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We investigate the impact of dilution by setting the on-site repulsion strength U to zero at a fraction of sites
in the half filled Hubbard model on a simple cubic lattice. We employ a semiclassical Monte Carlo approach
first to recover the zero dilution (undiluted x = 1) properties, including U dependence of insulator to metal
crossover temperature scale T ∗ and long-range staggered antiferromagnetic ordering temperature TN . For the
nonperturbative regime of U ≈ bandwidth, we find a rapid suppression of T ∗ with reducing x from 1 to 0.7.
However, TN remains unchanged in this dilution range, showing a weakening of the insulating state but not of
the magnetic order. At x � 0.7, T ∗ and TN coincide and are suppressed together with decrease in x. Within
the Monte Carlo study we show that the long-range magnetic order vanishes at x = 0.15 at T = 0.01 much
below the classical percolation threshold. The magnetic order below the classical percolation threshold is in
line with the expected fragile long-range magnetic order at vanishingly small x at T = 0. We exhibit that the
induced moments on U = 0 sites drive the magnetic order below the classical percolation limit by studying local
moment systematics and finite-size analysis of magnetic order. At the end, we show that either increasing U to
large values or raising temperature beyond a U dependent critical value, suppresses the induced local moments
of the U = 0 sites and recovers the classical percolation threshold.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
doped copper oxides generated an enormous amount of in-
terest in quantum antiferromagnets [1–3]. The emergence
and collapse of long-range antiferromagnetic (AF) order,
which provides us a unique way to explore many exotic
magnetic phases, is one of the most well-explored topics in
condensed-matter physics. The AF ordering in cuprates, iron-
pnictides, and iron-chalcogenides gets suppressed by doping
nonmagnetic impurities [4–6]. Spin-wave theory for a low
concentration of impurities with the impurities treated as static
vacancies [7,8] can usually model such behavior. On the other
hand, frustration arising from in-plane couplings in clean
systems can also disrupt long-range magnetic order (LRO)
and are routinely explored within the J1 − J2 Heisenberg spin
models [9–11]. Vacancy-based disorder induces suppression
of long-range magnetic order [12,13] and have been typically
studied in the strong-coupling limit. Quantum Monte Carlo
simulations [14] in the large correlation strength limit, agree
with the AF order vanishing at the classical percolation thresh-
old as in the experiments.

Cuprates like La2Cux(Mg/Zn)1−xO4 [15–18] have inspired
some diluted Hubbard model studies in two and quasi-two
dimensions [17,19–21]. While there are materials compli-
cations (for example Zn doping leads to a local on-site
potential different from the Cu sites, but Coulomb repulsion
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at Zn sites should not be neglected completely) the spirit
of the theoretical modeling in the literature cited above is
that of understanding dilution effects in a quantum magnet
in simple models. The experimental motivation was to in-
vestigate superconductivity in the parent material (La2CuO4)
by doping with nonmagnetic Zn or Mg that suppresses
long-range antiferromagnetic order. According to the current
understanding this quasi-two-dimensional (quasi-2D) mate-
rial [La2Cux(Mg/Zn)1−xO4] shows complete suppression of
long-range AF order [18] for x2D

p ≈ 0.59, the classical per-
colation threshold [14,22]. In the strong-interaction limits for
such materials where 3d transition-metal elements are in-
volved [14,23–25], the long-range magnetic order vanishes at
xp, the critical classical percolation threshold in the relevant
dimensions.

However, investigations of dilution for the Hubbard model
where U is comparable to the bandwidth (BW) are relevant
both for materials and are of theoretical interest. In particular,
since the correlation-induced suppression of double occupa-
tion is not too severe, sites with U = 0 in vicinity of U �= 0
sites can get nontrivially effected by virtual charge fluctua-
tions leading to induced moments on the uncorrelated sites.
Thus, whether diluting the correlated sites will suppress the
long-range antiferromagnetic order of the undiluted system
is unclear. Ulmke et al. [19] have shown that the long-range
antiferromagnetic order vanishes at xc = 0.5 which is smaller
than x2D

p . A recent study of the diluted Hubbard model on
Lieb lattice also shows that the magnetic order is very robust
for dilution much lower than the classical percolation thresh-
old [26]. We note that at T = 0, percolation is expected to
support fragile long-range order even for vanishingly small
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x due to quantum effects. Thus the result of going below
classical percolation threshold in finite-T calculations as per-
formed in literature [19,26] as well in the present paper, are
in conformity with the expected percolation at T = 0 with
long-range order can occur even as x → 0.

