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System size dependent topological zero modes in coupled topolectrical chains
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In this paper, we demonstrate the emergence and disappearance of topological zero modes (TZMs) in a coupled
topolectrical (TE) circuit lattice. Specifically, we consider non-Hermitian TE chains in which TZMs do not occur
in the individual uncoupled chains, but emerge when these chains are coupled by interchain capacitors. The
coupled system hosts TZMs which show size-dependent behaviors and vanish beyond a certain critical size. In
addition, the emergence or disappearance of the TZMs in the open boundary condition spectra for a given size
of the coupled system can be controlled by modulating the signs of its inverse decay length. Analytically, trivial
and nontrivial phases of the coupled system can be distinguished by the differing ranks of their corresponding
Laplacian matrix. The TE circuit framework enables the physical detection of the TZMs via electrical impedance
measurements. Our work establishes the conditions for inducing TZMs and modulating their behavior in coupled
TE chains.
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I. INTRODUCTION

One of the most interesting phenomena in condensed mat-
ter systems is the discovery of novel topologically protected
states such as edge states [1–7], zero-energy modes [8–10],
corner modes [11–14], and hinge modes [15–17] in various
Hermitian systems. These topologically protected states con-
stitute a new basis for diverse physical phenomena [1,2,4,18]
and various related applications [19–21] because of their
many interesting characteristics such as their robustness
against system disorders and perturbations. The topologically
nontrivial phases in such Hermitian systems are characterized
by Bloch wave vectors that respect the usual bulk-boundary
correspondence (BBC), and their band spectra under open
boundary conditions (OBC) in the limit of infinite system
size are identical to those under periodic boundary conditions
(PBC). The introduction of non-Hermiticity, for example in
the form of nonreciprocal couplings [22–24], may result in
the emergence of drastic differences between the OBC and
PBC spectra and the breakdown of the usual BBC and the
Bloch theorem [25–35]. Several non-Hermitian systems have
been realized in various platforms ranging from topolectri-
cal [22,36–45] to photonics [46–48] and acoustic [49,50]
systems, as well as superconductors [51–53] and metama-
terials [52,54,55]. In such systems, the wave functions are
localized in the vicinity of the system boundaries under
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OBC, a phenomenon known as the non-Hermitian skin effect
(NHSE) [38,56–63].

Interestingly, the introduction of coupling between
two non-Hermitian chains with dissimilar degrees of
non-Hermiticity fundamentally alters the topological char-
acter of the coupled system [64]. It was recently found
that coupled non-Hermitian chains exhibit scale-free ex-
ponential wave functions [65] and the critical NHSE
(CNHSE) [57,59,66–69], in which the wave functions and
eigenvalues experience a discontinuous transition as the sys-
tem size is increased beyond some critical point. However,
much remains to be understood regarding the evolution of
the topological edge modes in such coupled non-Hermitian
systems including their dependence on system size.

In the following, we demonstrate via numerical and ana-
lytical results the emergence of topologically protected zero
modes (TZMs) in a coupled non-Hermitian topolectrical (TE)
circuit chain consisting of inductors, capacitors, and op-amps.
We found that under some specific combinations of interchain
hopping and non-Hermiticity parameters, TZMs can emerge
in the coupled system even when the individual chains do not
host any TZMs. Conversely, when the individual chains are
tuned to the nontrivial regimes, a finite interchain coupling can
result in size-dependent zero modes that persist up to a critical
system size and then vanish abruptly upon further increase in
the system size. Analytically, the emergence and disappear-
ance of the TZMs via interchain coupling can be predicted by
evaluating the rank of a matrix constructed from the eigenvec-
tors of the surrogate Hamiltonian of the circuit. Furthermore,
in the physical TE circuit realization, the presence of TZMs
can be detected by impedance spectral measurements. In sum-
mary, we show the emergence and modulation of TZMs in
coupled TE systems by varying either the interchain coupling
strengths or the system size.
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FIG. 1. Schematic of a pair of coupled non-Hermitian TE chains. (a) The coupled TE circuit is comprised of two non-Hermitian SSH
chains with opposite signs of the non-Hermiticity capacitances Cγ . Within each chain, the intraunit cell coupling is directionally asymmetric:
in the top (bottom) chain, the couplings in the two directions are given by C1 ± Cγ (C1 ± ηCγ ), respectively. The coupling asymmetry is
implemented by a negative impedance converter with current inversion (INIC). The two chains are coupled via an interchain capacitor Cc.
(b) Grounding mechanism for the different types of nodes. The couplings to the ground are chosen such that a single resonant frequency of
fr = [2π

