal poly-
types 4H (6H) over 3C by about −3.0 (−2.8) meV/SiC. This
temperature contribution is added to the static internal energy
differences at T = 0 K (�U0) to obtain the Helmholtz free
energy differences, F = U0 + Uvib − T Svib. Scalise et al. [55]
obtain similar results for the temperature contribution, but
take the U0 value from the PBE-D2 vdW correction method.
We have previously shown that the PBE-D2 correction does
not well reproduce experimental lattice parameters and should
therefore be omitted. Our findings of U0 (in Secs. III A and
III B) show that for conventional DFT methods and most vdW
corrections, 4H and 6H are equally or up to −5 meV/SiC
more stable than 3C. The temperature contribution only fur-
ther increases the thermodynamic stability of 4H and 6H.

To conclude, the thermodynamic stability of the bulk, in-
cluding the vibrational free energy, cannot by itself explain
experimental findings, in which 3C is observed at lower
growth temperatures and 3C inclusions pose severe problems
[15,118]. Note, however, that we did not take into account
any anharmonic effects, which become increasingly important
at these high processing temperatures and might affect the
energetic ordering.
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TABLE III. Elastic constants (Ci j in GPa), the Voigt (V), Reuss (R), and Voigt-Reuss-Hill (VRH) average of the bulk modulus (B in GPa)
and of the shear modulus (G in GPa), Young’s modulus (E in GPa), and Poisson’s ratio (ν) calculated with the VASP-PBE method in the
framework of DFPT. The results are compared to experimental values.

3C 6H 4H 2H
DFT Expt. DFT Expt. DFT Expt. DFT Expt.

C11 384.3 390a, 395e, 371g 485.2 501d 487.8 501d 494.3
C12 127.9 142a, 123e, 146g 106.0 112d 105.0 111d 102.1
C13 52.3 52d 51.9 52d 50.7
C33 534.1 553d 533.4 553d 533.5
C44 239.9 150b, 256a, 236e, 111g 160.1 163d 157.9 163d 151.3
C66 189.6 191.4 196.1
BV 213.6 213.0 214.0 214.3
BR 213.6 212.9 214.0 214.3
BVRH 213.6 225a, 270b 213.0 214.0 214.3 223c

GV 195.4 188.2 188.1 187.6
GR 178.0 184.0 183.5 181.6
GVRH 186.7 192c 186.1 185.8 184.6
E 433.7 448c 432.8 450f 432.3 450f 430.4
ν 0.1616 0.267a, 0.168c 0.1628 0.1634 0.1653

aRef. [119]
bRef. [120]
cRef. [121]
dRef. [122]
eRef. [123]
fRef. [124]
gRef. [125], 3C-SiC thin film

D. Elastic properties

During synthesis, the wafers are exposed to thermal stress,
which can influence the stability of the epitaxially grown
polytypes. In addition, point defects and doping could lead to
a deformation of the lattice, depending on the concentration,
as suggested by Kang et al. [60]. In this section, we investigate
the difference in elastic properties between the polytypes and
how it influences the thermodynamic stability. We compute
the stiffness tensor, consisting of the elastic constants Ci j ,
with DFPT. From these, the elastic moduli are determined as
described in Sec. II. Next, we study the effect of biaxial strain
on the polytype stability.

An overview of the elastic constants from VASP-PBE
DFPT and experimental reference data (whenever available)
is shown in Table III. For 3C-SiC, in particular, multiple
experimental reference values have been reported in the lit-
erature, some of which, however, substantially deviate from
each other. Nevertheless, we compare the average results to
our computed values and observe that both the elastic constant
and moduli are underestimated by up to 10%. The elastic
constants computed for 4H and 6H are in good agreement with
the experimental results from Brillouin scattering [122].

