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Magic angle conditions for twisted three-dimensional topological insulators
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We derive a general low-energy theory for twisted moiré heterostructures comprised of Dirac materials. We
apply our theory to heterostructures on the surface of a three-dimensional topological insulator (3D TI). First,
we consider the interface between two 3D TIs arranged with a relative twist angle. We prove that if the two
TIs are identical, then a necessary condition for a perturbative magic angle where the Dirac cone velocity
vanishes is to have an interlayer spin-flipping hopping term. Without this term, the Dirac cone velocities can
still be significantly renormalized, decreasing to less than half of their original values, but they will not vanish.
Second, we consider graphene on the surface of a TI arranged with a small twist angle. Again, a magic angle
is unachievable with only a spin-flipping hopping term; under such conditions, the Dirac cone is renormalized,
but only moderately. In both cases, our perturbative results are verified by computing the band structure of the
continuum model. The enhanced density of states that results from decreasing the surface Dirac cone velocity
provides a tunable route to realizing interacting topological phases.
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I. INTRODUCTION

Magic angle twisted bilayer graphene exhibits a variety of
interacting phases such as superconductivity and the quan-
tum anomalous Hall effect [1–4]. The relative twist angle
between the two layers acts as a tuning knob that can dra-
matically change their physical properties. Specifically, at
specific “magic” twist angles [5–7], the renormalized Dirac
cone velocity vanishes, leaving behind gapped flatbands that
are susceptible to interacting instabilities.

In this paper, we ask whether the physics observed in
twisted graphene heterostructures can be realized in other
Dirac materials. We are particularly motivated by renormal-
izing the velocity of the Dirac cone on the surface of a
topological insulator (TI), where an interacting gap will yield
either a quantum anomalous Hall insulator or a topological
insulator [8]. Recently, the effect of a slowly spatially-varying
“moiré superlattice” potential on the surface of a topologi-
cal insulator has been studied [9–11]. Such a potential will
increase the surface density of states at the Dirac point by
renormalizing the Dirac cone. It will also generate van Hove
singularities at an energy slightly above and below the Dirac
point. Both of these effects will enhance the instabilities to-
wards interacting topological phases [10–19]. A potential that
breaks time-reversal symmetry may produce flat Chern bands
[20]. The theory can be generalized to modulate an interacting
gap on the edge of a 2D TI [21].

Here, we consider a different route to manipulating the
surface Dirac cone velocity, which is to incorporate a 3D TI
into a twisted heterostructure with another Dirac material. The
interlayer coupling between the two Dirac cones offers a new
tuning knob compared to the superlattice potential and, as we
show, can lead to perfectly flat bands under certain ideal (but
not fine tuned) conditions.

To this end, we derive a general theory of a twisted moiré
heterostructure between two Dirac materials. The two layers
need not be identical, but we require them to feature Dirac
cones, which, upon being arranged with a small twist angle,
are separated by a small momentum difference. We derive an
analytical expression for the low-energy theory as a function
of the interlayer coupling and discuss the effect of rotation,
time-reversal, and interlayer mirror symmetries.

We then apply our theory to two types of twisted het-
erostructures on the surface of a topological insulator. First,
we consider the two-dimensional (2D) interface between two
three-dimensional (3D) TIs arranged with a small relative
twist angle. To meet our criterion that the two Dirac cones
must be separated by small momentum after twisting, we re-
quire that the Dirac cones are not at the center of the Brillouin
zone (BZ), but rather at the (π, π ) point. We then derive
conditions for gapless flat bands. Our most significant result is
that if the two 3D TIs are identical, a gapless flat band requires
an interlayer spin-flipping hopping term. We prove that this
condition is mathematically equivalent to the known condition
in twisted bilayer graphene that an interlayer sublattice swap-
ping is necessary to achieve a magic angle [22]. However,
while the latter is natural in twisted bilayer graphene, the ori-
gin of a spin-flipping term is not clear, although it is symmetry
allowed. Nonetheless, if the spin-flipping term is not present,
the Dirac cone velocity can still be significantly renormalized,
reaching a minimum around half of its original value. We back
our analytical results with a numerical simulation.

