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Dressing due to correlations strongly reduces the effect of electron-phonon coupling
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We investigate the difference between the coupling of a bare carrier to phonons versus the coupling of a
correlations-dressed quasiparticle to phonons, and we show that the latter may be weak even if the former is
strong. Specifically, we analyze the effect of the hole-phonon coupling on the dispersion of the quasiparticle
that forms when a single hole is doped into a cuprate layer. To model this, we start from the three-band Emery
model supplemented by the Peierls modulation of the p-d and p-p hoppings due to the motion of O ions. We
then project onto the strongly correlated Udd → ∞ limit where charge fluctuations are frozen on the Cu site.
The resulting effective Hamiltonian describes the motion of a doped hole on the O sublattice, and its interactions
with Cu spins and O phonons. We show that even though the hole-phonon coupling is moderate to strong, it
leads to only a very minor increase of the quasiparticle’s effective mass as compared to its mass in the absence
of coupling to phonons, consistent with a weak coupling to phonons of the correlations-dressed quasiparticle.
We explain the reasons for this suppression, revealing why it is expected to happen in any systems with strong
correlations.
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I. INTRODUCTION

The study of many-body systems with both strong corre-
lations and strong electron-phonon coupling is a formidable
challenge, given that even understanding the effects of only
correlations and of only strong electron-phonon couplings is
far from simple or complete. To simplify things, it is often cus-
tomary to study model Hamiltonians that describe low-energy
quasiparticles that are already correlations dressed, and couple
these to phonons. In this work, we use the example of a
cuprate layer doped with a single hole to clarify the difference
between the coupling to phonons of the bare carrier versus
the correlations-dressed quasiparticle, and we explain why the
latter is generically much weaker than the former.

It is well known that cuprates become high-temperature
superconductors upon hole doping, although the reason for
this behavior is still under debate. Their common constituent
feature, the CuO2 layer, is believed to be hosting the relevant
electronic orbitals responsible for this phenomenology [1,2].
However, despite decades of effort, it is still not clear what
is the simplest model Hamiltonian that properly includes all
the ingredients needed to understand the behavior of a doped
CuO2 layer.

One of the well-established starting points for describing
the behavior of holes doped in a cuprate layer is the three-band
Emery model, involving 3dx2−y2 Cu orbitals and the ligand
2pσ O orbitals [3,4], as sketched in Fig. 1. This model ignores
other potentially important ingredients such as the Cu 3dz

orbitals or the apical O, yet it is already too complicated to
solve. Numerical simulations suffer from limitations of finite
system sizes [5], issues from sign problems [6,7], lack of
convergence at low-enough temperatures [8], etc., while a full
analytical solution seems impossible. A well established way

of simplifying the Emery model is to freeze charge fluctua-
tions at the Cu sites to one hole/Cu site (as is the case in the
parent insulator) and describe them in terms of the spins of
these Cu holes. The additional doped holes are moving in the
O sublattice, as is known to be the case for this charge-transfer
gap insulator [9]. Based on the resulting strong exchange
interactions between the spin of a doped hole, located on an
O, and the spins on its two sandwiching Cu sites, Emery and
Reiter suggested a variational doped ground state known as
the three-spin polaron [10]. This is a linear combination of
singlets with the two Cu spins on either side of the hole, with a
relative phase that results in a ferromagnetic coupling between
the two Cu spins.

The difficulties in dealing with either the full Emery model,
or its simpler version with spins at the Cu sites and doped
holes on the O, has motivated efforts to simplify them even
more. After Anderson [11] pointed out that a single-band
effective Hubbard Hamiltonian might suffice to describe the
low-energy properties of a cuprate layer, Zhang and Rice
[12] mapped the simplified Emery model onto a one-band t-J
model (the strongly correlated limit of the Hubbard model)
by projecting it onto the so-called Zhang-Rice singlet (ZRS).
The ZRS is a different variational doped ground-state from
the three-spin polaron, consisting of a singlet between a Cu
spin and the spin of the doped hole occupying a coherent
x2-y2 linear combination of the O orbitals surrounding it [4].
However, it is important to note that a three-spin polaron
Bloch state and its ZRS counterpart are not orthogonal, but
instead have a momentum-dependent overlap that is large at
the antiferromagnetic Brillouin zone boundary. In particular,
this is the case at the lowest energy removal state located
at (π/2, π/2), as confirmed by angle-resolved photoemission
spectroscopy (ARPES) [13,14].
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Even though they are easier to study numerically, the phase
diagrams of these one-band models are still being debated. In
particular, it has not yet been demonstrated conclusively that
they host high-temperature superconductivity in the thermo-
dynamic limit, although they do show other relevant behavior,
such as strong antiferromagnetic (AFM) correlations [15,16]
and the appearance of stripes [17].

The discussion so far has completely ignored electron-
phonon (e-ph) coupling, following one branch of thought that
assumes that purely electronic Hamiltonians should suffice
to describe high-temperature superconductivity. This resulted
from early ideas that e-ph coupling cannot possibly be
strong enough to drive such high critical temperatures, and
therefore the pairing must have a different (i.e., electronic)
origin. On the other hand, multiple experiments have provided
evidence that e-ph coupling is important in understanding
cuprates—although this may be due to the interpretation of
the experimental results in terms of models based on one-
electron physics, where correlations play a minor role. For
example, Lanzara et al. investigated the quasiparticle dis-
persion of LSCO and Bi2212 at different doping levels by
ultrafast electron spectroscopy [18], and they found a kink at
around 50–80 meV, suggestive of e-ph coupling to phonons
with this energy. Shiina et al. [19] and Shimada et al. [20]
measured the tunneling conductance of Bi2Sr2CaCu2O8 (BiS-
CCO) and observed peaks in d2I/dV 2 matching those in
the phonon density of states. Similar results were found us-
ing scanning tunneling microscopy on BiSCCO [21]. More
recently, ARPES on (closely related) one-dimensional (1D)
cuprate chains has revealed a strong near-neighbor attraction
[22], which was explained as arising from longer-range e-ph
coupling [23].