While the components Ci j of the cubic and hexagonal poly-
types are not directly comparable with each other due to their
different lattices, it is possible to evaluate and compare the
averaged bulk and shear moduli. While for the bulk modulus
B the Voigt upper and Reuss lower bounds are equal, this is not
the case for the shear modulus G. We determined the Young’s
moduli E and the Poisson ratio ν based on BVRH and GVRH.

The differences between the polytypes are visualized in
Fig. 7, where the change in the moduli relative to 3C is

shown. The elastic moduli B and ν increase, whereas G and
E decrease with increasing hexagonality. Between 3C and
2H, BVRH increases by 0.4%, which means that the hexago-
nal polytypes are slightly more resistant to compression. In
contrast, GVRH, which is a measure for rigidity, decreases by
1% from 3C to 2H. The Young’s modulus E , a measure of
the stiffness, also decreases by 0.7%. Lastly, Poisson’s ratio
ν increases by almost 2.5% for 2H. To summarize, among all
polytypes, 3C is most easily compressible uniaxially, but also
has the highest rigidity and stiffness.

To gain more insight in the effect of strain on the poly-
type stability, we calculate the energy-strain curves for 3C
and 4H. During growth, the vertical [0001] direction can
relax towards the vacuum (lattice constant c), whereas the
[112̄0] direction (lattice constants a and b) is prescribed
by the substrate’s lattice. Therefore, we consider biaxial
strain by gradually changing lattice constants a and b. The
energy-strain curves are approximately parabolic with a min-
imum for the relaxed lattice parameters, as observed in
Sec. III A. The seemingly identical curves are visualized in
the inset of Fig. 8. Therefore, we show the difference in the
energy-strain curves of 3C and 4H in the main plot. We choose
these polytypes because 3C inclusions in 4H-SiC epitaxy are
one of the main challenges during growth [7,11,12]. (For a
comparison of the energy-strain curves of 3C-2H and 4H-6H,
see Ref. [60].) Additionally, we investigate the influence of
the XC functional by comparing LDA, PBE, and PBEsol.

The difference in the energy-strain curves is plotted ver-
sus biaxial strain as a percentage of the lattice constants. In
order to study the effect of the biaxial strain alone, we set
the energy difference E4H − E3C to zero at the relaxed lat-
tice constants (0% biaxial strain). All three functionals show
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FIG. 7. The change in elastic moduli relative to 3C vs bulk
hexagonality.

positive energy differences at very high tensile and compres-
sive strains >±4%, indicating that 3C is stabilized by high
stress and strain incidences. The results of the different XC
functionals differ qualitatively for low strains. However, a 1%
strain is already very large; to illustrate, �a between the 3C
and 4H lattice is −0.05% [58].

PBE stabilizes 4H for moderate tensile and 3C for com-
pressive strains. In contrast, LDA stabilizes 3C for tensile and
compressive strains, and the polytypes are predicted more or
less equally stable until around −2% strain. The PBEsol curve
is approximately an average of the LDA and PBE curves,
which could be explained by the fact that PBEsol was de-
signed to reduce the overbinding of LDA and underbinding of
PBE [85]. For all functionals, 3C is stabilized by compression,
which is in agreement with its lower bulk modulus B. We
calculate the relative energy differences for the 2H and 6H
polytype at −1% strain and find values similar to 4H. To
conclude, at realistic strains of <1%, the energy differences
are of the order of ±0.3 meV/SiC. To obtain the full bulk
thermodynamic stability of the polytypes, one should include
the T = 0 K internal energy (Secs. III A and III B) and tem-
perature contributions (Sec. III C). Compared to the energy
scale of other physical contributions, one can consider the
elastic contribution negligible.

E. Surface energetics

The surface properties play an important role during the
epitaxial growth process of different polytypes, which com-
monly occurs along the [0001] direction as the industry
standard. Along this crystal axes, SiC exhibits two polar sur-
faces, either Si or C terminated, corresponding to the (0001)
and (0001̄) surfaces, respectively. Growth experiments have
produced evidence that differences in surface energy could
be the governing factor in polytype stability [5]. Mercier
and Nishizawa [43] calculated the surface energies with DFT
employing the PW91 functional. They found that the relative
stability of the Si- and the C-terminated surfaces is very
different. Here, we study the surface energy of the various
polytypes with conventional DFT methods and the DFT-D2/3
vdW correction.