In the present work we focus on understanding the in-
terplay of dilution and temperature in a simple model of
strong correlation in a three-dimensional (3D) lattice. In 3D,
long-range magnetic order can be stabilized free of Mermin-
Wagner [27] issues that impede long-range order in 2D. In
addition, due to the increase of coordination number, the per-
colation below classical percolation threshold is more robust.
Hence, we analyze the effect of dilution in a Hubbard model
at half filling on a simple cubic lattice using a semiclassical
Monte Carlo (s-MC) scheme [28,29].

Our method reduces to an unrestricted Hartree-Fock
method at very low temperatures but becomes progressively
accurate with temperature increase and, in particular, com-
pares well with determinant quantum Monte Carlo (DQMC)
over a wide temperature range. We consider the half filled
Hubbard model as defined below in three dimensions. We first
produce several benchmarks for the undiluted case, including
the AF magnetic order and its temperature dependence, local
moment systematic and the related metal insulator crossover
scale T ∗. We then show that switching off interaction potential
on a fraction of sites weakens and eventually destroys
the magnetic order. However, remarkably, for correlation
strength, where the bandwidth (BW) and interaction strength
U are comparable, we show that the AF order survives to
dilutions much below the classical percolation threshold. We
investigate this phenomenon by tracking the local moment de-
pendence with temperature. We show that U �= 0 sites induce
significant suppression of double occupation on the U = 0
sites stabilizing local moments on the uncorrelated sites.

In addition our calculations reveal that the density of states
carries the signature of this effect and manifests as a four-lobe
Mott insulator. At a critical dilution below the classical thresh-
old, we show that the collapse of local moments at the U = 0
sites signals the onset of a metallic state. We find that the ensu-
ing metal has a pseudogapped density of states at low temper-
atures. Finally, we demonstrate that the vanishing of the AF
order at the classical percolation threshold occurs for U much
larger than the BW, in agreement with earlier literature. We
also find that the same can happen at increased temperatures
where thermal fluctuations destroy the local moments on the
U = 0 sites. Thus we present a complete phenomenology
within our semiclassical approach to analyze the interplay of
dilution effects, correlation strength, and temperature.

II. MODEL AND METHOD

We consider the following particle-hole symmetric form of
the one band Hubbard Hamiltonian:

H = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.)

+ U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
− μ

∑
i

ni, (1)

where ciσ (c†
iσ ) are the fermion annihilation (creation) oper-

ators at site i with spin σ . t is the nearest-neighbor hopping

parameter and U (>0) denotes the on-site repulsive Hubbard
interaction. μ is the chemical potential.

To employ the s-MC approach we decompose the
on-site interaction term by introducing standard Hubbard-
Stratonovich (HS) auxiliary fields (a vector field mi that
couples to spin degree of freedom while a scalar field φi

couples to charge degree of freedom) at each site i. We
treat auxiliary fields as classical fields by dropping the time
dependence explicitly. We treat φi at the saddle-point level
iφi = U

2 〈ni〉, but retain the thermal fluctuations for mi. These
thermal fluctuations are necessary to capture many of the well
established features which will be discussed later. The follow-
ing effective spin-fermion Hamiltonian is derived using above
approximations (see Appendix for the details and justification
of the approximation):

Heff = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + U/2
∑

i

(〈ni〉ni − mi.σi )

+ (U/4)
∑

i

(
m2

i − 〈ni〉2
) − U

2

∑
i

ni − μ
∑

i

ni.

We solve Heff by using exact diagonalization based Monte
Carlo method. We diagonalize the Hamiltonian for a fixed set
of {mi} and {〈ni〉} configuration. We update the {mi} at each
site based on usual Metropolis scheme at a fixed temperature.
The 〈ni〉 fields are self-consistently updated at every 10th
Monte Carlo step where the mi fields are held fixed. We note
that while particle-hole symmetry at half filling fixes the μ,
in Heff , the μ is calculated as a consistency check during the
Monte Carlo annealing process containing thermal noise in
the {mi} fields. The goal of the process is to generate equilib-
rium configuration of the mi and the 〈ni〉 fields. Expectation
values of observables are obtained by appropriately using the
eigenvectors and eigenvalues resulting from diagonalizing the
Hamiltonian in each of the equilibrium configuration. These
individual expectation values from equilibrium configurations
are further averaged over results from 100 such configura-
tions at a fixed temperature. All observables are calculated
at a given temperature by averaging over the values obtained
from individual configurations. We note that we calculate
observables from every tenth equilibrium configuration to
avoid spurious self correlations. Temperature is lowered in
small steps to allow for equilibration. To avoid size limitation
we employ above-mentioned Monte Carlo technique within a
traveling-cluster approximation [30–32] to handle system size
N = L3 = 103.

