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Ultrafast electron dynamics of graphene quantum dots: High harmonic generation
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We study theoretically nonlinear optical properties of graphene quantum dots placed in a field of a short and
strong linearly polarized optical pulse. We address the problem of high harmonic generation in quantum dots
and how such nonlinear effect is affected by dephasing processes in a quantum dot. The dephasing makes the
ultrafast electron dynamics more irreversible with a large residual population of the excited quantum dot levels. In
relation to the high-harmonic spectrum, with increasing the dephasing time, the intensities of the low-frequency
harmonics increase while the cutoff energy decreases. The dependence of the cutoff energy on the amplitude of
the optical pulse is also sensitive to the frequency of the pulse. When the frequency of the optical pulse is much
less than the quantum dot band gap, this dependence is almost linear, but when the frequency of the pulse is
comparable to the band gap, the cutoff energy shows saturation behavior at large field amplitude, >0.4 V/Å.
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I. INTRODUCTION

Strong optical pulses, the amplitudes of which are compa-
rable to internal electric fields in solids, are intensively used
to probe and control both the transport and optical properties
of electron systems [1–14]. The electron dynamics in such
pulses is highly nonlinear, which results in such nonlinear
optical effects as nonlinear absorption and high harmonic
generation (HHG) [15]. HHG has a special role since it allows
one to convert a low-frequency pulse in the visible or infrared
range into the high-frequency radiation, for example, extreme
ultraviolet or soft x rays [16–24]. The mechanism, which is
responsible for generation of high frequency harmonics, is
different for a system of randomly positioned atoms and a
system of a crystalline solid. HHG in atomic or molecular
gases occurs through a three-step process which consists of
a tunnel ionization of an electron, its acceleration in the laser
field, and a subsequent recollision with an atom [25]. Such a
process results in unique linear dependence of the HHG cutoff
on the energy of the pulse [16].

In solids, the HHG occurs through the combination of two
types of dynamics induced by the field of the pulse: interband
and intraband dynamics [19–21,26–28]. Due to the interband
dynamics, the electrons are redistributed between the bands of
a solid, while, due to the intraband dynamics, the electrons are
transferred through the nonparabolic bands, which results in
nonlinear optical response. Both of these dynamics contribute
to the generation of high harmonics. Which dynamics pro-
vides the main contribution depends on the band gap of a solid
and the parameters of the pulse, e.g., its frequency. The unique
property of HHG in solids is that the HHG energy cutoff
has linear dependence on the pulse amplitude [19], while in
gases, the HHG cutoff has linear dependence on the pulse
intensity [16].

HHG is one of the characteristics of the nonlinear op-
tical response of solids. Their nonlinear optical properties

strongly depend on the band structure, impurity level, and
other internal characteristics of solids. For example, tin sul-
phide (SnS) has shown excellent nonlinear optical properties
due to a tunable band gap and fast carrier mobility [29], a
system consisting of a few layers of bismuthene has shown
strong nonlinear refraction effects and all-optical switching
[30], graphdiyne has demonstrated relatively large nonlinear
refractive index [31]. A family of two dimensional (2D) ma-
terials, 2D transition metal carbides or nitrides (MXenes), has
shown promising nonlinear optical properties, which can be
tuned by varying the ratios of M or X elements and their
surface terminations [32].

Nonlinear optical properties of solids can also be
tuned by changing their dimensionality, making them two-
dimensional, one-dimensional, or zero-dimensional systems.
Zero-dimensional systems, which are called quantum dots
(QDs) or artificial atoms [33,34], consist of a finite number
of atoms of the corresponding solid. The QDs have many
applications in different fields of science [35–39]. Due to
dimensional quantization, the energy spectra of QDs are dis-
crete, which is similar to spectra of regular atoms. At the same
time, the QDs still have the features of the crystal structure
of the corresponding solid, namely, within the region of a
QD, the atoms are placed periodically and the discrete en-
ergy levels of the QD can usually be identified as belonging
to different bands of the solid. Thus, the HHG spectra of
QDs can resemble the ones of the corresponding solids. In
Ref. [40], a transformation of the HHG spectrum from the
atomic one to the spectrum of the crystalline solid is traced
within the one-dimensional model. It was shown that such a
transformation occurs for the QD consisting of just six nuclei.