FIG. 8. Effects of (0001) biaxial strain on the relative stability of
3C and 4H-SiC at T = 0 K for three XC functionals. The inset shows
the energy-strain curves for 3C and 4H. Elastic energy difference
between 3C and 4H is plotted vs biaxial strain as a percentage of
the lattice constant a, where a positive difference means 3C is more
stable.

In Fig. 9 and Table IV, an overview of the calculated
surface structures is shown. The 3C (2H) polytype has only
cubic (k) [hexagonal (h)] sites, which leads to only one surface
structure, whereas for 4H and 6H, the alternation of k and h
sites leads to the occurrence of two and three surface types
per polytype, respectively. In total, we evaluate seven surface
structures with different surface hexagonalities [126,127].
For each type, the Si- and C-terminated surfaces are treated
separately. We construct our slab models by passivating the
dangling bonds on the opposite side with hydrogen atoms. The
surface energy of either the Si or C termination is calculated
by

σSi/C = Eslab − nSiCμSiC − nHμH

A
− σH, (1)

where Eslab is the total energy of the slab, nSiC and nH are
the number of SiC pairs and hydrogen atoms, μSiC and μH

are the chemical potentials of one SiC pair (derived from the
bulk energy) and one hydrogen atom, A is the surface area,
and σH is the energy of the opposite H-passivated surface. The
H-passivated surface consists either of a Si-H or a C-H bond.
σH is approximated by calculating the average energy of the
two H-passivated surfaces as

σH = EH-slab − nSiCμSiC − nHμH

2A
, (2)

where EH-slab corresponds to the energy of a slab with an
H atom on both sides. Through the combination of Eqs. (1)
(nH = 1) and (2) (nH = 2), μH can be eliminated, which al-
lows us to calculate the absolute surface energies.

Previous calculations of the bulk energies have shown
the importance of benchmarking the different available DFT
methods. In Fig. 10, we show the relative surface energies
for six different methods in the same way as Ref. [43]. The
energies of the xH surfaces relative to 3C are plotted versus
surface hexagonality. For all evaluated methods, the energy
of the Si-terminated surfaces is linearly proportional to the
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FIG. 9. The surface structures investigated in this work. The
Si-terminated (C-terminated) surfaces are oriented towards the top
(bottom). The hexagonality of the surfaces is shown in Table IV.
Each unit cell has a 12 Å vacuum, one dangling bond, and an H
atom bound to the (no longer) dangling bond of the opposite surface.

surface hexagonality. We investigate the effect of the XC
functional with VASP. The difference between LDA, PBE, and
PBEsol is small compared to the energy differences among
the surface structures. Similar to the bulk calculations, LDA
and PBEsol result in very similar relative energies, which
are slightly higher compared to PBE. Although we include
a dipole correction, its effect is negligible on the scale of the
surface energy differences.

The discrepancy between the VASP-PBE and CP2K-PBE
methods is small but notable, up to 18 meV/dangling bond
for the low hexagonality surfaces. A possible explanation
could be that CP2K-GPW and VASP-PAW treat the vacuum
differently due to their different representation of the wave
function. The vdW dispersion correction methods DFT-D2/3
slightly lower the energy of the hexagonal surfaces.

The different DFT methods only show small quantitative
differences, but the overall trend is retained. For the Si face,
we see a linear trend and the 3C surface is most stable by
up to 158 meV/dangling bond (2H). The C-terminated sur-
faces show a different ordering in surface stability. The high
hexagonalities 6H-S1, 4H-S1, and 2H are more stable by up

TABLE IV. Overview of the surface structures. For 4H and 6H,
there exist two and three different surface terminations, respectively.
For each structure, we list the bilayer stacking, ordering of h/k sites,
and the bulk and surface hexagonality.