This raises the question of what happens when e-ph
coupling is added to the electronic Hamiltonians already men-
tioned above. These Hamiltonians are strongly correlated, so
their response to even a weak e-ph coupling could be quite
different from what is expected in noncorrelated systems.
There have already been attempts to investigate the outcome
using the Hubbard-Holstein model, which adds the simplest
possible e-ph coupling to the one-band Hubbard model. The
results suggest a positive cooperation that may favor higher Tc

values in the presence of the Holstein e-ph coupling [24–26].
While this is an encouraging result, one important ques-

tion is whether the Holstein model is a good description of
the e-ph coupling in the complex perovskite structures. Our
recent work shows that that is not always the case [27]. Even
when it is, an even deeper issue is how to properly gauge the
strength of the e-ph coupling. This strength can be estimated
for the bare hole, but that is not the fermion described by
the one-band models. Instead, the latter fermion describes a
ZRS or three-spin polaronlike quasiparticle already strongly
dressed by very local correlations, and which therefore has
a rather low overlap with the bare hole. This overlap can
be thought of as a “coefficient of fractional parentage” or
as a “quasiparticle weight” resulting from the projection of
the three-band model onto the low-energy correlated mani-
fold that is the basis of the one-band model. For example,
within the ZRS picture, the effective p-d AFM exchange that
stabilizes the ZRS is of order 3 eV, as found by studying a
small cluster using the three-band-like model plus full on-site

Coulomb atomic multiplet interactions [28]. The calculated
large energy splitting between the low-energy singlet and the
high-energy triplet states for two holes in a CuO4 cluster sup-
ports a strongly reduced coefficient of fractional parentage.
This was confirmed in studies of larger clusters, where the
quasiparticle weight was found to be reduced to about 0.2
at (π/2, π/2) [29,30] (with a strong momentum dependence
and even smaller values in other parts of the Brillouin zone).
We expect that this strong reduction must be affecting the
strength of the quasiparticle-phonon coupling in a nontrivial
way.

To investigate this issue, in this work we consider the hole-
phonon coupling that arises in the simplified Emery model
with spins at the Cu sites and doped holes moving on the O
sublattice. The Hamiltonian that we use to describe it was
proposed by Lau et al. [29] and Ebrahimnejad et al. [31] as
the strongly correlated limit of the three-band model. The
quasiparticle of this model (in the absence of hole-phonon
coupling) was studied both with exact diagonalization and
with a variational method, and it was shown to have a disper-
sion in good agreement with that measured experimentally.
Furthermore, the result is robust in the sense that the disper-
sion has the correct shape without the need for fine-tuning of
parameters, unlike in one-band models.

Our starting point for studying the hole-phonon coupling
is to add to the original three-band model an e-ph coupling
of Peierls type [32–34], which modulates the magnitudes of
the tpd and tpp hopping of the bare holes between Cu and
O and between O orbitals, respectively, when the lighter O
ions oscillate. The strength of this “bare” coupling can be
estimated by hand, as discussed below. As already mentioned,
to avoid the complications of dealing with this really complex
model, here we study its strongly correlated limit when a
single hole is doped in the system. Thus, the electronic part is
identical to that of the model derived and studied by Lau et al.
[29]. We derive the additional e-ph coupling by tracing the
effects of the bare Peierls coupling in this strongly correlated,
low-energy manifold. As detailed below, this turns out to be
quite complicated and certainly not Holstein-like. We then
generalize the variational method used in Ebrahimnejad et al.
[31] to study the effect of this projected e-ph coupling on
the dispersion of the quasiparticle, and we find that it has a
very small effect on the quasiparticle’s effective mass. This
confirms that the “projected” coupling is weak, as a direct con-
sequence of the considerable renormalization of the coupling
of the correlation-dressed quasiparticle when compared to that
of a bare hole.

The work is organized as follows: In Sec. II we introduce
the three-band model and its Peierls coupling to phonons, and
then we derive its strongly correlated limit and discuss the
resulting hole-phonon couplings. In Sec. III we briefly discuss
the underlying ideas of the variational method we use, with
technical details relegated to Appendixes. Section IV contains
our results, and Sec. V has an extended discussion of our
findings.

II. MODEL

As illustrated in Fig. 1, the three-band Emery model of
the CuO2 plane includes Cu 3dx2−y2 orbitals and the O 2pσ
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FIG. 1. Sketch of the CuO2 plane, with a unit cell (u.c.) compris-
ing a Cu 3dx2−y2 valence orbital and O 2px and 2py ligand valence
orbitals. We use εx, εy (green arrows) to denote the displacement
from the Cu to the two O in the same unit cell. The four vectors δ

(blue arrows) are for the displacement from an O to its four adjacent
O sites.

ligand orbitals, arranged on a Lieb lattice. The corresponding
Hamiltonian reads

H3B = Tpp + Tpd + �
∑
�,ε,σ

n�+ε,σ

+ Upp

∑
�,ε

n�+ε,↑n�+ε,↓ + Udd

∑
�

n�,↑n�,↓. (1)

Here, � are the site labels for d orbitals, and � + ε are the
labels for p orbitals, where ε ∈ {εx, εy} point to x and y ligand
O (see Fig. 1). We denote by d�,σ , p�+ε,σ the corresponding
hole annihilation operators; the hole number operators are
n�,σ = d†

�,σ d�,σ , n�+ε,σ = p†
�+ε,σ p�+ε,σ .

With this notation and the orbitals chosen as shown in
Fig. 1, the hopping terms are

Tpd = tpd

∑
�,ε,σ

(−p†
�+ε,σ + p†

�−ε,σ )d�,σ + H.c. (2)

and

Tpp = tpp

∑
�,σ

[p†
�+εx,σ

(−p�+εy,σ + p�−y+εy,σ

− p�+x−y+εy,σ + p�+x+εy,σ ) + H.c.]

− t ′
pp

∑
�,ε,σ

(p†
�−ε,σ + p†

�+3ε,σ )p�+ε,σ , (3)

where tpd > 0, tpp > 0 are the magnitudes of nearest-neighbor
(NN) hopping between pd and pp orbitals, respectively, and
t ′
pp > 0 is the magnitude of next-nearest-neighbor (NNN)

hopping between two O bridged by a Cu. The other three
terms of H3B describe the charge-transfer energy and the on-
site Hubbard repulsion at O and Cu sites, respectively.