The second heterostructure we examine in detail is
graphene on the surface of a topological insulator, arranged
with a small relative twist angle. Graphene on a 3D TI sur-
face has been studied extensively without a twist angle, both
theoretically [23–32] and experimentally [33–44]. A twist
angle was considered in Refs. [26,42], but flat bands were not
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considered. The primary goal of the previous literature was
to enhance spin-orbit coupling in graphene. Our motivation
is in the opposite direction: We hope the interlayer coupling
from graphene will renormalize the Dirac cone on the 3D TI.
Similar to the interface between two topological insulators, we
find that a magic angle condition is not achieved without spin-
flipping interlayer hopping, although the 3D TI Dirac cone can
still be slightly renormalized. We verify our analytical results
with a numerical model.

II. MAGIC ANGLE CONDITION FOR DIRAC CONES
AT TRIM POINTS

We are interested in twisted bilayer heterostructures of two
Dirac materials. Although our theory is applicable to any
Dirac material, we focus on the case where one layer has
a single time-reversal-invariant Dirac cone at a TRIM point,
which implies it is the surface of a strong 3D TI. We write
down the most general interlayer coupling Hamiltonian and
compute the self-energy of each Dirac cone perturbatively in
the coupling. From the self-energy, we extract both an energy
shift and a renormalized Fermi velocity for the Dirac cone, the
latter of which gives a magic angle condition. We then discuss
the physical conditions necessary to achieve the magic angle.
Although we use the language specific to a twisted moiré
heterostructure, the theory presented applies equally well to
a moiré heterostructure created by stacking two layers with a
small lattice mismatch.

A. Model for Dirac materials

A Dirac Hamiltonian for an isotropic gapless Dirac cone at
charge neutrality can be written in the form

HD(k) = vk · σ, (1)

where σ is some here-unspecified degree of freedom such as
spin, sublattice, or orbital. [The proof that Eq. (1) is fully
general is given in Appendix A.] When the Dirac cone is
not at the origin, we will denote the momentum difference
from the Dirac point at k0 by k̄ ≡ k − k0. In each layer, there
may be multiple Dirac cones of the form of Eq. (1), which
are labeled by valley, spin, or other indices. Unless symmetry
related, each Dirac cone will have a different Fermi velocity
and energy, as well as anisotropy; for simplicity here we do
not vary these parameters.

The Hamiltonian for each layer L = 1, 2 is written as
H (k̄) = HD(k̄)δi j (where i, j run over the different Dirac
cones, e.g., in graphene, over spin and valley),

Ĥ0 =
∫

d2k̄ψ
†
L,k̄

H (k̄)ψL,k̄ . (2)

Interlayer coupling is then included as

T̂ =
∑

Q

T̂Q =
∑

Q

∫
d2k̄ψ̂

†
1,k̄

TQψ̂2,k̄+Q + H.c. (3)

Here, ψ̂L,k̄ are the electron field operators on layer L at crystal
momentum k0 + k̄ with spin, orbital, valley, etc. indices im-
plicit; note k0 may also implicitly depend on valley and layer.

The vectors Q are the displacements in momentum space
of the Dirac cones that result from twisting (see, e.g., Fig. 1).

FIG. 1. BZ at the interface between two 3D TIs arranged with
a small relative twist for two scenarios described in Sec. III. Filled
circles indicate Dirac cones; empty circles indicate other TRIM in the
original BZ. Vectors Q indicate the momentum difference between
nearest Dirac cones, which is exactly the effective quasimomentum
transfer in the continuum model, per Eq. (3); (a) Surface Dirac cones
at M in both layers, with identical lattice constants. (b) Dirac cone at
M on one surface and � on the other, with lattice constants that differ
by a factor of two.

The collection of vectors {Qi − Qj} from each valley form
the reciprocal lattice of the moirè pattern and thereby define
the moirè BZ. A derivation of which Q enter and how to
compute the corresponding interlayer coupling matrix TQ is
given in Appendix B. Under the assumption that the lattices
are nearly matched and arranged with a small twist angle,
and, in addition, that the interlayer spacing is appreciably
larger than the lattice constant of either material, TQ is only
non-negligible for a finite set of Q.

The low-energy continuum model in Eqs. (2) and (3) is
valid when k̄ is small (i.e., close enough to a Dirac cone
that the linearization is valid) and when the valleys are well
separated (i.e., the distance between distinct valleys is much
larger than Q).

To study the effect of the interlayer coupling term in Eq. (3)
on the Dirac Hamiltonian in Eq. (2), we assume that the
interlayer coupling is small, in the sense that the energy scale
of interlayer coupling t is much less than v|Q| for the smallest
value of |Q|. (This implicitly assumes that there is no Q = 0
term; the possibility of such a term is discussed further in
Sec. III.) We then work perturbatively in the parameter t/v|Q|.