For 0 < x < 1, we have Nx fraction of sites with finite
U and N (1 − x) sites with U = 0, with N being the total
number of sites. For U = 8, on-site interactions Ui at each
sites are chosen using the distribution P(Ui ) = (1 − x)δ(Ui ) +
xδ(Ui − 8). We introduce the HS auxiliary fields only on the
U �= 0 sites. But, the induced moments on the U = 0 sites
are calculated by computing quantum local moments, as we
discuss later. We would like to emphasize that in the particle-
hole symmetric Hubbard model an additional −U/2 potential
exists at all sites, which is a uniform onsite potential over the
entire system. When removing a correlated site, this additional
on-site potential is also removed, thereby creating a strong
on-site potential on the U = 0 sites. All our results pertain
to this simple particle-hole symmetric case. A more realistic
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modeling would be to explicitly add a local potential on the
U = 0 sites, which in our case is always set to zero upon
dilution. In addition to thermal averaging discussed above all
physical quantities are averaged over ten different random
configurations of onsite potentials. Finally, all energy scales
(U , temperature, BW, etc.) are measured in units of the hop-
ping parameter t .

III. PHASE DIAGRAM

Before moving to the diluted case, let us briefly summa-
rize the physics of the x = 1 case from literature. The half
filled Hubbard model has been studied extensively with a
plethora of numerical techniques such as determinantal quan-
tum Monte Carlo (DQMC) [33], dynamical mean-field theory
(DMFT) [34] and its cluster versions, dynamical cluster ap-
proximation (DCA) [35], and cluster-DMFT (C-DMFT) [36].
At half filling in 2D DQMC indicates an insulating ground
state at all U > 0 and the system show G-type (staggered) an-
tiferromagnetic correlations. The Néel temperature TN shows
a nonmonotonic behavior with U and there is a regime of
preformed local moments above the magnetic order which
terminates at T ∗, above which the system is a paramagnetic
metal. The system shows a pseudogapped phase with increase
in temperature whereby the T = 0 Mott gap is gradually filled
up [37]. In single site DMFT, only a paramagnetic solution
is possible and technically it is in the limit of infinite coor-
dination. It shows that the Mott transition in the U -T plane
is first order in nature. The first-order line is ending at a
finite-temperature critical point. It also predicts coexistence
of the metallic and insulating phases. Cluster variants such as
C-DMFT modifies this picture by the addition of short-range
correlation effects. However, the main features of the single-
site DMFT picture are not affected, except that the critical line
changes slope from negative to positive [38]. More recent 2D
C-DMFT [39] work also finds a similar trend of TN with U as
DQMC. They carefully try to elucidate the difference between
weak and strong U insulating ground states and argue that the
normal state just above TN controls the difference between
weakly and strongly interacting antiferromagnetic states. In
particular, they show that the small-U antiferromagnetic state
arises upon cooling a metal, while the large-U antiferromag-
net is established by cooling a Mott insulator. They also
infer a first-order normal-metal to Mott transition at low T
(if antiferromagnetism is suppressed) with increasing U . A
detailed magnetic phase diagram study of the half filled one
band Hubbard model using finite-temperature scheme of vari-
ational cluster approximation (VCA) in two dimensions by
Seki et al. [40] also agrees well with the C-DMFT results [41].

In 3D cluster-DMFT with incorporating vertex corrections
it has been shown that TN varies nonmonotonically with U ,
similar to DQMC results [42]. The resulting antiferromagnetic
phase diagram of the three-dimensional Hubbard model at
half filling using C-DMFT agrees quite well with quantum
Monte Carlo (QMC) simulations [43] and the DCA calcula-
tions [44].

Next, we discuss briefly about the U -T phase diagram,
seen in the inset of Fig. 1, obtained from our calculations for
x = 1 (i.e., the undiluted case, without any U = 0 sites). We
first find that, for all U , we have a staggered AF insulating

FIG. 1. x-T phase diagram for U = 8. x is the concentration of
correlated sites (U = 8) and rest of the sites (with concentration
1 − x) have U = 0. PM-I phase intervenes between the PM-M and
AF-I phase for x > 0.7. For x � 0.7 the PM-I phase vanishes and the
metal insulator transition coincides with the onset of the AF order.
For x � 0.15 the AF order completely collapses at low temperatures.
The inset shows the U -T phase diagram. For details please see the
text.