Bulk Surface
Polytype Stacking hexagonality hexagonality

3C |k)∞ 0 0
6H-S3 |k2k1h)∞ 1/3 (33%) 1/7 (14%)
6H-S2 |k1hk2)∞ 1/3 (33%) 2/7 (29%)
4H-S2 |kh)∞ 1/2 (50%) 1/3 (33%)
6H-S1 |hk1k2)∞ 1/3 (33%) 4/7 (57%)
4H-S1 |hk)∞ 1/2 (50%) 2/3 (67%)
2H |h)∞ 1 (100%) 1 (100%)

FIG. 10. Surface energy relative to the 3C polytype vs surface
hexagonality, which is determined by the polytype and the termina-
tion of the surface.

to 17 meV/dangling bond, whereas the low hexagonalities
6H-S3, 6H-S2, and 4H-S2 are less stable than the 3C surface
by up to −42 meV/dangling bond. These calculations were
performed without considering spin-polarization and surface
reconstruction. Since all DFT methods result in a consistent
trend, we continue to investigate the surface properties with
VASP-PBE.

The absolute energies of the Si- and C-terminated surfaces
are plotted in Fig. 11 and tabulated in Table IV of the SM
[54]. The non-spin-polarized (black) values coincide with the
relative energies in Fig. 10. Generally, the Si face has lower
energy than the C face. Without spin polarization, the Si-
terminated surface undergoes a 2 × 1 buckled reconstruction,
which has been previously reported and is shown in Fig. 1 of
Ref. [128]. Through the reconstruction, the surface energy is
lowered between 106 (3C) and 160 (2H) meV/dangling bond.
Even though the reconstruction is favorable, it has not been
observed experimentally [129–131].

The discrepancy between DFT and experiment is eluci-
dated by introducing spin polarization, with which we find
a new ferromagnetic ground state for both the Si and C
face. In this case, the electron of the surface dangling bond
fully occupies one spin channel, which lowers its energy
significantly. The reduction is between 191 (3C) and 281
(2H) meV/dangling bond for the Si-terminated and between
219 (6H-S1) and 284 (6H-S2) meV/dangling bond for the
C-terminated surfaces. Note that for this ferromagnetic state
the buckled structure is not a local minimum on the po-
tential energy surface and its relaxation leads back to the
pristine, non-reconstructed surface. We also consider some of
the smallest periodicity antiferromagnetic patterns and found
that they produce nearly identical values as the ferromagnetic
surface. The spins of the dangling bond are uncorrelated and
the ground state is achieved as long as the dangling bonds
fully occupy one of the spin channels.

The spin polarization reduces the energy differences be-
tween the polytypes. For the Si face, the linear trend is
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FIG. 11. Absolute energies of the Si- and C-terminated surfaces
vs hexagonality for the non-spin-polarized and ferromagnetic ideal
surface, and, in the case of Si termination, a 2 × 1 (nonmagnetic)
reconstruction. All results are obtained with VASP-PBE.

retained, but the largest energy difference (between 3C and
2H) is now 59 instead of 158 meV/dangling bond. For the C
face, the 3C surface is now most stable and the energy differ-
ences are between 4 and 16 meV/dangling bond compared to
the hexagonal polytypes. The energy differences per unit cell
(with one surface dangling bond) are more significant than
those of the bulk thermodynamic stability for growth on the
Si face.

IV. CONCLUSION

In summary, we have systematically evaluated the ener-
getics of the 3C, 2H, 4H, and 6H SiC polytypes for the
various attributes that play a role during epitaxial growth. We
investigated the thermodynamic stability of bulk phases, both
at zero and elevated temperature, and under lateral biaxial
strain. Furthermore, we computed the surface energetics of
the (0001) Si- and (0001̄) C-terminated surfaces.