We further assume the presence of both time-reversal sym-
metry T , with T 2 = −1, and an in-plane rotational symmetry
by 2π/n, denoted Cn,z, with n > 2. The rotation symmetry
ensures that the Dirac cone is isotropic, which is a convenient
and physically relevant simplification, but is not necessary.
If the two layers are the same, there may be additional sym-
metries that exchange the layers. The action of the symmetry
operators is derived in Appendix A.

B. Self-energy of a single Dirac cone

We now treat the interlayer coupling in Eq. (3) as a pertur-
bation to the Dirac Hamiltonian in Eq. (2) and compute the
self-energy to lowest order in t/v|Q|. From the self-energy,
we will extract the renormalized velocity and energy shift
of the original Dirac cone due to interlayer coupling. We
compute the self-energy of a single Dirac cone located at
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a time-reversal-invariant-momentum (TRIM); in Appendix C
we discuss the generalization for a system with multiple Dirac
cones not necessarily at TRIM. Without loss of generality, we
take the layer in which we are computing the self-energy to
be layer 1, with Fermi velocity v1, while layer 2 has Fermi
velocity v2.

In this single Dirac cone case, the combination of time-
reversal and rotational symmetry constrain the self-energy to
take the form

�single-cone(ω, k̄) = −[Aω + B + C(k̄ · σ ) + D(k̄ × σ )]. (4)

The parameter A determines the quasiparticle weight via
Z−1 = 1 + A, while the parameters C and D are direct cor-
rections to the renormalized Fermi velocity, which takes the
form

v∗
1 =

√
(v1 − C)2 + D2

1 + A
, (5)

where v1 is the original velocity before the interlayer cou-
pling. The parameter B in Eq. (5) determines an overall energy
shift of the renormalized Dirac cone, given by

	E = − B

1 + A
. (6)

Equation (5) is an important result: it imposes a condition
to find a “magic angle” where the renormalized Fermi velocity
vanishes, specifically, v∗

1 = 0 when D = 0 and C = v1. In
contrast, previous paper [9] showed that a superlattice poten-
tial on the surface of a 3D TI can renormalize the Dirac cone
velocity, but does not result in a magic angle condition; in the
language of Eq. (5), it yields C = D = 0.

We now derive the physical conditions that must be sat-
isfied to realize the magic angle by expressing the abstract
parameters A, B,C, D in terms of the physical interlayer cou-
pling terms TQ, introduced in Eq. (3).

For simplicity, we first assume the original Dirac cone is
coupled to a single Dirac cone in an adjacent layer, so that TQ

is a 2 × 2 matrix. For each Q, we decompose TQ as follows:

TQ = t0,QI + tz,Qσz + t||,Q(Q̂ · σ ) + t⊥,Q(Q̂ × σ ), (7)

where the parameters t0,z,||,⊥ are complex numbers. Note that
since Q̂ is ill-defined at Q = 0, t|| and t⊥ are not continuous
through θ = 0; specifically, the behavior of Q̂ implies that
t||,⊥ ∼ sgn(θ ), to lowest order in θ .

In terms of these coefficients,

A =
∑

Q

1

v2
2Q2

(|t0,Q|2 + |tz,Q|2 + |t||,Q|2 + |t⊥,Q|2), (8a)

B =
∑

Q

2

v2|Q| (�[t0,Qt∗
||,Q] + �[t⊥,Qt∗

z,Q]), (8b)

C =
∑

Q

1

v2Q2
(|t⊥,Q|2 − |t||,Q|2), (8c)

D =
∑

Q

−2

v2Q2
�[t||,Qt∗

⊥,Q]. (8d)

These equations follow directly from the more general results
presented in Appendix C 1.

More generally, if the original Dirac cone is coupled to
multiple Dirac cones in the second layer, labeled by another
(valley, spin, etc.) index, then the decomposition in Eq. (7)
should be applied to each valley, and the parameters A, B,C, D
are found by summing Eq. (8) over all valleys.

In each of the sums in Eq. (8), all symmetry-related Q
values will contribute the same summand, due to the definition
of the coefficients in Eq. (7) and the symmetry properties dis-
cussed in Appendix B 3. Accordingly, if only the smallest Q
values are non-negligible, it suffices to consider the couplings
for one choice of Q.