The simplest (Einstein) description of the optical phonon
modes is obtained assuming that each O ion oscillates along
its ligand bond about its equilibrium position, in between the
two much heavier (effectively immobile) Cu neighbors. This

leads to the Einstein optical phonon Hamiltonian:

Hph = �
∑
�,ε

b†
�+εb�+ε, (4)

where b†
�+ε creates a phonon at the O located at � + ε (we set

h̄ = 1 throughout).
To obtain the hole-lattice coupling, we note that the pd and

pp hoppings are modulated by the motion of the O involved in
the process. Upp and Udd are not modulated by the O motion,
hence they do not contribute to the hole-lattice coupling. The
charge transfer � is affected because the modulation of tpd

changes the covalence of the p-d bonds [18,35], however we
expect this to be a smaller effect and we ignore it in the
following. To lowest order, the hopping between equilibrium
positions described in Eqs. (2) and (3) is therefore supple-
mented by small corrections proportional to the displacements
out of equilibrium. They read

H pd
h-ph = g

∑
�,ε,σ

[p†
�+ε,σ d�,σ û�+ε + p†

�−ε,σ d�,σ û�−ε + H.c.]

H pp
h-ph = gpp

∑
�,σ

[p†
�+εx,σ

p�+εy,σ (û�+εx + û�+εy ) + H.c. + · · · ],

where û�+ε ≡ b†
�+ε + b�+ε , and for the pp part we wrote ex-

plicitly only the terms for one bond; . . . stands for similar
terms for the other three bonds. We ignore the modulation to
the longer range hopping t ′

pp because it is of much smaller
magnitude than these two.

The hole-phonon coupling is then

Hh-ph = H pd
h-ph + H pp

h-ph,

and the total Hamiltonian is H = H3B + Hph + Th-ph.
Generally accepted values for the parameters of the three-

band model are tpd = 1.3 eV, tpp = 0.65 eV, t ′
pp ≈ 0.38 eV,

� = 3.6 eV, Upp = 4 eV, and Udd = 10.6 eV [29,36]. For the
phonons, we use a typical optical energy of � = 0.090 eV
[37]. To estimate the strength of the electron-phonon cou-
plings, we assume that the hopping integrals obey Harrison’s
rules [38], e.g., tpd ∝ d−7/2, where d = a/2 + δu is the
pd distance, δu being its displacement from equilibrium.

Taylor-expanding to first order in δu =
√

h̄
2m�

û leads to g =
7
a

√
h̄

2m�
tpd = 0.091 eV. Similarly, starting from tpp ∝ d−3 we

find gpp = 3
a

√
h̄

2m�
tpp = 0.020 eV. We note that while these

couplings are close to those derived in Ref. [39], they are
about three to four times smaller than the Holstein coupling
used to explain the lifetime of the quasiparticle peak as mea-
sured in ARPES when starting from a one-band tJ model [25].
We discuss below the difference in the coupling strengths for
a Peierls versus Holstein model, which may well account for
this difference. Nevertheless, for illustration purposes, we will
also generate results for our model with both g, gpp couplings
increased by a factor of 3 (within the limit of our compu-
tational power) to see the effect of such an increase on the
results.

This model is too complicated to study for our purposes.
To make further progress, we note that spectroscopic studies
[40] show that the doped holes reside primarily on the oxygen
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sites to avoid the costly Hubbard Udd , which is the largest
energy in the problem. To mimic this behavior more simply,
we let Udd → ∞ so as to prevent doubly occupied Cu d-sites.
This leads to an easier problem with spins at singly occupied
Cu sites, and doped holes moving on the O sublattice and
interacting with the Cu spins.

To obtain the model describing this simplified problem,
we use perturbation theory to find the effective Hamilto-
nian projected on the lowest manifold with singly occupied
Cu states. More specifically, for the undoped ground state
we have to project on the manifold spanned by the states∏

� d†
�,σ�

|0〉 with each σ� =↑,↓. To fourth-order perturbation
theory in Tpd , this leads to the antiferromagnetic superex-

change Jdd = 8t4
pd

�2(Upp+2�) = 0.157 eV between neighbor Cu
spins. The electron-phonon coupling will slightly renormalize
the value of Jdd , but symmetry prevents the appearance of
terms linear in the û�+ε operators, and for consistency we
ignore nonlinear couplings.

Before continuing, it is important to note that for finite Udd

there is a second contribution to Jdd (and all the other effective
parameters derived below). In Appendix A, we present the
corresponding formulas for a finite Udd and explain why we
choose to ignore these terms, i.e., to use the Udd → ∞ values.

We make the further approximation of treating this ex-
change as Ising instead of Heisenberg. The accuracy of this
approximation was validated in previous work [41] and will
be briefly reviewed below. Hence, the effective Hamiltonian
describing interactions between Cu spins is taken to be

Hdd = Jdd

∑
〈�,�′〉

Sz
�Sz

�′ (1 − n(�+�′ )/2). (5)

The last factor enforces the fact that this superexchange van-
ishes on the bond hosting the doped hole. From now on, we
set Jdd ≈ 0.150 eV as our unit of energy.

To obtain the full effective Hamiltonian when there is an
additional hole doped into an O orbital, we use second-order
perturbation theory to project onto the manifold spanned by
the states p†

l0+ε0,σ0

∏
� d†

�,σ�
|0〉. The calculation is similar to

that in Ref. [29] but with the coupling to phonons now in-
cluded. The effective Hamiltonian describing the doped hole
is found to be

Heff = Hdd + �
∑
�,ε

n�+ε,σ + Tpp + Hpd + Tsw

+ Hph + H pp
h-ph + H pd

h-ph + H sw
h-ph, (6)

where the first line is the effective model derived in Ref. [29].
The new terms describing the hole-phonon coupling are on the
second line.