ground state (AF-I). The staggered AF transition temperature
TN defines the finite-temperature boundary of the AF and
the PM phase. The antiferromagnetic transition temperature
TN increases with U up to U = 8 and decreases thereafter.
For larger U , s-MC captures ≈t2/U scaling of TN . In the
inset we also find that, for large U above TN , there is an
insulating region of preformed local moments with no long-
range magnetic order (PM-I). This phase crosses over to a
paramagnetic metal (PM-M) above the dashed line. We dis-
cuss below how these phases are determined for different
values of x. For the x = 1 case, the nonmonotonic U de-
pendence of TN and the preformed local moment regime at
finite temperature are results beyond simple finite temperature
Hartree-Fock mean-field theory. Details and comparison with
DQMC are presented in earlier s-MC literature [28]. s-MC has
also been used to study the physics of the Anderson-Hubbard
model [45] and the frustrated Hubbard model [46,47].

As mentioned in the introduction, our main motivation is to
examine if the AF order can survive below the classical perco-
lation threshold. For this we initially confine to U = 8, where
TN is optimum and study the effect of dilution. This value of
U is away from the two perturbative limits of U/BW 
 1
and U/BW � 1. We will discuss the systematics of varying
U at a later stage. The main panel in Fig. 1, shows the x-T
phase diagram for U = 8. We see that the TN (diamonds)
and crossover scale (dashed line) both decrease as x is re-
duced. Within numerical accuracy, the PM-I phase exists for
x > 0.7. The important observation is that the TN survives up
to x = 0.15, much smaller than the classical three-dimensional
percolation threshold (xsc

p ≈ 0.31). We will show below that
this conclusion is robust to changes in the system size.

IV. MAGNETIC AND TRANSPORT PROPERTIES

Next we discuss the magnetic and transport properties in
details that we use to construct the phase diagram for diluted
Hubbard model (Fig. 1).
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FIG. 2. Physical quantities for different x values. All calculations
are done for U = 8 unless otherwise specified. (a) Average local
moments M vs temperature measured using only U = 8 sites. (b) Re-
sistivity vs temperature curves for different x values. (c) The induced
moments with temperature specifically at U = 0 sites. Legends are
same in panels (a)–(d). (d) Quantum structure factor s(π, π, π ) vs
temperature (by taking U = 8 sites only) for different x. With de-
crease in x the quantum structure factor decreases at low temperature.
The Néel temperature TN also decreases and vanishes for x = 0.1.

Metal-insulator transition and magnetic order. From the
x = 1 analysis we know that local moments exist on all
sites for U = 8. For x = 1 the system averaged M2

z =
〈(n↑ − n↓)2〉 = 〈n〉 − 2〈n↑n↓〉, which is the square of the
quantum local moment, where the angular brackets imply
quantum and thermal averaging at individual sites. Following
the literature [37], we calculate this observable M ≡ M2

z to
infer about local moment systematics. The large moment at
low temperature is due to the increased suppression of dou-
blons (local double occupation). In the limit U → ∞ and at
any finite temperature we expect the double occupation to
decrease drastically, but virtual excitations would not allow
it to go to zero for giving a perfect M = 1 result. In the
other extreme limit of U = 0 or T → ∞ at any finite U , the
double occupation 〈n↑n↓〉 → 〈n↑〉〈n↓〉 = 0.25. This gives the
value of M to be 0.5 at half filling. In Fig. 2(a) we show
the local moment M vs temperature data for various x values
for the U �= 0 sites. For x = 1, this of course coincides with
the system averaged local moments, while for x �= 1, the site
averaging is done only over the U �= 0 sites.

To understand the actual temperature scale for moment
formation that lies between these two limits and its impact on
transport properties we calculate the resistivity as function of
temperature in Fig. 2(b). Resistivity is calculated for different
x values by calculating the dc limit of the optical conduc-
tivity determined by the Kubo-Greenwood formula [48,49].
A metal-insulator crossover (MIC) scale (T ∗) is ascertained
from the change in the sign of dρ/dT . For x = 1, and U = 8,
T ∗ ≈ 1. For the x < 1 case we see that this crossover scale
reduces rapidly. To understand this systematics, let us ana-
lyze the local moments of the correlated U �= 0 [plotted in
Fig. 2(a)] and uncorrelated (U = 0) sites [plotted in Fig. 2(c)]
separately. For the correlated sites we see that there is an
overall reduction in the local-moment magnitudes, but there