III. INTERFACE BETWEEN TWO 3D TOPOLOGICAL
INSULATORS

The first case we will consider is the interface between two
3D TIs that are stacked on top of each other with a small
relative twist angle. This is also the simplest case, since each
surface hosts only a single time-reversal-invariant Dirac cone.

If both layers have a Dirac cone at �, there will be a zero-
momentum (Q = 0) interlayer coupling term. Physically, this
term appears because even after twisting, the Dirac cones at
� have no momentum separation. (Mathematically, the Q=0
term arises from our derivation in Appendix B.) The presence
of a Q = 0 term invalidates our results in the previous section,
which were derived by expanding perturbatively in t/v|Q|.
Instead of a renormalized gapless Dirac cone, a Q = 0 term
will open a gap at the interface, similar to the interface be-
tween two untwisted 3D TIs, but modulated by a superlattice
potential. Therefore, to realize a gapless Dirac cone at an
interface between two twisted 3D TIs, we require that at least
one layer has a Dirac cone at a TRIM that is not �.

This motivates us to consider the hypothetical situation of
an interface between two C4-symmetric 3D TIs with the same
lattice constant and Dirac cones at the surface M ≡ (π, π )
point. When the two materials are twisted, the surface BZ is
illustrated in Fig. 1(a). Since the Dirac cones are at (π, π ),
they are C4 invariant and thus isotropic to linear order (any
rotation of order greater than two will yield an isotropic Dirac
cone.) Without such a symmetry, the Dirac cones can flatten
anisotropically; if the velocity vanishes in only one direction,
an effective 1D system results [45,46]. The other TRIM on
the surface of a fourfold-symmetric TI are not C4 symmetric:
the (π, 0) and (0, π ) points mix under a fourfold rotation.
On the surface of a three- or sixfold symmetric TI, the TRIM
also mix under the three- or sixfold rotational symmetry, such
that there are no TRIM points (besides �) that are three- or
sixfold invariant. Thus, if we seek a Dirac cone at a TRIM
that will be renormalized isotropically at a twisted interface
between two 3D TIs, our only option is to consider a Dirac
cone at (π, π ) on the surface of a fourfold symmetric topo-
logical insulator.

We may also consider interfaces between two 3D TIs with
different lattice constants. For example, consider an interface
between one 3D TI with a Dirac cone at M and a second 3D
TI with a Dirac cone at �, such that the two materials have
a 2:1 lattice vector mismatch (their unit-cell areas differ by
a factor of four). In this setup, the cone at M from the first
layer is folded onto � from the second when the layers are
aligned. When the two materials are twisted, the surface BZ is
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illustrated in Fig. 1(b). The low-energy theory of the interface
is similar to the case where the two layers have the same lattice
constant and both have Dirac cones at M, but subject to differ-
ent symmetries. Further, the global topology, i.e., where the
Dirac points are located on the surface BZ, may differ, which
gives rise to different mechanisms for the topological protec-
tion of gapless surface states. One can generalize to construct
interfaces with more complicated supercells describing any
integer ratio of lattice constants.

A. Identical TI surfaces

We start by considering the first scenario, where both TIs
are identical and have Dirac cones at M. Then C2T symmetry
leaves each Q invariant [as we derive in Eqs. (B8) and (B9),
it acts as −σxK, implying σxT ∗

Q σx = TQ]. This constrains the
coefficients t0, t|| and t⊥ to be real, whereas tz is purely imagi-
nary. Accordingly, let us define tz = it̂z.

We assume that only the smallest symmetry-related set of
four Q contribute non-negligibly. Without loss of generality,
we may then choose these Qs along the x and y axes, as
illustrated in Fig. 1(a). This choice of Qs is still valid in the
presence of a small lattice mismatch, although the decompo-
sition into t|| and t⊥ will change. Equation (8) simplifies to

A = 4
(
t2
0,Q + t̂2

z,Q + t2
||,Q + t2

⊥,Q

)
v2Q2

, (9a)

B = 8(t0,Qt||,Q + t⊥,Qt̂z,Q)

v|Q| , (9b)

C = 4
(
t2
⊥,Q − t2

||,Q
)

vQ2
, (9c)

D = −8t||,Qt⊥,Q

vQ2
. (9d)

One of the most important consequences of these formulas
is that if t|| and t⊥ vanish, then the only nonzero term is
A. However, according to the formula for the renormalized
velocity in Eq. (5), a magic angle requires C > 0. Thus, to
lowest order in perturbation theory, a magic angle in this
system requires t⊥ to be nonzero. Since, by its definition in
Eq. (7), t⊥ is a coefficient of off-diagonal Pauli matrices, we
conclude that magic angles are only possible in the presence
of interlayer spin-flipping hopping terms.