In the present paper, we consider HHG in QDs, which
are based on graphene [41–44]. Graphene is a monolayer of
carbon atoms with a honeycomb crystal structure [45,46]. It
has unique transport and optical properties, which are related
to its specific relativistic low-energy dispersion of the Dirac
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FIG. 1. Graphene quantum dot consisting of 24 carbon atoms.
The incident laser pulse is linearly polarized along the x direction.
The distance between the nearest-neighbor atoms is a = 1.42 Å.

type [47–50]. In a strong field of an ultrashort optical pulse,
such dispersion results in interference patterns in the con-
duction band (CB) population distribution in the reciprocal
space [51]. In graphene with broken inversion symmetry, an
ultrashort circularly polarized optical pulse results in ultra-
fast valley polarization [52], which occurs due to the valley
dependent topological resonance [11,52]. Graphene QDs, in-
teracting with a short optical pulse, have also shown nonlinear
absorption properties [53]. The nonlinear absorption of other
monolayer QD systems, transition-metal dichalcogenide QDs,
has been also reported in Ref. [54]. Such nonlinear optical
response has been studied for ultrashort pulses, the duration of
which is much less than the characteristic dephasing or relax-
ation time. In this case, the electron dynamics during the pulse
is coherent. In the present paper, we address the problem of
a finite relaxation rate and study how the relaxation processes
can modify graphene QD’s nonlinear optical response, such as
HHG. It has been previously shown that the HHG is sensitive
to the relaxation rate in three-dimensional solids [28].

The relaxation processes result in noncoherent electron
dynamics in the field of the pulse. Such dynamics is described
within the density matrix approach [55,56], which is used
below in the present paper. We also consider only the internal
electron dynamics within the QD region without taking into
account the possibility of ionization of the QD.

The paper is organized as follows. In Sec. II, we introduce
the model and main equations. In Sec. III, we discuss the
results, which are summarized in the concluding Sec. IV.

II. MODEL AND MAIN EQUATIONS

We consider a graphene QD which consists of N = 24
carbon atoms, see Fig. 1. The distance between the nearest-
neighbor atoms is a = 1.42 Å. The electron system of such
a QD is described within the tight-binding model with the
Hamiltonian of the following form:

H0 = −t
∑

<i j>

(â†
i â j + H.c.), (1)

where i and j label the sites of QD, â†
i and âi are creation

and annihilation operators for an electron on site i, and t =
−3.03 eV is the hopping integral [57,58]. For the QD con-
sisting of N atoms, the tight-binding model gives N levels
with the wave functions ψn and the corresponding energies En,
where n = 1, . . . N . Here the N/2 lowest energy levels belong
to the valence band (VB), while all other levels belong to the
CB. Below we assume that, in the initial state, i.e., before the
pulse, the VB states are occupied and the CB states are empty.

The graphene QD placed in an external electron field of
an optical pulse is described by the following time-dependent
Hamiltonian:

H (t ) = H0 + H ′(t ). (2)

Here the Hamiltonian H ′(t ) describes the interaction of elec-
trons with the field of the pulse,

H ′(t ) = −e
∑

i

â†
i âiri · F(t ), (3)

where F(t ) is the time-dependent electric field of the pulse
and ri is the position of the ith atom. We consider a pulse that
is linearly polarized in the x direction, see Fig. 1, with the
electric field of the following form:

Fx(t ) = F0e−(t/τ0 )2
cos(ω0t ), (4)

where ω0 is the frequency of the pulse and τ0 is the duration of
the pulse. Below we consider three frequencies of the pulse,
h̄ω0 = 1 eV, 2 eV, and 3.1 eV, with parameter τ0 equal to
10 fs. In this case, there are at least eight oscillations of the
field of the pulse.