√
Lr (C1 + C2 + Cc )]−1 is established via tuning the common inductance Lr , so that the on-site potential is zero at every node.

II. RESULTS

A. Construction of coupled TE chains that host TZMs

The pivotal step in inducing TZMs is to construct a TE
circuit lattice that emulates the electronic band structure of
a coupled non-Hermitian system having skin modes of dis-
similar inverse decay lengths. (The inverse decay length is the
imaginary part of the complex wave vector of the OBC mode.)
To do so, we consider the TE circuit array shown in Fig. 1
formed by connecting two non-Hermitian chains [top and bot-
tom rows of Fig. 1(a)] by an interchain coupling capacitance
Cc. In the absence of the interchain coupling, each of the two
chains are analogous to the non-Hermitian SSH model with
asymmetric directional couplings between two neighboring
nodes in their unit cell. These are given by (C1 ± Cγ ) in the

two directions for the top chain and by (C1 ± ηCγ ) for the
bottom chain. For both chains, there is a reciprocal coupling
of C2 between adjacent unit cells (i.e., the coupling coeffi-
cient in the direction from a site to its neighbor is the same
as that in the direction from the neighbor to the site). The
coupling asymmetry in the intrachain segment is realized in
the practical circuit via negative impedance converters with
current inversion (INICs) [25]. The non-Hermiticity parame-
ter Cγ can be modulated so that the eigenmodes of the upper
and lower chains have different inverse decay lengths when
η �= 1. When the parameter η is set to −1, the two chains
are in an antisymmetric configuration where the sum of their
inverse decay lengths is zero. The corresponding Laplacian
for the circuit in Fig. 1(a) [multiplied by 1/(iω)] can be
expressed as

(iω)−1L(k, ωres ) =
(

Ha(k, ωres ) CcI2×2

CcI2×2 Hb(k, ωres)

)
, (1)

where

Ha(k, ωres ) =
((

C1 + C2 + Cc − 1
ω2Lr

)
C1 + Cγ + C2 exp(−ik)

C1 − Cγ + C2 exp(ik)
(
C1 + C2 + Cc − 1

ω2Lr

)
)

(2)

and

Hb(k, ωres ) =
((

C1 + C2 + Cc − 1
ω2Lr

)
C1 − ηCγ + C2 exp(−ik)

C1 + ηCγ + C2 exp(ik)
(
C1 + C2 + Cc − 1

ω2Lr

)
)

. (3)

We introduce the corresponding surrogate Hamiltonian to
the Laplacian and the non-Bloch factor β = eik as H (β ) ≡

(iω)−1L(k = −i ln β, ω), where k can now take on imaginary
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(a) (b)

FIG. 2. OBC spectra as functions of the system size for the individual uncoupled A and B chains for later comparison with the coupled chain
system. (a), (b) The OBC eigenenergy distributions for chains A and B, respectively, at various system sizes N . Other common parameters:
η = 1, C1 = 0.83, C2 = 0.6, and Cγ = 0.8. The topological zero modes are evident at all system lengths, unlike the coupled system which we
shall describe later.

or complex values under OBC. We will show that Eq. (1)
represents a coupled TE system that exhibits size-dependent
nontrivial boundary states.