This result can be understood by analogy to twisted bilayer
graphene, where instead of spin, the σ matrices act on the
sublattice degree of freedom. In Ref. [22], the authors showed
that magic angles do not appear in the “second chiral limit”
of TBLG where inter-sublattice interlayer hopping vanishes.
When sublattice is replaced by spin, this is exactly our result
that magic angles do not appear at the interface between
two identical 3D TIs without spin-flipping interlayer hopping.
Although in TBLG the Dirac cones are in sublattice space and
protected by spinless C2T , while on the surface of a 3D TI,
the Dirac cone is in spin space and protected by T , we show
in Appendix D 1 that this analogy is mathematically rigorous.

We now consider the magic angle constraint in more detail.
If the two 3D TI layers are identical, they have an additional
layer-interchanging symmetry C2y (which, in combination
with C4, generates three other layer-interchanging symme-

tries). Using the orientation of Qs defined in Fig. 1 [along with
the action of the rotation operator defined in Eq. (B11)], this
symmetry requires

σyT †
Q1

σy = TQ1 . (10)

Combining the above equation with the decomposition of TQ

given in Eq. (7) (and the aforementioned C2T constraints)
yields the single additional constraint t|| = 0, which, from
Eq. (9), implies D = 0, C = 4t2

⊥,Q/vQ2. According to the
expression for the renormalized Fermi velocity in Eq. (5), a
magic angle will result when D = 0, C = v1. Since varying
the twist angle changes the magnitude Q2 that appears in the
denominator of C, we conclude that as long as t⊥,Q �= 0, there
will exist some magic twist angle where C = v1. Importantly,
this magic twist angle requires no fine tuning.

On the other hand, as mentioned below Eq. (9), t⊥,Q corre-
sponds to a spin-flipping interlayer hopping term. While this
term is symmetry-allowed, it is not obvious how such a term
would naturally arise, and we might expect it to be small.
Since the magic angle occurs when C = v1, which implies
t⊥,Q ∼ vQ, then if t⊥,Q is small, the magic angle requires that
Q also be small, which corresponds to a small twist angle
[see Fig. 1(a)]. At such small twist angles, there are two
places where our perturbative results may fail. First: if spin-
preserving couplings dominate, then we require small |Q| for
t⊥/v|Q| to be sufficiently large. However, since our expansion
in t includes a leading order approximation in t0/v|Q| as well,
the smallness of |Q| may demand working to a higher order in
perturbation theory in t0. Second: physically, our assumption
of rigid layers may break down at small twist angle if disorder
or lattice relaxation effects dominate.

In the absence of a layer-interchanging symmetry, gener-
ically t|| �= 0. Since this implies D �= 0 whenever C > 0, by
Eq. (5), lowest-order perturbation theory indicates magic an-
gles will not arise. To higher order in perturbation theory,
fine-tuned scenarios may arise where a magic angle exists, but
we do not expect it to be generic.

In Sec. III C we will compare our perturbative predictions
for the magic angle to a global band structure calculation.

B. Spin vs pseudospin

The low-energy Hamiltonian v(k̄ · σ ) is not the unique
description of a Dirac cone invariant under time-reversal and
rotation symmetries: specifically, as derived in Appendix A 1,
any linear combination of k̄ · σ and k̄ × σ is invariant. Such
linear combinations can be brought into the form v(k̄ · σ )
by a unitary transformation, although the transformation also
changes the meaning of the spin basis. As a first example, if
the Hamiltonian in one layer is described by v(k̄ · σ ) and the
Hamiltonian in the other layer is described by v(k̄ × σ ) or
−v(k̄ · σ ), then we reach the same conclusion as in the previ-
ous section that magic angles exist, but they require a different
mixture of t⊥ and t||. Importantly, spin-flipping hopping is still
required.