To include the relaxation processes, we describe the elec-
tron system within the density matrix approach. Without
relaxation, the time evolution of the density operator, ρ̂, is
determined by the following equation:

d ρ̂

dt
= i

h̄
[ρ̂, H] = i

h̄
[ρ̂, H0] + i

h̄
[ρ̂, H ′], (5)

where [Â, B̂] is the commutator of operators Â and B̂. The
above Eq. (5) describes the coherent electron dynamics and is
equivalent to the time-dependent Schrödinger equation with
Hamiltonian H (t ).

Taking the matrix elements of the left- and right-hand sides
of Eq. (5) between the states ψn of field-free Hamiltonian H0,
we obtain the following matrix equation:

ρ̇mn = iωmnρmn + i

h̄

∑

k

(ρmkH ′
kn − H ′

mkρkn), (6)

where ωmn = (En−Em )
h̄ , En is the energy corresponding to the

state ψn, ρmn =< ψm|ρ̂|ψn >, H ′
kn = −e < ψk|x|ψn > Fx(t ),

and Dx,kn = e < ψk|x̂|ψn > is the dipole matrix element of
the dipole operator ex̂.

Introducing the density matrix in the interaction
representation,

ρ̃mn = ρmne−iωmnt , (7)

we rewrite Eq. (6) in the following form:

˙̃ρmn = i

h̄

∑

k

[
ρ̃mkeiωnkt H ′

kn − H ′
mk ρ̃kneiωkmt

]
. (8)

075149-2



ULTRAFAST ELECTRON DYNAMICS OF GRAPHENE … PHYSICAL REVIEW B 106, 075149 (2022)

Equation (8) describes the coherent electron dynamics in the
field of the pulse, which does not take into account the relax-
ation effects. The relaxation processes affect both the diagonal
elements of the density matrix and the nondiagonal elements.
The relaxation of the diagonal elements is related to the in-
terlevel transitions, while the relaxation of the nondiagonal
elements determines the coherence of the electron dynamics.
The loss of the coherence occurs at a much faster rate than the
rate of the interlevel transitions. Below we consider only the
relaxation of the nondiagonal elements of the density matrix
with the characteristic relaxation (dephasing) time τ . Thus,
Eq. (8) does not change for m = n, while for m �= n it becomes

˙̃ρmn = i

h̄

∑

k

[
ρ̃mkeiωnkt H ′

kn − H ′
mk ρ̃kneiωkmt

] − ρ̃mn

τ
. (9)

We solve the system of differential Eqs. (8) and (9) numer-
ically using the ODEINT library, which is a collection of
different numerical algorithms to solve initial value problems
of ordinary differential equations [59]. The initial conditions
are that, before the pulse, all the VB states are occupied and all
the CB states are empty, i.e., ρ̃nn = 1 if n ∈ VB and ρ̃nn = 0
if n ∈ CB.

With the known density matrix, we can calculate the CB
population NCB using the following expression:

NCB(t ) =
∑

m∈CB

ρ̃mm(t ). (10)

Here the sum is over all QD CB states.
The dipole moment, which is used to find the induced

radiation of the QD, is given by the following expression:

dx(t ) =
∑

mn

ρ̃mn(t )eiωmnt Dx,nm. (11)

Then, the total radiated power at frequency ω is determined
by the Fourier transform of the time derivative of the dipole
moment, Fω[ḋx], namely, the radiated power is given by the
following expression:

P(ω) = μ0ω
2

12πc
|Fω[ḋx]|2. (12)

Below we consider the normalized power, PN , defined by the
following expression:

PN (ω) = P(ω)

P(ω0)
. (13)

The order of the high harmonic is also defined in units of ω0:

Nω = ω

ω0
. (14)

III. RESULTS AND DISCUSSIONS

We consider a graphene QD, the structure of which is
shown in Fig. 1. It consists of 24 carbon atoms and has D6h

symmetry. The energy spectrum of such a QD is obtained
within the tight-binding model and consists of singly, dou-
bly, and triply degenerate levels. The corresponding energy
spectrum is shown in Fig. 2. Twelve levels with the negative
energies are initially occupied and belong to the VB. The lev-
els with the positive energies belong to the CB. The band gap
for the QD is 3 eV. The maximum energy difference between

FIG. 2. Energy spectrum of graphene QD shown in Fig. 1. The
spectrum consists of singly, doubly, and triply degenerate levels.
Levels with the negative energy correspond to the valence band while
the levels with the positive energy correspond to the conduction band.
Before the pulse, all valence band levels are occupied.

the CB and the VB levels is around 16 eV. In this case, if
the high harmonics are generated through transitions between
QD levels, then 16 eV should be the maximum frequency
that can be generated in such a QD. The time variations of
populations of QD levels, i.e., dressing of the QD states due
to electron-pulse interactions, result in harmonics with the
frequencies larger than 16 eV, as discussed below.