FIG. 3. Comparison of structure factors calculated using only
U = 8 sites [s(π, π, π )], only U = 0 sites [sU=0(π, π, π )] and using
both U = 8 and U = 0 sites [ss(π, π, π )]. Structure factor by taking
both U = 0 and U = 8 sites [ss(π, π, π )] vs temperature shows that
the system as a whole turns antiferromagnetic at the same tempera-
ture to that of U = 8 sites [plotted using s(π, π, π )]. For comparison
sU=0(π, π, π ), calculated only for U = 0 sites, shows the transition
at same temperature for (a) x = 0.7 and (b) x = 0.4.

is no drastic local moment collapse to suggest a significantly
smaller MIC temperature, as the resistivity data suggest. How-
ever, the remarkable effect on deciding the scale for onset of
metallicity with temperature increase comes from the U = 0
sites! In Fig. 2(c), we see that weak local moments are induced
on the uncorrelated sites. We observe that T ∗ is controlled
by the onset temperature of the local moments formation
(M becoming greater than 0.5) on the uncorrelated sites. For
example, for x = 0.9, the local moments of the correlated sites
are similar in magnitude to the x = 1 case, yet the resistivity
data show an insulator-to-metal crossover occurs at T ∗ ≈ 0.5
as opposed to ≈1 for x = 1 case. We also notice that the
onset of magnetic moments on U = 0 sites, transition from
PM-M to AF-I phase occurs at same temperature for x �
0.7. This clear correlation needs the following clarification:
whether the small moments on the U = 0 sites, for example,
small moments very close to the uncorrelated value of 0.5 for
x < 0.4, are responsible for stabilizing the low-temperature
antiferromagnetic insulating state? In particular, is there a
long-range order arising out of the sites with two values of
local moments?

To answer this question, in Fig. 2(d) we plot the
quantum antiferromagnetic correlations s(π, π, π ) [s(q) =

1
(Nx)2

∑
mn〈sm · sn〉eiq·(rm−rn ) where q is the wave vector],

where angular brackets have the same meaning as mentioned
above and the indices {m, n} run over only the U = 8 sites.
The normalization is defined accordingly. The reduction in
the TN as well as the low-T saturation value with decreasing
x is apparent. The weakening of antiferromagnetism due to
the dilution is expected. However, we find an unexpected
behavior when comparing the above with magnetic struc-
ture factor computed only for the U = 0 sites [denoted as
sU=0(π, π, π )]. In Fig. 3 we show two such comparisons for
(a) x = 0.7 and (b) x = 0.4. The AF order that results from
the U = 0 sites by itself generates long-range staggered AF
correlations in three dimensions. Furthermore, the AF order
from the two set of sites (taking U = 8 and U = 0 sites sep-
arately) and AF correlations ss(π, π, π ) obtained by taking
all the sites (both U = 8 and U = 0 sites at the same time)
vanish at the same temperature. This shows the cooperation
between the U �= 0 and U = 0 sites that helps to commence
the global antiferromagnetic correlation at that temperature.
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FIG. 4. (a) Temperature dependence of density of states at the
Fermi energy N (μ) shows that the Mott gap collapses at high tem-
perature due to thermal fluctuation. Thermal fluctuation persists up
to low enough temperature for lower x values. N (μ) more or less
remains constant with temperature for x = 0.1. (b) Density of states
N (ω) with ω for different temperatures at x = 0.7. (c) Density of
states N (ω) with ω for different x at T = 0.02. Legends are same in
panels (a) and (c). For x = 1, the Mott gap at T = 0.02 shows Mott
lobes around ±U/2. A pair of secondary Mott lobe forms near ω = 0
for x < 1. (d) U -dependent density of states for x = 0.7 shows that
the secondary lobes are mainly due to the U = 0 sites.

In addition, for x � 0.7, we find that the insulating state and
the TN coincide, reminiscent of a Slater like insulator. For
x > 0.7, the data suggests that the insulting state can survive
without the magnetic order, but requires finite local moments
at the U = 0 sites. This is the continuation of the x = 1 PM-I
phase for x < 1.

Density of states. In Fig. 4(a) we show the temperature evo-
lution of the density of states at the chemical potential N (ω =
μ) for different values of x. Density of states are obtained by
implementing the Lorentzian representation of the δ function
in N (ω) = ∑

k δ(ω − ωk ), where ωk are the eigenvalues of
the fermionic sector and the summation runs up to 2L3, i.e.,
the total number of eigenvalues of a L3 system. The expected
gradual filling up of the charge gap in the Mott state seen for
x = 1 (see Ref. [37]) is also seen for smaller x values. The
gap filling however becomes abrupt for x � 0.7. This is the
same dilution below which we have a direct transition from a
PM-M to an AF-I. In addition, the density of states are plotted
explicitly for x = 0.7 in Fig. 4(b) at different temperatures.
While not explored herein detail, overall the data suggests a
possible first-order transition for x � 0.7. Finally for x = 0.1,
we have a gap-less ground state.