Specifically, besides the superexchange Hdd between Cu
spins on the bonds not hosting the hole, and the hopping Tpp

of the doped hole in the undisturbed O lattice (supplemented
by the Peierls modulation described above in H pp

h-ph), there are
two additional terms describing the interactions between the

hole and its neighbor Cu sites. The first is an AFM exchange
between their spins. In the absence of hole-phonon coupling,
this is

Hpd = Jpd

∑
l,ε


Sl · 
Sl±ε, (7)

where Jpd = 2t2
pd

�+Upp
= 2.84Jdd . Note that this is a Heisenberg

coupling, which allows the doped hole at � ± ε to flip its spin
if the Cu spin at � also flips. For clarity, we note that this is
not the previously mentioned p-d exchange of order 3 eV that
stabilizes the ZRS. That much larger exchange arises between
the Cu spin and the spin of a hole on the x2-y2 “molecular”
orbital of surrounding O, and it can be shown to be a linear
combination of this “atomic” Jpd as well as the tsw term
defined below. The O motion modulates tpd and therefore the
magnitude of this Jpd exchange. To linear order, this gives an
additional hole-phonon coupling:

H pd
h-ph = gpd

∑
�,ε

[
∓ (S+

� S−
�±ε + S−

� S+
�±ε )(b†

�±ε + b�±ε )

±
(

1

2
− 2Sz

�Sz
�±ε

)
(b†

�±ε + b�±ε )

]
, (8)

where gpd = gtpd

�+Upp
+ gtpd

�+�+Upp
= 0.197Jdd .

Thus, Hpd + H pd
h-ph describe the processes where the hole

from Cu� does a virtual hop to its neighbor O�±ε that hosts
the doped hole, and then one of the two holes returns to Cu�.
The sister process where the doped hole hops from O�±ε to
Cu� and then one hole returns to the same O�±ε is forbidden
if Udd → ∞, but for a finite Udd it simply renormalizes the
values of Jpd , gpd as discussed in Appendix A.

The second additional term is the “swap” term, which
describes the related processes where if the doped hole is
initially at � + ε, then the hole of either Cu� or of Cu�+2ε

hops to any of its three other O neighbors (labeled � + ε + η)
followed by the doped hole from Ol moving to that Cu. Effec-
tively, the doped hole has hopped from O�+ε to O�+ε+η while
swapping its spin with that of the Culε,η that neighbors both of
these O. If the O are at their equilibrium positions, this gives

Tsw = −tsw
∑
l,ε,η
σ,σ ′

ξη p†
�+ε+η,σ p�+ε,σ ′ |σ ′〉lε,η lε,η 〈σ |, (9)

where tsw = t2
pd

�
= 2.98Jdd . Here, η is either one of the four δ

vectors (see Fig. 1) connecting to NN O, in which case ξδ =
±1 if δ is oriented at 45◦ above/below the horizontal; or η =
±2ε points to the two NNN O bridged through a Cu, in which
case ξ±2ε = 1. |σ 〉lε,η indicates the spin of Culε,η which is NN
to both O�+ε and O�+ε+η, i.e., �ε,η ≡ � + ε + η·ε

|η·ε|ε.
Finally, displacements of either of these two O will mod-

ulate the strength of this swap term, leading to another
hole-phonon linear coupling term:

H sw
h-ph =

∑
�,ε,η

σ,σ ′

[(
giξ

d
η b†

�+ε + g f
ε · η

|ε · η|b†
�+ε+η

)
p†

�+ε+η,σ p�+ε,σ ′ +
(

giξ
d
η b�+ε + g f

ε · η

|ε · η|b�+ε+η

)
p†

�+ε,σ p�+ε+η,σ ′

]
|σ ′〉lε,η lε,η 〈σ |

(10)
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FIG. 2. Our choice of the magnetic unit cell, and the labeling
used for the four distinct O sites.

where gi ≡ gtpd

�
= 0.208Jdd and g f ≡ gtpd

�+�
= 0.203Jdd , and

ξ d
η = ±1 corresponds to the positive/negative overlap be-

tween the lobes of p�+ε+η and d�ε,η
.

The effective one-hole Hamiltonian Heff of Eq. (6) de-
scribes a complex polaronic problem where the hole can
(i) emit/absorb magnons from the magnetic background of
the Cu spins (spin off-diagonal terms in Hpd and Tsw);
(ii) emit/absorb phonons (H pp

h-ph and the spin-diagonal terms

in H pd
h-ph + Hsw

h-ph); and (iii) simultaneously emit/absorb both
magnons and phonons (through the spin off-diagonal parts of
H pd

h-ph + H sw
h-ph).

Alternatively, the coupling to the bosons can be char-
acterized as having both a diagonal [so-called g(q)] com-
ponent where the hole does not change its position during
the absorption/emission of bosons (coupling terms arising
from Hpd + H pd

h-ph) and an off-diagonal [so called g(k, q)]
component where the hole moves while the bosons are
emitted/absorbed (coupling terms arising from H pp

h-ph + Tsw +
H sw

h-ph).

III. VARIATIONAL APPROXIMATION

Because our goal is to understand how the coupling to
phonons affects the quasiparticle’s mass, we need to first find
the quasiparticle dispersion Ek. This can be extracted as the
lowest-energy pole in the spectrum of the single-hole propa-
gators:

Gαβ (k, ω) = 〈k, α,↑ |Ĝ(ω)|k, β,↑〉.
Here Ĝ(ω) ≡ [ω − Heff + iη]−1 is the retarded resolvent of
Heff , and

|k, β,↑〉 ≡ 1√
N

∑
�+ε∈Oβ

eik·R�+ε p†
�+ε,↑|AFM〉

is the Bloch state describing the hole located on equivalent
sites β of the O sublattice while the spin background is in its
undoped ground-state |AFM〉. Without loss of generality, we
assume that the doped hole is injected with spin-↑. N → ∞
is the number of unit cells.

As already mentioned, we take |AFM〉 → |Néel〉 to be the
Néel state stabilized by the Ising superexchange Jdd (the justi-
fication is briefly discussed below). As a result, there are two
inequivalent Cu sites (one with spin-up, one with spin-down)
and four inequivalent O sites in the unit cell, see Fig. 2, thus
α, β = 1, 2, 3, 4.