We consider graphene QDs of a small size only, i.e., a
QD with 24 atoms. Such QD has a relatively large band gap,
3 eV, so for the optical pulse with a frequency of 1–2 eV there
is no resonant transitions within the system. With increasing
the QD size, the band gap due to dimensional quantization
decreases, resulting in resonant transitions at relatively small
frequencies of the pulse. At the same time, the main effects
of the relaxation processes on the HHG in graphene QDs are
already captured by QDs of a small size.

We apply a linearly polarized pulse, the profile of which is
shown in Fig. 3(a) for the field amplitude of F0 = 0.5 V/Å
and the pulse frequency of h̄ω0 = 1 eV. From the solution
of the density matrix equation, we obtain the CB population,
see Eq. (10), and the time-dependent dipole moment of the
electron system. Their typical time dependencies are shown in
Figs. 3(b) and 3(c). The CB population illustrates highly irre-
versible electron dynamics when the residual CB population,
i.e., population after the pulse, is comparable to the maximum
CB population during the pulse. The positions of the maxima
of NCB are correlated with the maxima of |F (t )|.

The typical profile of the dipole moment of QDs is shown
in Fig. 3(c). It is roughly proportional to the electric field
of the pulse but with some nonlinear features, which finally
determine the nonlinear optical response of the system and
generation of high harmonics in the radiation spectrum.

The electron dynamics in the field of the optical pulse
strongly depends on the relaxation processes. To illustrate
such dependence, we show in Fig. 4 the CB population for
different relaxation times, τ . The field amplitude is 0.5 V/Å.
Here, we consider two frequencies of the pulse, which are
both below the band gap of graphene QDs: h̄ω0 = 1 eV, which
is almost three times less than the QD band gap, and h̄ω0 =
2 eV. One of the characteristics of the electron dynamics is
its reversibility, i.e., returning the system to its initial state
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FIG. 3. (a) Profile of a linearly polarized pulse. The pulse am-
plitude is 0.5 V/Å and the frequency of the pulse is h̄ω0 = 1 eV.
(b) Conduction band population NCB as a function of time. The QD is
in the field of the pulse shown in (a). The conduction band population
is normalized by the number of electrons, i.e., it is divided by 12. The
corresponding dipole moment is shown in (c). Only x component of
the dipole moment is nonzero. The dipole moment roughly follows
the profile of the electric field shown in (a).

after the pulse. We introduce quantitative characteristics of the
reversibility, η, as the ratio of the CB population after the pulse
and the maximum CB population during the pulse:

η = N residual
CB

Nmax
CB

. (15)

FIG. 4. Conduction band population as a function of time. The
conduction band population is normalized by the number of elec-
trons, i.e., it is divided by 12. The corresponding relaxation times are
shown next to the lines. The frequency of the pulse is h̄ω0 = 1 eV
(a) and h̄ω0 = 2 eV (b). The pulse amplitude is 0.5 V/Å.

FIG. 5. Residual population of conduction band levels. The pulse
amplitude is 0.5 V/Å. The corresponding dephasing times are
marked in each panel. The frequency of the pulse is h̄ω0 = 1 eV
(a) and h̄ω0 = 2 eV (b).

The ratio η is between zero and one, where η = 0 corresponds
to a perfectly reversible dynamics, while η = 1 corresponds to
a highly irreversible dynamics.

For small frequency of the pulse, see Fig. 4(a), with in-
creasing the relaxation time, the electron dynamics becomes
more reversible. Here, the reversibility parameter η decreases
from 0.98 for τ = 4 fs to 0.6 for τ = 20 fs. Thus, for τ =
4 fs, the electron dynamics is highly irreversible, while, for
τ = 20 fs, the electron dynamics is partially reversible. Such
partial reversibility of the electron dynamics is related to its
coherence, which is more preserved for larger values of τ .