The density of states are compared for different x values
at low temperature T = 0.02, in Fig. 4(c). We see that with
reducing x, the upper and lower Hubbard sub-bands around
±U/2 evolves in to a four sub-band structure and the gap
around chemical potential μ (ω = 0) reduces. The gap even-
tually closes and we find a pseudogapped metal for x = 0.1.
To understand the origin of the new features in the density of
states we show the contribution of the density of states from
U = 0 and U = 8 sites separately in Fig. 4(d) for x = 0.7 at

FIG. 5. Shows the drop of s(π, π, π ) with decrease in x values
for different L values (N = L3). For T = 0.02 long-range AF order
persists up to x = 0.15. This AF order is due to the induced moment
formed at U = 0 sites as explained in the text. The result is almost
indistinguishable beyond system size 103. All calculations are done
for U = 8. Inset (i) shows the s(π, π, π ) vs 1/L for x = 0.15, 0.2
and 0.25. Inset also shows linear fitting of s(π, π, π ) with 1/L for
x = 0.15, 0.2 and 0.25. Inset (ii) shows that the long-range AF order
also persists up to x = 0.15 for T = 0.01.

the same low temperature. It shows that U = 0 sites mostly
contribute to the formation of the low-energy Mott lobes
(around ω = ±1). This four sub-band density of states within
s-MC qualitatively agrees with DQMC [19].

V. PERCOLATION THRESHOLD

To start with, we first demonstrate the stability of the crit-
ical percolation threshold obtained from finite-size lattices.
Since the AF order parameter is the central indicator used by
us, in Fig. 5 we show the low-temperature value of s(π, π, π )
for different system sizes as a function of x. The system size
is defined as L3. Beyond 103 the results for low x are barely
distinguishable from each other. We see from the data that the
order parameter rapidly converges with system size, giving
the limiting value of xp = 0.15. The inset (i) shows s(π, π, π )
plotted as a function of inverse system size (1/L) for three val-
ues of x. We find that, for x > 0.15, s(π, π, π ) saturates to a
finite value for L → ∞, while it approaches zero for x = 0.15.
This analysis shows that indeed in the thermodynamic limit
the AF order survives below the classical percolation thresh-
old xsc

p ≈ 0.31. Inset (ii) shows that the long-range AF order
also persists up to x = 0.15 for T = 0.01. Below this temper-
ature the magnetic order for small x is very weak and beyond
our numerical calculations. Nonetheless, in principle at T = 0
the quantum percolation should occur at arbitrarily small x.
However, such a magnetic order will be extremely fragile to
thermal fluctuations. To clarify the nature of the antiferromag-
netic order below the xsc

p ≈ 0.31, in Fig. 6(a) we present the
distribution of local moments in real space that includes both
the U = 0 and U = 8 sites at T = 0.02. The local-moment
distribution Pq(M ) = ∑

Mi
δ(M − Mi ) shows two peaks. In

the limiting case of x = 1 the expected plot is that of a single
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FIG. 6. (a) Distribution of local moments by taking both U = 8
and U = 0 sites for different x values; the peak around M = 0.8 is
for the finite U sites whereas peak at lower M is for the induced
moments (MU=0) at U = 0 sites. Distribution of local moments for
U = 0 and U = 8 sites separately at (b) x = 0.4 and (c) x = 0.1.
(d) Structure factor s(π, π, π ) and induced moment (MU=0) at U = 0
sites with x for T = 0.02 shows one to one correspondence between
the onset of antiferromagnetic correlations and formation of induced
magnetic moments at U = 0 sites. The induced moments mediate the
antiferromagnetic correlation below classical percolation threshold
limit.

peak at M = 0.86, implying uniform local moment magni-
tudes on all sites within the semiclassical calculation. As x
is reduced, a new peak at lower M appears that indicates the
moment formation at U = 0 sites. Figures 6(b) and 6(c) for
x = 0.4 and x = 0.1, respectively, confirm this scenario. This
also corroborates the data shown in Fig. 2(c) that shows the
signature of induced moment on the uncorrelated (U = 0)
sites. Just as seen in Fig. 2(c), here too we see that, if x
reduces, the location of the new peak moves towards M = 0.5
signaling that the induced moment magnitudes get weaker. In
addition, we note that the increase in the peak height at low
M is simply due to increasing number of U = 0 sites as x
approaches zero.