Since the bulk energy differences at T = 0 K between the
polytypes are very small, of the order of 1 meV/SiC, we care-
fully studied the effect of different DFT implementations and
XC functionals. The results obtained using the VASP, CP2K,
and FHI-AIMS codes are consistent when using the PBE func-
tional. The accurate hybrid functional HSE06 gives results
consistent with PBE, indicating that PBE describes the SiC
polytypes adequately. LDA and PBEsol predict the xH poly-
types to be around −1 meV more stable than those obtained
with PBE. PBEsol is especially suitable for the geometrical
properties, matching the experimental lattice parameters and
solving the well-known under- and overbinding of PBE and
LDA, respectively. The two meta-GGA functionals, SCAN
and RTPSS, deviate by about 0.5 to 1.0 meV/SiC from PBE,
but with an opposite trend.

In addition, we have evaluated nine vdW methods, which
are notably more inconsistent in predicting the polytype sta-

FIG. 12. Comparison of the energy contributions studied in this
work: the bulk internal energy �U0 at T = 0 K, the phonon vi-
brational energy Fvib at T = 1800 K, the elastic contribution �E
at 1%, and the Si-face surface energy. The differences between 3C
and xH polytypes are plotted for each contribution based on the
results obtained by the VASP-PAW-PBE method. The surface energy
differences are labeled according to Table IV.

bility than the non-vdW methods. The DFT-D2 and the vdW
functionals show a significant correction to the PBE ener-
gies resulting in a greater stability of the 3C phase than the
hexagonal polytypes. However, the lattice ratios predicted
by these methods deviate more severely from experimental
values, which could be an indicator that these methods are less
suited for the SiC system. The most advanced vdW methods
have a negligible energy correction and predict the lattice pa-
rameters correctly like the conventional DFT methods. Thus,
in contrast to Ref. [46] and Ref. [55], we conclude that the
vdW correction methods introduce spurious errors when com-
puting energetics of the bulk SiC system, except for the most
advanced vdW methods.

To compare the various factors that affect polytype stabil-
ity, we show a comparison of energy contributions in Fig. 12.
At 0 K, the 3C, 4H, and 6H polytypes have very similar en-
ergies, with 4H and 6H being −1 meV/SiC more stable than
3C. The 2H polytype is, in contrast, around 5 meV/SiC less
stable than 3C. The temperature contribution �Fvib|T =1800K

stabilizes the hexagonal polytypes by about −3 meV/SiC for
4H and 6H, and −4 meV/SiC for 2H. Contrary to Scalise
et al. [55], whose relative energies at 0 K were based on the
spurious vdW PBE-D2 methods, our results show that the bulk
phases of 4H and 6H are always more stable than 3C. The
effect of biaxial strain is negligible compared to the other bulk
contributions for realistic strains of up to 1%, in contrast to the
reports of Kang et al. [60].

Since the bulk thermodynamic stability cannot explain why
3C growth is observed at low temperatures and why 3C in-
clusions are found during epitaxy, we also considered the
surface energetics. For the Si-terminated surfaces (commonly
exposed during epitaxial growth), the surface energy of 3C
is considerably lower than that of the hexagonal polytypes.
The low-hexagonality surfaces 6H-S3 (14%), 6H-S2 (28%),
and 4H-S2 (33%) exhibit smaller energy differences of up
to 20 meV/dangling bond. For the 6H-S1, 4H-S1, and 2H
surfaces with higher hexagonality, the energy differences are
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between 45 and 59 meV/dangling bond. During 4H (6H) SiC
epitaxial growth in the [0001] direction, the 4H-S1 and 4H-S2
(6H-S1, 6H-S2, and 6H-S3) surfaces alternate and are thus
both of importance.

To conclude, it seems that the difference in surface energy
is likely the driving force for 3C nucleation, even though
the difference in bulk energy slightly favors the 4H and 6H
polytypes. It is crucial to take into account all contributing

factors to understand the intricate mechanisms that govern the
SiC epitaxial growth.
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