A different situation occurs at a larger frequency of the
pulse, see Fig. 4(b), where the frequency of the pulse is
h̄ω = 2 eV. In this case, the electron dynamics is much less
sensitive to the relaxation time and the dynamics is highly
irreversible for all values of τ , see Fig. 4(b). Here, for all
cases, the parameter η is close to 0.99. At the same time, the
whole CB population is much larger than the CB population
for the low frequency case, see Fig. 4(a). For example, for
h̄ω0 = 1 eV and τ = 4 fs the residual CB population is around
0.04, see Fig. 4(a), while for h̄ω0 = 2 eV and τ = 4 fs it is
around 0.2, see Fig. 4(b).

The total CB population shown in Fig. 4 describes the net
effect of the pulse on the QD. To clarify how different levels
of the QD respond to the optical field, we show in Fig. 5
the residual populations of different CB levels. As expected,
the levels with lower energies are generally more populated
compared to the higher energy levels, but this dependence is
not monotonic and some higher energy levels are more pop-
ulated than the lower energy levels. This is due to properties
of the dipole matrix elements, which do not show monotonic
dependence on the energy of the levels.
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FIG. 6. Emission spectrum of graphene QD. High harmonics with well-defined cutoffs are clearly visible in the spectrum. The correspond-
ing relaxation times are marked for each graph. The frequency of the pulse is h̄ω0 = 1 eV in (a), h̄ω0 = 2 eV in (b), and h̄ω0 = 3.1 eV in
(c). With increasing the relaxation time, the emission spectrum becomes more noisy with less defined high harmonic peaks. The pulse amplitude
is F0 = 0.4 V/Å.

The dependencies of the populations of individual levels
on the relaxation time are sensitive to the frequency of the
pulse. For the pulse frequency of 1 eV, see Fig. 5(a), with
increasing the relaxation time, the populations of CB levels
are suppressed. Such suppression is more pronounced for the
higher energy levels. For example, when the relaxation time
increases from 4 fs to 20 fs, the population of the lowest CB
level decreases by a factor of ≈2.5, while the population of
the highest energy level decreases by almost 11 times. When
the frequency of the pulse becomes close to the band gap,
see Fig. 5(b), the populations of the energy levels have weak
dependence on the relaxation time. When the relaxation time
increases from 4 fs to 20 fs, the populations of the levels
change by less than ≈20 %. Also, for all CB levels except one,
with increasing the relaxation time, the populations decrease,
but for the second CB level we observe a different behavior.
For this level, when the frequency of the pulse is 2 eV, with
increasing τ , its population slightly increases. This is related
to triple degeneracy of the second CB level, see Fig. 2, which
results in large density of states associated with this level.

The emission spectra of the QD is calculated from Eq. (12).
Since polarization of the pulse is along the axis of symmetry
of graphene QD, i.e., along the x axis, there is no induced
dipole moment along the y direction and the dipole radiation
from the system is linearly polarized along the x direction.

In Fig. 6, we show the radiation spectra for three different
frequencies of the pulse and different values of the relax-
ation time. Here, we added the results for the frequency of
h̄ω0 = 3.1 eV, which is a little larger than the band gap. We
did not study the electron dynamics at this frequency in great
detail since, as we can see from Fig. 6, there are only a few
high harmonics that are generated in this case, see Fig. 6(c).
For example, at the relaxation time of 20 fs, the maximum
harmonic that is generated at h̄ω0 = 3.1 eV is 5, while at the
frequency of 1 eV, it is 13.

Since the QD has an inversion symmetry, only odd harmon-
ics are generated [60]. The radiation spectra have clear cutoff
frequencies, which depend both on the relaxation time and the
frequency of the pulse, namely, with increasing the frequency
of the pulse, the maximum harmonic order that is generated
decreases and, with increasing the relaxation time, the cutoff
frequency also decreases. Thus, when the electron dynamics
becomes incoherent, i.e., at small relaxation times, the system
generates more high harmonics, see Fig. 6, compared to the
coherent case, τ = 20 fs. Such behavior is correlated with
the population of the CB levels shown in Fig. 5, where with
increasing τ , the higher energy levels become less populated,
which results in suppression of the high harmonics.