B. System size-dependent topological zero modes

To highlight the features of the coupled chain system,
we first study the OBC spectra of the individual uncoupled
chains for comparison. The OBC admittance distributions are
plotted at varying system size N in Fig. 2 for the individual
uncoupled chains A and B at η = 1, which denotes that the
coupling strength for hoppings from left to right in the first
chain is equal to the coupling strength for the hopping in the
reversed in the second chain, and vice versa, i.e., “antisym-
metric coupled chains.” Following the properties of generic
non-Hermitian SSH chains [70,71], both individual chains

host TZMs for the parameter range of −
√

C2
2 + C2

γ < C1 <√
C2

2 + C2
γ . In the limit of large system size, the TZMs of

the uncoupled chains are degenerate at zero energy and their
behavior is independent of the system size [see Figs. 2(a)
and 2(b)]. However, for small system size (i.e., of the order of
N ≈ 4), the TZMs become nondegenerate and are no longer
pinned at zero energy [see Figs. 2(a) and 2(b)]. (The observed
behavior of the TZMs of uncoupled chains is discussed in
more detail in Appendix A.)

Next, we plot the variation of the OBC eigenenergy spectra
as a function of N for various values of the interchain cou-
pling strengths (Cc) corresponding to nearly decoupled (Cc =
10−7), weakly coupled (Cc = 0.005), and strongly coupled
(Cc = 0.3) systems.

In nearly decoupled systems with very small Cc values
(on the order of 10−7), the coupled systems host TZMs as
long as the OBC spectra lie on the real axis. These real
energy spectra with TZMs in the coupled systems occur at
relatively small system sizes [see Fig. 3(a)]. In other words,
the TZMs survive for system sizes less than some critical
N = Ncritical. When N > Ncritical, the OBC eigenspectra ex-
pand into the complex plane and do not exhibit any TZMs

(the fourfold degenerate TZMs split and move away from the
real axis). Therefore, in the nearly decoupled TE chains, the
TZMs vanish beyond a critical system size [57], i.e., they
exhibit the critical non-Hermitian skin effect (CNHSE) [see
Fig. 3(a)]. The emergence and disappearance of these pecu-
liar size-dependent TZMs in the coupled TE chains can be
characterized by impedance measurements between the two
leftmost nodes of chain A as shown in Fig. 3(d). Here, the
presence or absence of the TZMs is distinguished by high and
low impedance readouts, respectively. Furthermore, a sharp
transition between the high and low impedance states marks
the critical system size corresponding to the CNHSE.

As the magnitude of Cc increases, the hybridization be-
tween the two chains becomes more prominent and the
characteristics of the coupled chains deviate drastically from
those of the uncoupled chains. For instance, even in the case
of weakly coupled chains (Cc = 0.005), the CNHSE transi-
tion occurs at a much smaller system size (N ≈ 1) for our
choice of model parameters [see Fig. 3(b)]. No TZMs ex-
ist for N > Ncritical, resulting in the low impedance readouts
in Fig. 3(e). When the interchain coupling Cc takes on a
significant value (i.e., Cc = 0.3), which is on the order of
the other parameters, the strong hybridization between two
chains prevents the emergence of TZMs and the OBC en-
ergy spectra become almost independent of system size [see
Fig. 3(c)]. The absence of the TZMs translates into very small
impedance measurements for all system sizes [see Fig. 3(f)].
Next, we plot the OBC energy spectra and impedance readout
with respect to N for the general case of η �= 1, in which
the coupling in the two chains are no longer exactly anti-
symmetric. For the case where η < 0, the ln |β| values of
the eigenstates localized in the two chains A and B (i.e.,
ln |β|A-chain = C1+Cγ