Correlating the low-temperature-induced M in the U = 0
sites with the AF order parameter in Fig. 6(d), we see a
crucial fact that the long-range AF order between U = 8 sites
depends on the existence of local moments at U = 0 sites.
Induced moments at U = 0 sites are almost negligible up
to x = 0.15 and the system remains paramagnetic. Beyond
x = 0.15 the induced moments at U = 0 sites increase and
as a result the system enters into an antiferromagnetic state
at small x. This intimate relation between long-range AF
order and induced moments in the U = 0 sites is central to
the stability of the AF order below the classical percolation
threshold. Above x ≈ 0.31, while the cooperation continues
to exist as discussed in context of Fig. 3, the AF order can
stabilize by the usual percolation mechanism as well.

We now investigate the percolation threshold in two sce-
narios: (i) with temperature increase and (ii) at large U . The
AF order parameter as a function of x is shown in Fig. 7(a)
at three temperatures. While there is an overall suppression
of the order parameter magnitude with temperature, we see
that the critical x threshold for sustaining AF order moves to-

FIG. 7. (a) Structure factor s(π, π, π ) vs x for different tempera-
tures show that the percolation threshold increases with temperature.
(b) Comparison of the induced moment (MU=0) at U = 0 sites with
x between T = 0.02 and T = 0.05 for U = 8 case. (c) Structure
factor s(π, π, π ) vs x for three different U values at T = 0.02. The
percolation threshold increases with U values due to suppression
of charge fluctuations at large U . (d) Comparison of the induced
moment (MU=0) at U = 0 sites with x between U = 8 and U = 24
cases.

wards higher values of x. To understand this, we reiterate that
the long-range antiferromagnetic order in the diluted system
arises from the cooperation between local moments at U �= 0
and U = 0 sites. However, the induced magnetic moments on
the U = 0 sites and antiferromagnetic correlations between
them are weak, as seen from the small charge gap in the
projected density of states in Fig. 4(c). Thus, with tempera-
ture increase, thermal fluctuations first suppress the induced
moment magnitudes on the U = 0 sites. This phenomena is
shown in Fig. 7(b), where we see that the local moments on the
U = 0 sites are significantly reduced at higher temperatures.
Once this order is lost, the only way long-range magnetic
order can survive is by classical percolation between the large
local moments on the U �= 0 sites. That is why the struc-
ture factor in Fig. 7(a) shifts toward the classical percolation
threshold with temperature increase. As shown in Fig. 7(c),
the percolation threshold xp also increases with U . At large, U
charge fluctuations are suppressed, and the Heisenberg model
accurately describes the Hubbard model. Thus, the crucial
ingredient of induced moments on the U = 0 sites needed
for stabilizing long-range magnetic order is systematically
weakened at larger U value. This trend is seen in Fig. 7(d).
The induced magnetic moment that mediates the AF order
below xsc

p values (for example induced moments at U = 0
sites for x = 0.2 and U = 8 case) are not induced at larger
U values. As a result, the xp increases with U and approaches
the classical percolation threshold.

VI. CONCLUSIONS

We have employed a semiclassical technique to map out
the temperature vs dilution phase diagram of the “diluted
Hubbard model”. Our method at low temperature is close to
unrestricted Hartree-Fock method and become progressively
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accurate with temperature. With increasing the temperature
as a thermal fluctuation dominated phase is approached the
method agrees quite well with DQMC as mentioned earlier.
In the intermediate temperature (where we performed our cal-
culations) the approximation is still better than simple Hartree
Fock at finite temperature as was shown in Ref. [28]. Within
this scheme we have shown that away from the weak-coupling
(U 
 BW ) and strong-coupling (U � BW ) limit, dilution
weakens the long-range magnetic order, but allows it to sur-
vive to dilution values much below the classical percolation
threshold.

At low temperature, the Mott insulator at x = 1 evolves in
to pseudogapped metal (for x � 0.15) by nontrivial spectral
weight transfer phenomena that transforms the two Mott sub-
bands into four sub-bands. Our analysis shows that in diluted
regime the system has two distinct energy scales for charge ex-
citations, one controlled by U and another emergent gap that
arises out of weak local moment induced on the U = 0 sites.
Such behavior of the density of states qualitatively agrees
with DQMC studies in two dimensions [19]. By performing
finite-size scaling analysis, we also show that the induced
moments at the U = 0 sites and the U �= 0 sites cooperate to
form long-range magnetic order in the thermodynamic limit.