Comparing the results for different frequencies of the
pulse, see Figs. 6(a)–6(c), we can say that, with increasing the
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FIG. 7. Intensity of the first four high harmonics (Nω = 3, 5, 7, and 9) versus the amplitude of the optical pulse, F0. The frequency of the
pulse is h̄ω0 = 1 eV in (a)–(d) and 2 eV in (e)–(h). The relaxation time is 4 fs (a), (e); 10 fs (b), (f); 15 fs (c), (g); and 20 fs (d), (h).

frequency of the pulse, the energy cutoff increases. For exam-
ple, for the relaxation time of τ = 4 fs, the highest harmonic
that is generated by the pulse with the frequency of 1 eV [see
Fig. 6(a)] is 15 with the corresponding energy of 15 eV. For
the same relaxation time, the highest harmonic for the pulse
with the frequency of 2 eV [see Fig. 6(b)] is 11, the energy
of which is 22 eV. At the same time, when the frequency of
the pulse reaches the band gap, see Fig. 6(c), the maximum
harmonics is 7 with the corresponding energy of 21.7 eV,
which suggests that the energy cutoff reaches a saturated value
when the frequency of the pulse approaches the band gap.
Similarly, looking at the results for the relaxation time of
20 fs, see Fig. 6, we can find that the maximum energies of the
high harmonics are 13 eV, 18 eV, and 15.5 eV, for the pulse
frequencies of 1 eV, 2 eV, and 3.1 eV, respectively. In this
case, there is even a small suppression of the energy cutoff
when the frequency of the pulse becomes close to the band
gap.

Thus, the laser pulse with the higher frequency, but be-
low the band gap, strongly perturbs the system, resulting in
generation of higher frequency harmonics and higher energy
cutoff comparing to the case of the low frequency pulse. Such
behavior is correlated with the results shown in Fig. 5, where
the populations of the CB levels with high energies are larger
for the higher frequency pulse.

Another property of the emission spectra shown in Fig. 6
is that, with decreasing the relaxation time, the emission
spectra become less noisy and with well-defined harmonic
peaks. For example, for the relaxation time of τ = 20 fs, the
emission spectrum between the fifth and seventh harmonics
has extra noisy features which disappear at the relaxation
time of τ = 4 fs. The reason for such behavior is that, for
a shorter relaxation time, fewer trajectories contribute to a
given harmonic [61,62], while for a longer relaxation time,
multiple trajectories, which occur during the coherent electron
dynamics, result in extra interference effects and complex
emission spectra [63].

The dependencies of the intensities of high harmonics on
the pulse amplitude are shown in Fig. 7 for different relaxation
times and different frequencies of the pulse. Only the first
four lowest harmonics are shown. When the frequency of the
pulse is 1 eV, see Figs. 7(a)–7(d), the intensities of the high
harmonics monotonically increase with F0. With increasing
the harmonic order, the dependence of its intensity on F0

becomes stronger. For example, for Nω = 3, the intensity has a
weak dependence on F0 and is almost constant at 10−3, while
for Nω = 9, the intensity changes from 10−8 at small F0 to
10−3 at large F0. Such behavior is similar for all relaxation
times.

When the frequency of the pulse becomes close to the band
gap, see Figs. 7(e)–7(h), where the frequency of the pulse is
2 eV, the intensities of high harmonics become non-monotonic
functions of the field amplitude for low harmonics, namely,
the intensities of the third and fifth harmonics have maxima
at the field amplitude close to 0.4 V/Å. At the same time,
the intensities of the higher harmonics, Nω = 7 and 9, have
monotonic dependence on F0.