C1−Cγ
and ln |β|B-chain = C1+ηCγ

C1−ηCγ
) have the same

sign. In this configuration, which we describe as exhibiting
“constructive hybridization” (see [57]), there are well-defined
TZMs in the OBC spectra [see Fig. 4(a)]. Furthermore, the
TZMs exist for all values of system size N and thus the system
no longer exhibits the CNHSE. However, for the case where
η has a positive value (η �= 1), i.e., ln|β| has opposite signs
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Anomalous disappearance of topological modes as system size is varied. Demonstration of the effect of system size and interchain
coupling Cc on the eigenenergy distribution for coupled TE chains. (a)–(c) The OBC dispersion relations with respect to the system size at
η = 1 for Cc = 10−7, 0.005, 0.3, respectively. Zero modes exist at small Cc and small N . (d)–(f) Comparison of the impedance Z as functions
of N for three values of Cc = 10−7, 0.005, 0.3, respectively, at η = 1. High and low impedance readouts signify the presence and absence of
the topological zero modes, respectively. Other parameters: C1 = 0.83, C2 = 0.6, and Cγ = 0.8. The zero modes vanish at strong interchain
coupling and/or long chains.

for the states localized in the two chains, the configuration
corresponds to “destructive hybridization” and the TZMs van-
ish [see Fig. 4(b)]. As before, the presence and absence of
TZMs under constructive and destructive hybridization can
be distinguished by the relatively large and small impedance
measurements, respectively, for a given N [see Figs. 4(c)
and 4(d)].

A condition for the existence of a TZM in the thermody-
namic limit is that the system of (four) linear equations gov-
erning the boundary conditions at the boundary where the
TZM is localized (to ensure that the wave function van-
ishes at that boundary) is not of full rank [72]. This fact
allows a quick analytical method of determining whether
the system is topologically nontrivial and hosts TZMs from
the number of linearly independent zero-admittance eigen-
vectors among the first eigenvectors with the four smallest
magnitudes of β. In other words, we evaluate the rank of
the matrix constructed from the columnwise concatenation of
these zero-admittance eigenvectors. The Hamiltonian of the
system would be deemed nontrivial if the rank of the matrix
is less than four. Details of this analytical procedure and the
rationale for this criterion are presented in the Appendix.

Furthermore, to validate the robustness of our size-
dependent topological characteristics in our TE model,
we performed simulations with realistic electrical compo-
nents (including a typical parasitic resistance spread to all
coupling values). The key results obtained (size-dependent
admittance dispersions) are found to virtually match the ide-
alized LC model results. Therefore, our TE circuit provides

robustness against perturbations and spread in the component
values (see the Appendix for details).

Figure 5(a) shows the phase diagram of the system as a
function of coupling capacitance Cc and non-Hermitian and
asymmetric coupling parameter ηCγ , with the other parame-
ters taking the same values as those in Figs. 3(a)–3(c) and 4(a)
and 4(b). The ranges of Cc and ηCγ shown encompass those
considered in Figs. 3 and 4, for which the positions in the
phase diagram corresponding to the plots in these figures are
denoted by circles with the corresponding labels. In particular,
Fig. 5 shows that the parameter set in Fig. 3(a) corresponds
to the nontrivial regime. The absence of TZMs at large N
for the parameter set in Fig. 3 can now be ascribed to the
topologically trivial nature of the coupled chains even though
the uncoupled chains in the figure are themselves topolog-
ically nontrivial. In the nearly decoupled case in Fig. 3(a),
the topologically nontrivial nature of the uncoupled chains
are retained in the coupled chains of short system lengths as
shown by the existence of the TZMs. However, when the sys-
tem size exceeds the critical length corresponding to CNHSE,
the topologically trivial nature of the coupled chains becomes
dominant.