However, we get a different result if one layer has the
low-energy Hamiltonian −k̄ · σ ∗. The unitary transformation
that transforms this Hamiltonian to the form k̄ · σ̃ exchanges
spin-flipping and spin-preserving interactions (following the
procedure described in Appendix A 1). Thus, the interlayer
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FIG. 2. Moiré BZ. Blue and red filled circles are the locations
of Dirac cones from each layer. Empty circles indicate other points
along the BZ path (which may be TRIM points depending on the
configuration.)

hopping term that results in a magic angle to leading order
in perturbation theory is now a spin-preserving term. For
other σ ∗-type Hamiltonians, the hopping required to achieve a
magic angle preserves the projection of spin in the z direction,
but not in all directions, i.e., the requirement to achieve a
magic angle is a linear combination of t0 and tz.

From a physical perspective, this set-up provides a physi-
cally reasonable (spin-preserving) interlayer hopping term to
achieve flat bands at the interface between two topological
insulators. However, this physical motivation for the interlayer
hopping term comes at a cost: it requires two different topo-
logical insulators, one with effective Hamiltonian k̄ · σ and the
other with −k̄ · σ ∗.

Physically, materials with a k̄ · σ ∗ Hamiltonian can be dis-
tinguished from materials with a k̄ · σ Hamiltonian by their
spin texture: their spins rotate in opposite directions around
the Dirac cone, as illustrated in Fig. 3. Specifically, writ-
ing the linearized Hamiltonian for layer L as k · ML · σ , the

spin-winding of the Dirac cone is classified by the parameter

χL = sgn( det(ML )) = ±1, (11)

where χL(k · σ ) = 1 and χL(−k · σ ∗) = −1. To determine
whether spin-flipping interlayer hopping is necessary to re-
alize a magic angle, the relevant quantity is χ := χ1χ2, the
product of the χ of each layer: if the product is +1, z-
spin-preserving interlayer hopping is required, whereas if
the product is −1, then z-spin-flipping interlayer hopping is
required.

Note that χL does not completely classify the Hamiltonian,
and as a consequence, the mixture of t|| and t⊥ required to
achieve a magic angle depends on the low-energy Hamilto-
nian. For example, the ratio of t‖ to t⊥ required for a magic
angle at the interface between two 3D TIs with k · σ Dirac
cones will be different than that required at the interface
between two 3D TIs with k × σ Dirac cones, even though both
cases have χ1 = χ2 = +1.

C. Global band structure

So far we have derived the existence/absence of a magic
angle using the renormalized Dirac cone velocity derived in
Eq. (5) to leading order. We now study the validity of our
conclusions to higher order in both k and t0 by computing
the full band structure. We assume spin-preserving coupling
and consider two cases: one in which both TIs have effective
Hamiltonians of the form k̄ · σ (as considered in Sec. III A),
and one in which the second TI instead has an effective Hamil-
tonian of the form −k̄ · σ ∗ (as discussed in Sec. III B), where
σ always references the spin degree of freedom, rather than a
rotated pseudospin degree of freedom. We will call these the
χ = +1 and χ = −1 cases. Note that the band structure for
the χ = −1 case with spin-preserving hopping is identical to
the χ = +1 case with spin-flipping hopping, i.e., t0 → t⊥.

Figure 4 shows the spectrum plotted along the ABB’A slice
of the moiré BZ, which is labeled in Fig. 2. The top row of
plots are spectra for the χ = +1 case, and the bottom row of

(a) H = vk · σ (b) H = vk × σ (c) H = vk · σ∗ (d) H = vk × σ∗

(e) H = −vk · σ (f) H = −vk × σ (g) H = −vk · σ∗ (h) H = −vk × σ∗

FIG. 3. Spin textures of the conduction bands of different Dirac cones. For Dirac cones where σ appears in the Hamiltonian, spin and
momentum rotate the same way, whereas for Dirac cones where σ ∗ appears, spin and momentum rotate in opposite directions. This winding
number also results in different (unitarily equivalent) angular momentum representations.
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FIG. 4. Moiré band structures for the interface between two 3D TIs. The path ABB′A refers to the moiré BZ shown in Fig. 2. In the top
row, the low-energy Hamiltonian for both materials is vk · σ (χ = +1), while in the bottom row, the low-energy Hamiltonian for one TI is
vk · σ and for the other −vk · σ ∗ (χ = −1). In all cases, only a single spin-preserving interlayer coupling term is included. The band structures
are identical to those that result from a spin-flipping term by making the substitutions t0 → t⊥ and χ → −χ .

plots are spectra for the χ = −1 case, with varying t0/v|Q| in
different columns.