We use the variational momentum average approximation
(MA) to solve for these Gαβ (k, ω) Green’s functions. This

approach generalizes the work of Refs. [31,41], where the
same problem—without coupling to phonons—was solved by
a similar variational approximation. There, it was revealed
that the magnon cloud accompanying the hole is rather small,
with up to about three magnons, although the quantitative dif-
ferences between constraining the variational space to allow
only two versus three magnons were small. It is important
to emphasize that these are magnons (spin-flips) emitted and
absorbed by the hole in its immediate vicinity, as it moves
through and interacts with the magnetic background. The
ground state of the full Heisenberg model would also host
background spin fluctuations, whose existence is independent
of the presence of the doped hole. In Refs. [31,41] it was
shown that insofar as the dynamics of the quasiparticle is
concerned, these background spin-fluctuations can be ignored
in this three-band model because they have little effect on
it; this is because the timescale over which the quasiparticle
propagates is significantly faster than that over which back-
ground spin-fluctuations occur. Turning “off” these irrelevant
(for our purposes) background spin-fluctuations is achieved
by replacing the Heisenberg exchange with the Ising one, as
done in Eq. (5).

We build on these results by restricting the variational
space to allow for up to two magnons, but also a phonon cloud.
We also continue to ignore the background spin-fluctuations.
This latter approximation can only be justified a posteriori
if it turns out that the mass of the new quasiparticle is not
significantly heavier than that found in the absence of hole-
phonon coupling. If, instead, the new quasiparticle is much
heavier (slower), then the timescale over which it propagates
could become comparable to that over which background
spin-fluctuations act, and they would need to be included in
the calculation. As we show below, it turns out that the results
fall in the former category.

We now review the main idea and the other approxima-
tions involved, with technical details relegated to Appendix B.
To calculate the one-hole propagators, we divide the effec-
tive Hamiltonian as Heff = H0 + Hh-b, where we group all
terms that change either the number of magnons (by flip-
ping a Cu spin) and/or the number of phonons into Hh-b,
describing the coupling of the hole to both species of bosons.
All other terms (that conserve the numbers of bosons) are
part of H0. We then use Dyson’s identity Ĝ(ω) = Ĝ0(ω) +
Ĝ(ω)Hh-bĜ0(ω), where Ĝ0(ω) is the resolvent for H0, to link
the Gαβ (k, ω) propagators to generalized propagators that
have either a magnon, or a phonon, or one of each bosons.
The equations of motion for these new propagators, obtained
by applying Dyson’s identity again, link them to other gen-
eralized propagators with more phonons and/or magnons,
and so on, generating an infinite hierarchy of coupled
equations.

We use variational principles to select which ones of these
generalized propagators are large at low energies because their
bosonic configuration has a high overlap with the ground state.
These propagators are kept in the hierarchy of coupled equa-
tions, while all other (smaller) generalized propagators are set
to zero. This simplifies the system of coupled equations so
that they can be solved numerically. The quality of the choice
made for the variational space can be verified by adding more
bosonic configurations to see if they change the results.
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TABLE I. Effective mass (in units of the bare electron mass me)
calculated along the (0, 0)-(π, π ) and (0, π )-(π, 0) directions. The
ground-state momentum is kgs = ( π

2 , π

2 ). These results correspond
to our calculated values of the hole-phonon coupling, with all three
hole-phonon terms included. We used a = 1.9 Å for the lattice
constant.

m∗/me (0, 0) – (π, π ) (0, π ) – (π, 0)

one magnon 1.156 0.921
one magnon + phonons 1.193 0.941
two magnons 1.620 1.277
two magnons + phonons 1.640 1.281

As already mentioned, previous work found that good
accuracy is achieved by limiting the magnon configurations
to have up to two magnons (in the absence of hole-phonon
coupling) [31,41]. Interestingly, a similar problem was also
solved to see the effects of the hole-phonon coupling in
the noninteracting limit (Udd = Upp = 0), when there are no
magnons. For lattices with similar structure in one, two, and
three dimensions, it was found that the phonon cloud remains
small spatially (even though it can host many phonons if the
coupling is strong, i.e., the local deformation can be signifi-
cant); see Refs. [27,42,43].

We combine these results, and therefore constrain the bo-
son configurations to allow up to two magnons plus a cloud of
phonons on a single O site. We keep all configurations consis-
tent with the distance between the most distant bosons being
below a cutoff, whose value is increased until convergence is
achieved. This defines the system of coupled equations that
need to be solved to find Gαβ (k, ω), from which we extract
the quasiparticle dispersion. More technical details are in
Appendix B.

IV. RESULTS

We begin by plotting in Fig. 3 the quasiparticle dispersion
E (k) along various cuts in the Brillouin zone. The results
labeled “No phonons” correspond to setting the hole-phonon
coupling to zero, and they agree with the results obtained in
previous work [31,41] in the one-magnon (top panel) and two-
magnon (bottom panel) variational spaces. Clearly, a bigger
magnon cloud leads to a slower quasiparticle with a narrower
bandwidth, but the same overall shape of the dispersion. In
particular, there is a nearly isotropic minimum around the
ground state located at π

2a (1, 1), in agreement with experimen-
tal data [1].

Adding coupling to phonons has a very small effect on the
dispersion. The additional curves show results when only one
of the three possible hole-phonon couplings (originating from
Tpd , Tsw, and Hpd , respectively) is turned on, as well as their
total combined effect.