In the cases considered so far, the isolated chain A is always
nontrivial. We now set Cγ = 1.6 so that chain A is now trivial
and plot the phase diagram under varying Cc and ηCγ , while
retaining the same values for the other parameters, as shown
in Fig. 5(b). In the region outside the dotted rectangles in
Fig. 5(b), both of the uncoupled chains A and B are trivial. In-
terestingly, topologically nontrivial phases can emerge when
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(a) (b)

(c) (d)

FIG. 4. Impedance and zero-mode evolution under OBC for various hybridization scenarios between TE chains. (a),(b) Evolution of TZM
states as a function of system size (N) for constructive (i.e., η = −2) and destructive (i.e., η = 2) hybridization, respectively. (c),(d) The
variation of impedance Z with respect to system size (N) for constructive and destructive hybridization, respectively. Other common
parameters: C1 = 0.83, C2 = 0.6, Cc = 0.2, and Cγ = 0.8. Note that for this set of parameters, TZMs exist only under condition of constructive
hybridization.

both of these topologically trivial chains are coupled together,
as evidenced by the parameter space in the phase diagram
lying outside the dotted rectangles that corresponds to the
nontrivial state. As an illustration, we consider the specific
case of Cc = 0.3 and ηCγ = 0.55, which is denoted by a
circle labeled “5c” in Fig. 5(b). The admittance spectra for
increasing finite lengths of the system are shown in Fig. 5(c).
Figure 5(d) in turn shows the GBZ admittance spectrum ob-
tained as the set of admittance values where the two middle β

values, arranged in order of increasing magnitude, coincide.
Comparing Fig. 5(c) with 5(d), it can be seen that the TZMs
marked in orange in the former are absent in the latter. This
indicates that the states marked in orange are indeed topo-
logical states, which are not captured in the GBZ, unlike the
remaining states, which are bulk states.

III. CONCLUSION

In conclusion, we show that modulation of the interchain
Cc and non-Hermitian intrachain ηCγ couplings can con-
trol the onset or disappearance of TZMs in the system. The
TZMs in the coupled system exhibit a more varied set of
behavior compared to that of single non-Hermitian chains
that have been studied hitherto. Our theoretical results re-
veal that, depending on the specific values of Cc, ηCγ , and

other capacitive couplings, TZMs can be made to appear
or vanish in the coupled system for all possible topological
character of the two constituent chains. In other words, TZMs
can be absent or present for all scenarios, i.e., when nei-
ther, either, or both of the uncoupled chains are topologically
nontrivial. The emergence of TZMs in the coupled system
when neither of the two constituent chains are topologically
nontrivial implies the key role played by the interchain cou-
pling in determining the topological character of the coupled
system. Additionally, in the converse case where both the con-
stituent uncoupled chains are topologically nontrivial while
the coupled system is topologically trivial, one observes a
size-dependent effect in which TZMs persist at small in-
terchain coupling strengths and for small system size, but
disappear when the system size exceeds a critical limit, a
phenomenon known as the critical non-Hermitian skin effect
(CNHSE). We devise an analytical method to distinguish the
trivial and nontrivial phases of the coupled system by consid-
ering the rank of the matrix constructed from zero-admittance
eigenvectors of the surrogate Hamiltonian. Based on this an-
alytical method, we plot the modified phase diagram of the
coupled system over the Cc and ηCγ parameter space, and
elucidate the role of the interchain and non-Hermitian cou-
plings in determining the topology of the coupled system.
In practice, the trivial and nontrivial phases of the cou-
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(a) (b)

(c) (d)