We further demonstrate that cooperation between the U =
0 and U �= 0 sites is crucial to the magnetic order by showing
that increasing U to large values, brings the critical perco-
lation threshold to the classical value which requires system
spanning AF patches exclusively made out of U �= 0 sites.
In addition by increasing temperature we have shown that
the closure of the Mott gap by closing the smaller charge
gap again disrupts the cooperation between the AF order
between the two kinds of sites which pushes the percola-
tion threshold to the classical values. This phenomenology
is also seen in exact diagonalization where local Kondo cou-
pling and Ruderman-Kittel-Kasuya-Yosida scales compete to
control the magnetic properties of s-d models for carbon nan-
otubes [50] and broadly agrees with DQMC study on Lieb
lattice [26].
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APPENDIX: EFFECTIVE SPIN-FERMION HAMILTONIAN

We consider the following electron-hole symmetric (EHS)
one band Hubbard Hamiltonian:

H = −t
∑

<i, j>,σ

c†
i,σ c j,σ + U

∑
i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
,

where “t” is the nearest-neighbor hopping parameter and “U”
denotes the on-site Hubbard interaction. We set t = 1 in our
calculations.

After some trivial algebra and dropping a constant term the
EHS Hubbard model becomes

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U
∑

i

ni,↑ni,↓ − U

2

∑
i

ni.

We denote the nearest-neighbor hopping term and the third
term which is a one-body operator as H0 and the second

term which is the interaction term as H1. We need to trans-
form the interaction term as a combination of two quadratic
terms to set up the Hubbard-Stratonovich (HS) decomposition
formalism:

ni,↑ni,↓ = [
1
4 n2

i − S2
iz

] = [
1
4 n2

i − (Si.�̂i )
2
]
. (A1)

Here Si is the spin operator which is defined as Si =
h̄
2

∑
αβ c†

i,ασα,βci,β , �̂ is an arbitrary unit vector, σ are the
Pauli matrices, and we take h̄ to be 1. We use the rotational
invariance of S2

iz, i.e., (Si.�̂i )2 = S2
ix = S2

iy = S2
iz.

The partition function for the Hamiltonian is Z = Tre−βH ,
where β is inverse temperature (1/T ) (kB is set to 1). Next
we divide the interval [0, β] into M equally spaced slices,
defined by β = M�τ , separated by �τ and labeled from 1 to
M. For large M, �τ is a small parameter and allows us to em-
ploy the Suzuki-Trotter decomposition, so that we can write
e−β(H0+H1 ) = (e−�τH0 e−�τH1 )M to first order in �τ . Then,
using the Hubbard-Stratonovich identity, e−�τU [

∑
i

1
4 n2

i −(Si .�̂i )2]

can be shown to be proportional to

∫
dφi(l )d�i(l )d2�i(l )e−�τ {∑i[

φ2
i (l )

U +iφi (l )ni+ �2
i (l )

U −2�i (l )�̂i (l )Si]}.

Here φi(l ) is the auxiliary field for charge density and
�i(l ) is auxiliary field for spin density and “(l )” is a generic
time slice. Further we define a new vector auxiliary field
mi as the product �i(l )�̂i(l ). Putting all of this back to the
partition function we find the effective Hamiltonian. Now
we make two approximations which make our model dif-
ferent from DQMC. First we drop the τ dependence of the
Hamiltonian and we use the saddle-point value of iφi =
U
2 〈ni〉. Last, by rescaling mi → (U/2)mi we find the effective
Hamiltonian as

Heff = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U/2
∑

i

(〈ni〉ni − mi.σi )

+(U/4)
∑

i

(
m2

i − 〈ni〉2
) − U

2

∑
i

ni − μ
∑

i

ni.

The chemical potential μ is used to tune the global electron
density equal to 1. In our calculation we have considered
finite U at randomly chosen sites k with a concentration x
and U = 0 at rest of the sites (concentration 1 − x). We note
that the HS transformation is a local transformation that de-
couples the many-body on-site interaction. It does not depend
on whether other sites in the system are correlated. So, in the
diluted limit (x < 1), the terms containing U are present only
for the correlated sites (i.e., site with U �= 0). The general
Hamiltonian for the diluted case:

Heff = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U/2
∑

k

(〈nk〉nk − mk.σk )

+(U/4)
∑

k

(
m2

k − 〈nk〉2
) − U

2

∑
k

nk − μ
∑

i

ni,

where i, j run over all sites and k is assigned only for impurity
sites.
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