Another difference between the low and high frequencies
of the pulse is that the ninth harmonic (Nω = 9) has much
smaller intensity for the case of h̄ω0 = 2 eV compared to the
one of h̄ω0 = 1 eV. This is related to the fact that, for the
pulse frequency of 2 eV, the ninth harmonics has the energy
of 18 eV, which is larger than the maximum range of singe-
particle energies within the QD, see Fig. 2, where this range is
around 16 eV. As a result, the ninth harmonic is generated due
to collective transitions between many levels, which results in
its low intensity for the pulse with 2 eV frequency.

To clarify the effect of relaxation time on the radiation
spectra, we show in Fig. 8 the intensities of the first four
harmonics as functions of the relaxation time. In Figs. 8(a)
and 8(e), which correspond to the low-field amplitude of
0.1 V/Å, only the first three harmonics are shown since the
fourth harmonics (Nω = 9) is not generated in this case. For all
cases, shown in Fig. 8, the intensities monotonically increase
with the relaxation time. Thus, the largest intensities of the
high harmonics are realized for the coherent electron dynam-
ics, i.e., for the large relaxation time. The radiation spectra
also show a stronger sensitivity to the relaxation processes at
small field amplitude, namely, at F0 = 0.1 V/Å, the intensities
of the high harmonics change by almost two orders of mag-
nitude when τ increases from 4 fs to 20 fs, see Figs. 8(a) and
8(e), while at F0 = 0.75 V/Å, the corresponding variations of
the intensities are ten times smaller, see Figs. 8(d) and 8(h).

The intensities of the high harmonics in Figs. 6–8 are
shown in units of the intensity of the main peak at the fre-
quency ω0. The intensity of the main peak can be estimated
from the calculated dipole moment and its Fourier transform.
For example, for the field amplitude of 0.5 V/Å, the frequency
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FIG. 8. Intensity of the first four high harmonics (Nω = 3, 5, 7, and 9) versus the relaxation time. The frequency of the pulse is h̄ω0 = 1 eV
in (a)–(d) and 2 eV in (e)–(h). The pulse amplitude is 0.1 V/Å (a),(e); 0.35 V/Å (b), (f), 0.5 V/Å (c), (g); and 0.75 V/Å (d), (h).

of the pulse h̄ω0 = 1 eV, and relaxation time of 4 fs, the power
radiated by the QD at frequency ω0 is around 10 W/cm2.
Then, as follows from Figs. 6–8, the power radiated by the
QD at the frequencies of high harmonics is a few orders of
magnitude smaller.

One of the important characteristics of the radiation spec-
trum is its high harmonic cutoff, which is defined as the
maximum harmonic order that can be generated during the
pulse. In Fig. 9, the high harmonic cutoff is shown as a
function of the pulse amplitude, F0, for different frequencies
of the pulse and different relaxation times. The curve for the
relaxation time of 10 fs coincides with the one for τ = 4 fs.
When the relaxation time increases to 20 fs, then, as we men-
tioned above, the corresponding harmonic cutoff decreases.
The dependence of the harmonic cutoff on the field amplitude
is different for different frequencies of the pulse. For small
frequency, h̄ω0 = 1 eV, the dependence of the harmonic cutoff
on F0 is almost linear, see Fig. 9(a). The linear dependence
of the HHG cutoff on the field amplitude is also observed in
solids, both two-dimensional and three-dimensional [19].

Different behavior is observed for larger frequencies of
the pulse, h̄ω0 = 2 eV and 3.1 eV, see Figs. 9(b) and 9(c).
In this case, there is a clear deviation from the linear de-
pendence, namely, at small field amplitudes, F0 < 0.35 V/Å,
there is almost linear dependence of the harmonic cutoff on F0,
while at larger field amplitudes, F0 > 0.35 V/Å, the harmonic
cutoff becomes suppressed. Here, for the relaxation time of
20 fs, there is a saturation behavior and the harmonic cutoff

FIG. 9. Harmonic cutoff versus the amplitude of the optical
pulse. The frequency of the pulse is h̄ω0 = 1 eV (a), 2 eV (b), and
3.1 eV (c). The relaxation time is shown next to the corresponding
line in each panel. The first data point in all panels correspond to the
field amplitude of 0.01 V/Å.

is constant, while for the smaller relaxation times, 4 fs and
10 fs, the harmonic cutoff is constant within a small range of
F0, up to 0.5 V/Å, and then it increases with the slope that is
less then the one at small field amplitudes, F0 < 0.35 V/Å.