FIG. 5. (a) Phase diagram of the coupled system with respect to Cc and ηCγ . The other parameter values are chosen to be the same as
those in Figs. 3 and 4 for which the isolated A chain is topologically nontrivial. The label above each circle denotes the OBC spectra in
Figs. 3 and 4, to which the corresponding parameter coordinates (Cc, ηCγ ) correspond. (b) Phase diagram of the coupled system over the
Cc-ηCγ parameter space for the values of the other parameters as in (a), except that Cγ is now set to 1.6, so that chain A is now topologically
trivial. The circle labeled “5c” denotes the parameter pair of (Cc = 0.3, ηCγ = −0.55) for which the admittance spectra are plotted in panels
(c) and (d), respectively. The rectangles with the dotted borders indicate the range of ηCγ for which chain B is topologically nontrivial. (c) The
variation of the admittance spectra for Cγ = 1.6,Cc = 0.3, ηCγ = −0.55 with the system size N . (d) The OBC admittance spectrum for the
parameter set in (c) in the thermodynamic limit (i.e., N → ∞) found from the criteria that the admittance values with the middle magnitudes
should be coincident. Note the absence of the TZMs highlighted in yellow in panel (c) here. These results show that topologically zero modes
may emerge or vanish in coupled chain systems regardless of the topological character of the two constituent uncoupled chains, i.e., TZMs can
exist in the coupled system when neither or either or both of the constituent chains are topologically nontrivial.

pled TE chains and their evolution with system size can
be distinguished by circuit impedance measurements, with
the TZMs being associated with higher impedance readouts.
More broadly, our results indicate a practical means to induce
TZMs and modulate the topological phase transitions in cou-
pled systems based on the TE circuit platforms.
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APPENDIX

1. Analytical determination of topological nontriviality

The eigenstates of a non-Hermitian system may be lo-
calized at its edges under OBC because of the two distinct
mechanisms of the non-Hermitian skin effect or because they
are topologically nontrivial edge states. The former requires
boundaries to be present at both ends of the system and occurs
only at energies at which the two median values of |β| match
in the thermodynamic limit. This arises from the requirement
that the linear superposition of the PBC eigenstates consti-
tuting the OBC eigenstate satisfies the boundary conditions
that the wave function of the OBC eigenstate vanishes at
both boundaries simultaneously. (See our earlier paper for the
details [57].)
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Another mechanism for the emergence of localized states
is when these states are topologically nontrivial. A hallmark
of such a topologically nontrivial state is that the system of
linear equations for the boundary conditions at the boundary
near where the state is localized is not of full rank [72].
Here, we describe a quick approach to determine whether
a non-Hermitian system with only nearest-neighbor interunit
cell coupling supports topologically nontrivial states near zero
energy. Consider the Hamiltonian for a single uncoupled chain
with an arbitrary number of nodes, 2nd , in each unit cell
represented by

H (β ) =
(

0 H−β−1 + t−+
H+β + t+− 0

)
, (A1)

where the quantities in bold are nd × nd matrices. We write
the time-independent Schrödinger equation for Eq. (A1) as

H (β )|�〉 = |�〉E , (A2)

where |�〉 is the (right) eigenstate with energy E . The charac-
teristic polynomial for an eigenenergy of 0, |H (β )| = 0, can
be made into a quadratic polynomial in β. This implies that
there are, in general, only two finite values of β that will
result in H (β ) having an eigenenergy of zero regardless of
the value of nd . When nd > 1, the system also admits the β

values of 0 and ∞: at β = 0 (∞), the term containing β−1 (β)
in Eq. (A1) dominates over the remaining terms in Eq. (A2),
including the |�〉E term on the right side of the equal sign and
Eq. (A2) effectively becomes H+|�〉 = 0 (H−|�〉 = 0). There
are nd − 1 eigenvectors for β = 0 and another nd − 1 eigen-
vector for β = ∞. Denoting the ith solution of H±|�〉 = 0 as
|� i

±;0〉, the (nd − 1) |� i
±;0〉’s for each of the two signs of ± in

the subscript constitute eigenvectors with the effective values
of ln |β| = ±∞ that are localized at the right (left) edges of
the system. For the ease of explanation, let us now consider
the simplest example of Eq. (A1), where all the bold quantities
are scalars, i.e., the single uncoupled SSH chain described by
the Hamiltonian