Next, we calculate the quasiparticle effective mass along
the two symmetry lines (0, 0)-(π, π ) and (0, π )-(π, 0) from
the dispersion near the ground-state minimum. The results
are summarized in Table I. First, we note that the effective
masses are comparable to the free-electron mass, in line with
experimental measurements [44–46]. Second, it is important
to emphasize that the effective mass m∗ in the absence of

FIG. 3. Quasiparticle dispersion E (k) along high-symmetry
lines in the magnetic Brillouin zone. The variational calculation is
limited to up to (a) one magnon and (b) two magnons, plus a phonon
cloud. The dashed line labeled “no phonons” shows the results
when the hole-phonon coupling vanishes. The three lines labeled
H pd

h-ph, H pp
h-ph, and H sw

h-ph show the results when only that particular
hole-phonon coupling term is included. Finally, the line labeled “all
3 terms” corresponds to including all three hole-phonon coupling
terms.

coupling to phonons is already significantly heavier than the
bare band mass mb of a hole on the O sublattice, in the absence
of coupling to the Cu spins (no correlations). One rough
estimate of the mass enhancement due solely to correlations
is the ratio of the bare bandwidth 8tpp and the quasiparticle
bandwidth of 2 − 3Jdd ; see Fig. 3(b). For our parameters, this
gives m∗/mb ∼ 13. Another estimate is m∗/mb = 1/Z ∼ 5,
where the quasiparticle weight (before coupling to phonons)
was found to be Z ∼ 0.2 near the ground-state momen-
tum (π/2, π/2) [29,31]. The second estimate is likely more
accurate, given that the first one assumes bands whose dis-
persion arises only from nearest-neighbor hopping. In any
event, it is clear that there is significant mass enhancement
due to correlations, before turning on the electron-phonon
coupling.

Table I shows that there is only a very minor additional
increase of the effective mass when the coupling to phonons
is added. The change is on the order of very few percent,
suggesting that by this measure, this electron-phonon cou-
pling is weak. This is not surprising, considering that the
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TABLE II. Same as Table I except all hole-phonon couplings
are increased by a factor of 3, while keeping all other parameters
unchanged.

m∗/me (0, 0) − (π, π ) (0, π ) − (π, 0)

one magnon 1.156 0.921
one magnon + phonons 1.526 1.102
two magnons 1.620 1.277
two magnons + phonons 1.832 1.328

various hole-phonon couplings g are an order of magnitude
smaller than the hole-magnon couplings controlled by tsw and
Jpd (we revisit this issue below).

Furthermore, the relative change in the effective mass
decreases for the larger (two-magnon) variational space. At
first glance this is not expected, because the “bare” (in
terms of phonons) two-magnon quasiparticle bandwidth is
narrower, which would suggest a larger effective coupling to
the phonons in this case. However, this is an oversimplified
argument, based on Holstein-like couplings, and is known
to not necessarily hold for the more complicated Peierls-like
couplings [47]. It also ignores the fact that the more dressed
quasiparticle has a smaller “coefficient of fractional parent-
age” and thus a smaller effective coupling to phonons. We also
note that terms in the hole-boson Hamiltonian that create both
a phonon and a magnon cannot act on one-magnon config-
urations unless two-magnon configurations are allowed. The
effect of these additional terms may account for the decrease,
although we could not fully disentangle these contributions,
despite our best efforts. What we can say with confidence
is that most of the effective-mass increase comes from the
hole-phonon modulation of the Tsw term, not from those of
Tpp or Jpd .

We conclude that for this value of electron-phonon cou-
pling, coupling to the phonons has a very minor influence on
the quasiparticle mass.

To verify that phonons can have a less trivial effect,
we repeat the calculation for an electron-phonon coupling
that is three times larger than the values derived above, in
other words we replace Hh-b → 3Hh-b while keeping every-
thing else unchanged. The corresponding results are shown in
Table II. The percentage increase is more significant in this
case, especially along the (0, 0)-(π, π ) cut, confirming that
phonons can affect the effective mass, as expected. However,
the overall trends are the same; in particular, we again find
a much smaller percentage increase in the larger variational
space, suggesting that fully converged results would find an
increase of at most ≈10% even for this stronger coupling.

To further analyze the coupling to phonons, we revert to
the original values of the electron-phonon couplings and plot
in Fig. 4(a) the spectral weights Aα (kgs, ω) = − 1

π
Gαα (kgs, ω)

for α = 1, . . . , 4. As expected, the quasiparticle weight is
the same for all four O sublattices. In Fig. 4(b), we plot
the k = kgs spectral weights associated with the generalized
propagators 〈k, α, 1,↑ |Ĝ(ω)|k, α, 1,↑〉, with α = 1, . . . , 4,
where now

|k, α, 1,↑〉 ≡ 1√
N

∑
�+ε∈Oα

eik·R�+ε p†
�+ε,↑b†

�+ε |AFM〉

FIG. 4. At physical coupling and on ground-state momentum
k = ( π

2 , π

2 ), (a) spectral weights of 〈pi|G|pi〉 and (b) approximations
to the spectral weights of 〈pibi|G|pibi〉, where i = 1, . . . , 4. Same
parameters are used as in Fig. 3.

is the Bloch state that also has one phonon at the same O site
where the doped hole resides.

We see that the latter spectral weight is about 150 times
smaller, i.e., the overlap |〈GS|kgs, α,↑〉|2 between the quasi-
particle ground state and the hole-only Bloch state is roughly
150 times larger than the overlap |〈GS|kgs, α, 1,↑〉|2 of
the ground state with the Bloch state where a phonon ac-
companies the hole. Again, this is confirmation that this
electron-phonon coupling is weak (the probability of exciting
phonons in the quasiparticle cloud is rather low).

However, we can also project the one-phonon states in a
different basis, consistent with the expected local symmetry
of the quasiparticle. We define the new hole operators:

P1 = 1√
4

(p1 − p2 − p3 + p4),

P2 = 1√
2

(−p1 − p3),

(11)

P3 = 1√
2

(p2 + p4),

P4 = 1√
4

(p1 + p2 − p3 − p4),

where we use the shorthand notation pα for the opera-
tors associated with the hole being on the four O sites
of the unit cell; see Fig. 2. As a result, P1 has local
s-symmetry, P2 and P3 have the px and py symmetries,
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FIG. 5. Spectral weights − 1
π

Im〈PαBα|Ĝ(ω)|PαBα〉 (see the text
for details) for physical coupling and at the ground-state momentum
kgs = ( π

2 , π

2 ) for α = 1–4 [(a)–(d)]. All parameters are the same as
in Fig. 3.

respectively, and P4 has local x2-y2 symmetry. We also
define similar “molecular” deformations with various lo-
cal symmetries, and we associated the phonon operators Bi

to describe them. We then define one-phonon Bloch states
|PαBα〉 ≡ 1√

N

∑
�+ε∈Oα

eikgs·R�+ε P†
�+ε,↑B†

�+ε |AFM〉 and calcu-
late their corresponding spectral weights. The results are
shown in Fig. 5, where the four panels correspond to the four
values of α.