We expect in the χ = −1 case [from Eqs. (9c) and (5),
taking t0 → t⊥ according to the basis change described in the
previous section and derived in Appendix A 1] that a magic
angle will arise for t0/v|Q| = 0.5. Examining the t0/v|Q| =
0.5 plot, we find bands that are appreciably flatter, but not
yet “magic.” However, we observe that at higher coupling,
t0/v|Q| = 0.75 (Fig. 4, bottom-right) produces appreciably
flatter bands near a magic angle. We attribute this mismatch
between our perturbative and numerical results to the fact
that at the predicted magic angle, our perturbative parameter
t0/v|Q| = 0.5 is not very small. In Fig. 5, we compare the
numerical and perturbative calculations of the Fermi velocity
and see that they begin to deviate around t0/v|Q| ∼ 0.2.

Nonetheless, the band structures plotted in Fig. 4 confirm
the qualitative intuition (discussed in Sec. III B) that, while
both the χ = +1 and χ = −1 cases produce some band flat-
tening (compare the leftmost column, in which the layers are
uncoupled, to the other columns), the χ = −1 case produces
much flatter bands with spin-preserving interactions than the

FIG. 5. Fermi velocity vs t0 for spin-preserving couplings in the
χ = +1 (black) and χ = −1 (red) cases. Dashed lines are first-order
perturbation theory, solid lines are extracted from numerically-
computed band structures. The χ = −1 case consistently produces
lower Fermi velocities.

χ = +1 case. This can be seen by comparing the spectra in
the two rows of Fig. 4: the bandwidth along the AB line, and
in particular at D, is consistently narrower in the χ = −1 case.

The same trend appears in Fig. 5, where the Fermi velocity
is plotted against t0/v|Q|. The two cases are notably closer in
Fermi velocity than first-order perturbation theory would pre-
dict for intermediate values of t0/v|Q| (between 0.2 and 0.5),
but the χ = −1 case nevertheless consistently yields lower
Fermi velocities, and for large t0/v|Q| � 0.6, the χ = −1
Fermi velocity becomes smaller by an order of magnitude
than the χ = +1 Fermi velocity. In addition, while the Fermi
velocity oscillates in amplitude in the χ = +1 case, the Fermi
velocity in the χ = −1 case decays monotonically, well past
the validity of the perturbation theory.

In Fig. 6, we illustrate the extremely flat low-energy bands
that result in the χ = −1 case with t0/v|Q| = 1.3. The fig-
ure shows that not only do the lowest energy bands become
flat, but the adjacent bands also collapse onto the flat bands,
creating a larger density of states than would result from the
flat bands alone. Both the accumulation of flat bands and the
exponential suppression of Fermi velocity were also discussed
for twisted square lattices in Ref. [47].

Returning to the spectra in Fig. 4, it is also notable that
the spectra are consistently gapless at all energies. This is not

FIG. 6. Spectrum for spin-preserving coupling in the χ = −1
case with t0/v|Q| = 1.3. The original Dirac cone becomes extremely
flat and nearby bands collapse in energy, creating a large density of
states.
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FIG. 7. Band structures for the interface between two identical twisted 3D TIs with spin-preserving coupling (BZ path defined in Fig. 2).
At t0/v|Q| = 0.75, the bands nearest the Fermi level become nearly degenerate along AB.

required by the strong Z2 topological invariant: time-reversal
symmetry allows gaps to open at the interface between two
3D TIs. Instead, the gapless surface states are protected as
a weak TI: the cones at A and B are separated in the moiré
BZ (as illustrated in Fig. 2), and consequently are protected
by the approximate translation symmetry of the moiré lattice
[6], which also protects the cones at C and C′. By “moiré
BZ” we refer to the BZ defined below Eq. (3), not the BZ
of any particular commensurate lattice; hence, the translation
symmetries are not sensitive to any particular commensurate
structure. However, the protection of Dirac cones by moiré
translation symmetry implies that disorder is sufficiently small
on the moiré length scale. (The simplicity of this argument is
in contrast to the analogous circumstances in the second chiral
limit of TBLG [48] and in twisted square lattices [47] in which
a more nuanced argument is required.)

Dirac cones also appear at D and D′ in the top row in
Fig. 4. These crossings are not topologically protected: there
exist nonspin-conserving interlayer couplings that are sym-
metry allowed and would open a gap at D. In particular, in
the lower row in Fig. 4, the Dirac cones have the opposite
spin-momentum locking; hence, the spins are aligned where
the Dirac cones overlap at D and a large gap opens.