H =
(

0 c12 + d12/β

c21 + d21β 0

)
, (A3)

where c12 and c21 denote the intraunit cell coupling and d12

and d21 the interunit cell coupling (ci j and di j are nonzero
parameters). It can be easily found that the eigenstates and
β values of Eq. (A3) at E = 0 are

(1, 0)T : β = 0, β = −c21/d21,

(0, 1)T : β = ∞, β = −d12/c12. (A4)

We assume for the moment that |c21/d21| < 1 and consider
a semi-infinite system that spans x = 1, 2, . . . ,∞. In this

case, the system can host an edge state ψleft (x) satisfying the
boundary condition that ψleft (x = 0) = 0 given by

ψleft (x) =
(

1
0

)
[δx,0 − (−c21/d21)x], (A5)

where x is an integer (because the Hamiltonian describes a
lattice system) and the δx,0 is the Kronecker (not Dirac) delta
owing to the localization of the β = 0 state on the left edge
of the system. Note that Eq. (A5) is not admissible as an
eigenstate of a system with a finite length that has both a left
and a right edge, as can be seen from the following: denoting
the length of the finite system as N so that x = 1, 2, . . . , N ,
we see substituting x → (N + 1) into Eq. (A5) does not
satisfy the requirement that the wave function vanishes at
x = (N + 1) because ψleft (N + 1) = (1, 0)T[−(c21/d21)N+1].
Moreover, this remaining bit cannot be canceled off by any
linear combination of the remaining two eigenvectors, which
are proportional to (0, 1)T. The formation of edge states that
will satisfy the boundary conditions at both edges in finite-
length systems therefore requires the energy to be shifted
slightly away from E = 0 so that the β values and eigenvec-
tors in Eq. (A4) now become(

1
0

)
, β = 0,

(
1

δa1

)
, β1 = −c21/d21 + δb1,

(
δa2

1

)
,

β2 = −d12/c12 + δb2,

(
0
1

)
, β = ∞, (A6)

where the δai’s and δbi’s are small shifts due to the shift
in the energy. The presence of the δai’s in the eigenspinors
of the terms with finite β’s now allow the terms to cancel
off one another at both boundaries to satisfy the boundary
conditions at both edges. For an edge state localized at the left
edge, the resultant (unnormalized) wave function can be writ-
ten as

ψfinite(x) =
(

1
0

)
δx,0 + c1

(
1

δa1

)
(β1)x + d2

(
δa2

1

)
(β2)x

+ d3

(
0
1

)
δx,N+1, (A7)

where c1 → −1, β1 → (−c21/d21), β2 → (−d12/c12) and
δa1, δa2, d2, d3 → 0 as N → ∞. The finite length can in this
case be interpreted as a perturbation to the “ideal case” of the
semi-infinite system.

Note that, for Eq. (A7) to describe a state localized at the
left edge, we require |β1| < |β2| so that, at the left edge at
x = 0, the (δa2, 1)T state has a miniscule weight compared
to the (1, a1)T state and the latter is largely canceled off by
the (1, 0)T state with β = 0, which is confined to only the left
edge. A similar consideration for the edge state localized on
the right edge of the system would also lead to the requirement
for |β1| < |β2| in order for such an edge state to be formed.

There is another crucial difference between the semi-
infinite length system, which has only a single edge, and
the finite length system, which has two edges. In the latter,
there are no restrictions on whether |β1| or |β2| are required
to be smaller or larger than 1 for edge states to exist in the

075158-7



S. M. RAFI-UL-ISLAM et al. PHYSICAL REVIEW B 106, 075158 (2022)

FIG. 6. Anomalous disappearance of topological modes with variation of system size to demonstrate the effect of the system size and
series resistance R on the eigenenergy distribution in coupled TE chains. We assume the same parameter values as those used in plotting
Fig. 3(a) of our main paper with the addition of a series resistance of R = 10
 to each inductor and capacitor. The overall trends of the
admittance distribution do not vary significantly from those of the ideal zero-resistance case (a) even when a series resistance is introduced to
the coupling capacitors and inductors (b).

system. In the semi-infinite system extending from x =
[0,∞), it is strictly required that the finite |β| < 1 so that
the wave function amplitude remains bounded as it extends
to infinity. In contrast, in a system of finite length, we saw in
Eq. (A7) that, in general, a wave function satisfying the OBC
at both the left and right boundaries requires the simultaneous
combination of the |β| values, which may be bigger or smaller
than one. The finite length of the system ensures that the
resulting wave function remains bounded to finite values.