We now see that for three of these symmetries α =
1, . . . , 3, the overlap with the quasiparticle ground-state wave
function has gone down by yet another order of magnitude.
However, for α = 4, the overlap is now roughly six times
larger than before. If we use the three-times-larger coupling,
the corresponding spectral weight is 10 times larger than in
Fig. 5(d) (not shown).

On the one hand, this confirms again that the quasipar-
ticle has a Zhang-Rice singlet type of nature [4,12], with
a local x2-y2 symmetry. More importantly, this shows that
when characterizing the strength of the hole-phonon coupling
in such complex lattices, it makes a significant difference if
one quantifies the strength of the coupling to individual sites
versus the coupling to “molecular”-like orbitals consistent
with the expected local symmetry: for the same problem, the
latter can be order(s) of magnitude stronger than the former.
We believe that this accounts for some of the discrepancy
in the literature between the values of Peierls couplings to
individual sites (as derived here) versus Holstein-like coupling
to “molecular” orbitals mimicking states in a single band. This
issue is discussed in more detail in the next section.

V. DISCUSSION

In this work, our starting point is the fact that upon doping
of a parent cuprate layer, the main charge propagation channel
is through the O 2p holes, because strong correlations (large

Udd ) suppress Cu 3d8 configurations. Projecting out these
3d8 states, we obtain an effective Hamiltonian whose new
parameters Jdd , Jpd , and tsw depend on the value of tpd . We
then added the change in the O 2p–Cu 3d hopping integral tpd

with the interatomic distance, which is the largest contribution
to the hole-lattice coupling (complemented by the associated
modulation of tpp, which is included in our model for com-
pleteness). Projecting this onto the lower-energy manifold of
states with Cu 3d9 configurations allowed us to find the cor-
responding hole-phonon coupling in the strongly correlated
limit of the three-band model. The resulting terms are concep-
tually simple but mathematically fairly involved, and describe
the modulation of the Jpd and tsw processes due to the motion
of the involved O ions, in addition to the aforementioned
modulation of Tpp.

We then used a well-established variational method to
study the influence of this hole-phonon coupling on the dis-
persion of the quasiparticle, and we found it to be very
small: the dispersion is little changed by coupling to phonons,
when compared to that of the already strongly magnon-
dressed quasiparticle (spin-polaron) obtained in the absence
of phonon coupling [31,41].

This is a positive result, insofar as the alternative (i.e.,
a quasiparticle made much heavier by the hole-lattice cou-
pling) would definitely be detrimental to the possibility of
finding high-temperature superconductivity at finite dopings.
We emphasize that on their own, the results presented here
do not mean that the hole-lattice coupling is irrelevant to
this problem. This coupling affects not only the quasipar-
ticle dispersion but also the hole-hole effective interaction
mediated through boson exchange. If the addition of phonon
exchange to the magnon exchange turns out to boost the hole-
hole effective attraction [48] (as is the case in the simpler
Holstein-Hubbard model), then hole-lattice coupling could
play a significant role in driving high-temperature supercon-
ductivity in the cuprates, even if it may not be its primary
driver. The calculation of this effective attraction in the pres-
ence of both magnons and phonons is a complicated matter,
which will be postponed for future work.

We return now to our main result, namely that within our
model and with the approximations we used, the hole-phonon
coupling has little consequences on the quasiparticle’s dis-
persion: On the one hand, this is not a huge surprise given
that the g ≈ 0.6Jdd we estimate from the modulation of tpd is
significantly smaller than the Jpd and tsw energy scales, sug-
gesting that dressing by magnons is dominant over dressing
by phonons. Moreover, the actual couplings to phonons in our
effective model come from the modulations of Jpd and tsw due
to their tpd dependence, and they are even smaller, gpd , gi,
g f ≈ 0.2Jdd . It is unclear how to properly define an effective
coupling λ for this complex model, but if we use the Holstein
formula, then, e.g., g2

pd/�W ∼ 0.06, where W ∼ Jdd is half
the bandwidth of the spin polaron dispersion. Adding three
such contributions gives a total λ < 0.2 that is very small,
consistent with the minor effect on the effective mass.

On the other hand, if we consider the original g ∼ �, then
g2/�W ∼ 0.6 suggests a much stronger coupling, consistent
with previous work, which claimed that in the underdoped
limit, λ ∼ 0.5–1 [18,24,49].
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Part of the answer for this discrepancy has already been
pointed out at the end of the previous section, namely that
the coupling to the “molecular”-like orbital involved in the
Zhang-Rice singlet (which could be a rough proxy for the
Holstein coupling strength in a one-band model) is larger than
the coupling to individual O sites. Indeed, an increase by a
factor of 2–3 of this “molecular gpd ”—consistent with the
observed order of magnitude increase for the probability to
excite a “molecular” breathing-mode phonon B4—suffices to
increase the corresponding λ by a factor of 4–9, to become of
order 1.

However, such arguments ignore the very important fact
that coupling of an already dressed quasiparticle (our spin
polaron, or the “fermion” of the one-band models) to phonons
is substantially smaller than the coupling of a bare hole to
the same phonons, because of the coefficient of fractional
parentage defined by the overlap between the quasiparticle
and the bare hole eigenstates. As shown in previous work
[29], this overlap is of order Z ∼ 0.2 near (π/2, π/2), sug-
gesting a 1/Z2 ∼ 25 times smaller effective coupling of the
quasiparticle to the phonons. As a result, even a very strong
bare hole-phonon coupling can be reduced to a very weak
quasiparticle-phonon coupling. We note that this is in quali-
tative agreement with Ref. [24], although in a rather different
context.