When the frequency of the pulse becomes almost equal
to the band gap, h̄ω0 = 3.1 eV, the harmonic cutoff as the
function of the field amplitude, see Fig. 9(c), also shows
dependence with the variable slope. Here, the slope is large
at small field amplitude, F0 < 0.1 V/Å, then it decreases for
0.1 < F0 < 0.35 V/Å, becomes zero within some range of F0,
and increases again.

Thus, for the high frequencies of the pulse, h̄ω0 > 2 eV,
there is a suppression of the harmonic cutoff at large field am-
plitudes. Such a property can be attributed to a finite number
of energy levels within graphene QD, which results in a finite
energy range of around 16 eV, see Fig. 2. The harmonic cut-
off in the HHG spectrum also determines the corresponding
energy cutoff, which, for h̄ω0 = 2 eV, is around 18 eV for
the relaxation time of 20 fs and 26 eV for τ = 10 fs. These
values are larger than the QD energy range of 16 eV, which
means that, at large field amplitude, the harmonic cutoff is
determined by simultaneous transitions between many single-
particle levels.

For all frequencies of the laser pulse, the harmonic cutoff
is larger for the system with the smaller relaxation time, i.e.,
for the less coherent system. It is related to the fact that, for
the coherent system, the electron dynamics is more reversible,
see Fig. 4, which results in less population of the high-energy
CB levels and correspondingly in smaller harmonic cutoff.

IV. CONCLUSION

Due to dimensional quantization, a graphene QD has an
intrinsic band gap, which depends on the size of the dot. As a
result, in the QD of a small size, an ultrafast electron dynamics
in the field of a strong optical pulse can be both reversible and
irreversible, depending on the frequency of the pulse. If the
frequency of the pulse is much less than the band gap of the
QD,then the electron dynamics is almost reversible, i.e., after
the pulse, the electron system returns to its initial state. But
if the frequency of the pulse is comparable to the band gap,
then the electron dynamics is highly irreversible, i.e., the
residual population of the excited QD states is almost the

075149-7



SURESH GNAWALI et al. PHYSICAL REVIEW B 106, 075149 (2022)

same as their maximum population during the pulse. The
reversibility of electron dynamics is strongly affected by the
dephasing processes. The dephasing processes make the elec-
tron dynamics incoherent and more irreversible. Since the
electron dynamics completely determines the nonlinear opti-
cal response of the system, such as HHG, then the nonlinear
optics of graphene QDs strongly depends on the dephasing
processes.

The dephasing, which is introduced through relaxation of
the nondiagonal elements of the density matrix, affects both
the intensities of the high harmonics and the harmonic cutoff.
With increasing the relaxation time, i.e., when the electron
dynamics becomes more coherent, the intensities of harmon-
ics increase. This can be attributed to the fact that for the
coherent dynamics, more paths can contribute to formation
of high harmonics coherently, resulting in larger intensity.

The effect of relaxation on the harmonic cutoff is also
related to the reversibility of electron dynamics, namely, with
increasing the relaxation time the electron dynamics becomes
more reversible with less population of the highly excited
QD levels. As a result, the harmonic cutoff decreases with
increasing the relaxation time. As a function of the field am-
plitude, the harmonic cutoff shows almost linear dependence
at small frequencies of the pulse when the corresponding
energy cutoff is less than the energy range introduced by

the lowest and highest energy levels in the QD. When this
energy range becomes comparable to the energy cutoff, which
happens at large frequencies of the pulse, then the cut-
off shows a saturated behavior as a function of the pulse
amplitude.

For experimental verification of the HHG from graphene
QDs, an array of QDs should be prepared to enhance the
intensity of the corresponding radiation. The measurements
can be done following the standard experimental setup, where
the emitted radiation is routed to a spectrometer [64]. An
array of graphene QDs can also be used for generation of
high-frequency optical pulses. Although the intensity of such
pulses can be low, the pulses can be generated in the hard
ultraviolet region.
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