The simple SSH model discussed above suggests the fol-
lowing criteria for quickly establishing whether topological
edge states can exist near E = 0 in more general systems,
including the 4 × 4 Hamiltonian considered in Eq. (A1) of
the coupled SSH chain system, without having to perform
the far more intensive calculation of the topological invariant
of the system. First, solve for the β values and their corre-
sponding eigenvectors of the 2nd × 2nd Hamiltonian at the
eigenvalue of E = 0. Arrange the 2nd β values (including
β = 0 and β = ∞) in ascending order of |β|. If the rank of
the square matrix formed by the columnwise concatenation
of the first (last) nd eigenvectors is less than nd , the system
hosts a topological edge state on the left (right) edge. In
contrast, if the rank is nd , there can be no edge states. This
can be seen from the definition of the rank of a matrix as
the number of linearly independent vectors in the matrix for
which the only combination of the eigenvectors that sums up
to 0 at the boundary to satisfy the boundary condition is the
trivial combination that the weights of all the eigenvectors
are 0. For instance, returning to the example of Eq. (A3)
and its eigenvectors Eq. (A4), if |c21/d21| < |d12/c12|, then
the corresponding square matrix formed by concatenating the
first two eigenvectors is (1 1

0 0), which has a rank less than 2
and a linear superposition of these two eigenvectors that sums
to zero can be found without the weights both equal to 0. In
contrast, if the condition is not satisfied, the resulting matrix

would be I2, which has a rank of 2. In this case, the system
does not host nearly zero energy edge modes because there is
no nontrivial linear combination of the eigenvectors that sums
to 0.

2. Influence of the intrinsic lossy effect on the critical
appearance of topological zero modes

Non-Hermiticity in a TE model can be also induced via
intrinsic lossy effects such as the parasitic resistance of the
capacitive couplings. In fact, in any practical implementation
of a TE model, it is inevitable that there would be finite cir-
cuit resistances and power loss resulting from such resistance
contributions. Mathematically, the resistance components can
be modeled in our circuits by including them into the Kirch-
hoff’s current law equations that were used to construct the
Hamiltonian H (k) of our TE circuits. With the addition of
a series resistance R to each capacitance, each capacitance
in the Hamiltonian is replaced by C → C

1+iωRC , resulting in
a non-Hermitian component in the Hamiltonian. This non-
Hermitian term breaks the energy flux conservation in the
circuit [36]. However, we find that the overall effect of the
parasitic resistances (up to the typical magnitudes found in
practical circuits) is not very significant and the main quanti-
tative trends (such as the appearance and disappearance of the
topological zero modes as a function of system size) presented
in the paper are still valid. To illustrate this numerically, we
calculate the admittance energy spectra in the complex plane
as function of system size with the same parameter settings
as in Fig. 3(a) in our paper, except that we now add a typical
parasitic resistance of 10
 to every capacitor/inductor (see
Fig. 6). The value of 10
 is actually far larger than the
typical series resistance in commercially available inductors
and capacitors, which is in the range of milliohms [22,73].
Interestingly, the coupled systems host TZMs as long as the
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OBC spectra lie on the real axis up to the same system size
[i.e., Ncrit ical = 8 for both cases of Fig. 6(a) and 6(b)]. Further-

more, the overall trend of the admittance dispersion does not
change much even in the presence of the parasitic resistances.
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