These arguments illustrate the main lesson of our work,
namely that the modeling of carrier-phonon coupling in highly
correlated models, where the “carrier” is an already signifi-
cantly dressed quasiparticle because of correlations, is a subtle
problem that needs to be considered very carefully. Our results
suggest that it is dangerous to assume that the form of that
coupling is simple, and they demonstrate that it is wrong to
assume that the strength of that coupling equals the coupling
of the bare carrier to phonons. The alternative to trying to
guess the correct coupling for quasiparticles is to proceed like
we did here, by starting from a more complex model describ-
ing the bare carriers subject to both correlations and coupling
to the phonons. This requires more involved calculations but
also much less uncertainty about reasonable parameters to be
used. We propose to use the same approach to investigate
next whether phonon exchange can supplement the magnon
exchange to provide an enhanced glue for superconductivity
in cuprates.

Furthermore, we aim to provide a detailed description of
how to treat electron-phonon coupling in systems that already
have strongly dressed quasiparticles because of other interac-
tions, thus generalizing this work beyond cuprates.
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APPENDIX A: THE EFFECTIVE PARAMETERS

If we keep the contribution from doubly occupied Cu 3d
states in the various perturbative expressions of the effective

parameters, we find the expressions

J ′
dd = 2

(
4t4

pd

�2(Upp + 2�)
+ 2t4

pd

�2Udd

)
= 0.240 eV,

t ′
sw = t2

pd

�
+ t2

pd

Udd − �
= 0.710 eV,

J ′
pd = 2

(
t2
pd

Upp + �
+ t2

pd

Udd − �

)
= 0.926 eV.

If we take this J ′
dd as our energy unit, we find t ′

sw = 2.96J ′
dd

very close to the ratio tsw = 2.95Jdd used in the main text,
while J ′

pd = 3.85J ′
dd is somewhat bigger than the correspond-

ing ratio Jpd = 2.84Jdd . The ratios are not hugely different
because all processes acquire a second channel, with a contri-
bution roughly equal to that of the first channel. The overall
results will therefore remain roughly the same, apart from the
increase in the energy scale from Jdd = 0.150 eV to J ′

dd =
0.240 eV.

At first glance, this latter value appears to be problematic
because it does not agree with the measured superexchange
in cuprates, unlike the former. However, it is wrong to as-
sume that the primed expressions are more “accurate” simply
because they include the finite Udd contributions. In fact, it
is clear that the validity of all these perturbative estimates is
very questionable, considering that the ratio tpd/� ≈ 0.36 is
far from “very small,” and so are the other relevant ratios,
too.

Thus, to obtain accurate estimates for these effective pa-
rameters, one has to go to higher order in perturbation
theory, which is an unpleasant prospect. Instead, we take
the pragmatic approach to assume that these higher-order
corrections will renormalize the various effective parameters
roughly similarly (for the same reasons as above), so that
their ratios remain essentially unchanged. The value for Jdd

energy unit is then chosen to be in agreement with experi-
ment. The end result is a Hamiltonian whose parameters are
very close to the values Jdd , tsw, Jpd we used in our main
text.

APPENDIX B: TECHNICAL DETAILS FOR THE
MOMENTUM AVERAGE (MA) APPROXIMATION

As discussed in the main text, we define the Green’s func-
tions Gαβ (k, ω) = 〈k, α,↑ |Ĝ(z)|k, β,↑〉, where |k, β,↑〉 ≡

1√
N

∑
�+ε∈Oβ

eik·R�+ε p†
�+ε,↑|AFM〉 is a Bloch state associated

with the hole occupying the β = 1, . . . , 4 O 2p orbitals (see
Fig. 2), where R�+ε is the location of the p orbital of type β,
the Cu spins are in their Néel order |AFM〉, N → ∞ is the
number of unit cells, Ĝ(z) = [z − Heff]−1 is the resolvent of
our effective Hamiltonian defined in Eq. (6), and z = ω + iη,
where η is a small artificial broadening.

To generate equations of motion, we use Dyson’s identity
Ĝ(z) = Ĝ0(z) + Ĝ(z)Hh-bĜ0(z) where we divide Heff = H0 +
Hh-b, with Hh-b collecting all terms that change the number
of bosons (magnons and/or phonons) while H0 collects the
terms that conserve the number of bosons. The resulting in-
finite hierarchy of equations of motion is simplified by only
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keeping the generalized propagators consistent with boson
configurations included in our variational space. Specifically,
if we limit the variational configurations to having a single
magnon and/or a single one-site phonon cloud (the smallest
choice), this is equivalent to only considering the hierarchy
involving additional generalized propagators such as

Vr ≡
∑

�

eik·R�

√
N

〈k, α,↑ |Ĝ(z)p†
�+r,↓S+

� |AFM〉,

f s,n
r ≡

∑
�

eik·R�

√
N

〈k, α,↑ |Ĝ(z)p†
�+r,↑(b†

�+s)n|AFM〉,

f̃ s,n
r ≡

∑
�

eik·R�

√
N

〈k, α,↑ |Ĝ(z)p†
�+r,↓(b†

�+s)nS+
� |AFM〉.

For simplicity of notation, the dependence of these propaga-
tors on k, z, α is not written explicitly.

When we allow up to two magnons in the variational
space, we include two more kinds of generalized Green

functions:

Wr,ξ =
∑

R�

eik·R�

√
N

〈k, α,↑ |Ĝ(z)p†
�+r,↑S+

� S−
�+ξ |AFM〉,

¯̃f s,n
r,ξ =

∑
R�

eik·R�

√
N

〈k, α,↑ |Ĝp†
�+r,↑(b†

�+s)nS+
� S−

�+ξ |AFM〉.

Even if we only keep these propagators in the hierarchy
of equations of motion, while setting all other generalized
propagators to zero, the result is still an infinite system of
coupled equations of motion (albeit it with a much simpler
structure than the exact one). We further truncate it by lim-
iting the spatial relative distances r, s, ξ to be less than a
cutoff. The low-energy quasiparticle is a coherent state where
the magnon+phonon clouds are bound to the hole, and thus
these relative distances are rather small. Indeed, we find that
the low-energy part of the spectrum converges fast with this
distance cutoff, as well as with the cutoff n � Nph defining
the maximum number of phonons allowed in the cloud. The
results shown here are converged with respect to both of these
cutoffs.
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