Instead, these crossings’ gaplessness is a consequence of
the specific parameters used in our model. In particular: since
D lies on the A − B line (see Fig. 2), when the Dirac cones
have the same spin-momentum locking (i.e., both are of the
form k̄ · σ ), they have opposite spin at D. Since the spectra
in Fig. 4 only include spin-conserving hopping, there is no
term to open a gap at D. When the two Dirac cones have
different velocities or chemical potentials, the crossing still
remains gapless, but moves along the A − B line.

There is one additional interesting feature to examine. In
the χ = +1 case, there are two nearly-degenerate bands at
t0/v|Q| = 0.75. Figure 7 shows a finer range of hopping pa-
rameters, which reveals the lowest conduction bands descend
to produce additional zero-energy states at a critical value of
t0/v|Q| = 0.75, then separate again as the coupling increases.
A similar critical point where the lowest conduction band dips
down and touches the flat band also appears in TBLG, both
in the usual Bistritzer-MacDonald model (Fig. 3(a) of [5])
and in the “second chiral model” with vanishing AB coupling
(Fig. 2(c) of [22]), although the nearly-degenerate bands that
result at this crossing are specific to our model.

The touching point appears to be distinct in the two cases:
in the TI-TI case, the touching point is at the Dirac cones,
whereas in TBLG the touching point is at � (away from the

Dirac cones). However, this can be understood by interpreting
the touching point as occurring −Q away from a Dirac point,
which in TBLG is the � point and in our TI-TI model is at a
Dirac cone.

IV. TI ON GRAPHENE

We have shown that stacking two 3D TIs with a small
twist angle can significantly renormalize the Dirac cones at the
interface, with nearly flat bands appearing at a specific magic
twist angle under certain conditions. In the simplest case, the
surface Dirac cone of each TI must not be at the center of the
surface BZ. However, none of the 3D TIs in the Bi2Se3 family
meet this condition: their surface Dirac cones are always at �

[49,50].
This motivates us to consider a second example of a twisted

heterostructure with multiple Dirac cones: the interface be-
tween a topological insulator and graphene. Such interfaces
have been considered in previous papers [23–44], but the
effect of a small relative twist angle was not considered.

We consider a 3D TI with a single Dirac cone at �, such as
in Bi2Se3. The lattice constants of the TI and graphene differ
by a factor of

√
3 up to an approximate 3% lattice mismatch

[26]; Fig. 8 shows the lattice matching ignoring the lattice
mismatch. The aligned superstructure then folds the K and
K ′ points in graphene onto � in the TI BZ, with the resulting
twisted structure shown in Fig. 9. We assume the TI has a

FIG. 8. Graphene on Bi2Se3. Blue circles indicate Se atoms on
the Bi2Se3 surface; red circles indicate carbon atoms in graphene.
The superlattice matching is accurate to ∼3% [26].
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FIG. 9. The BZ of graphene (red) arranged on top of the 3D TI
BZ (blue), shown both with the lattice mismatch (top) and then with
a small relative twist angle while neglecting mismatch (bottom). The
momentum differences Qi are indicated in each case.

sixfold rotational symmetry, as well as time-reversal sym-
metry. (The sixfold symmetry is not exact: while each layer
of Bi2Se3 has a sixfold rotation axis, the layers are stacked
such that the axes do not coincide [49]. Thus, surface states
mostly localized on the top layer will exhibit an approximate
sixfold rotational symmetry.) The TI Hamiltonian is given by
vT I k · σ , as in Sec. III A. Graphene’s Hamiltonian consists of
four Dirac cones including spin and valley; the matrix form is
given in Appendix A 3.

In the subsequent sections, we will derive a perturbative
analytic calculation of the renormalization of the TI Dirac
cone that arises from its coupling to graphene. The analo-
gous calculation for graphene is more complicated due to its
spin degeneracy and is derived in Appendix C 4; when the
interlayer hopping is spin-preserving, almost all corrections
vanish, with the nonvanishing coefficients only rescaling the
spectrum.

To go beyond our perturbative results, we compute the
surface band structure, specifying to the most physically inter-
esting case where spin is conserved. Our results both validate
the first-order perturbative calculation for the TI Dirac cone

renormalization and provide insight into the higher-order cor-
rections to the graphene Dirac cone.

A. Corrections to TI Dirac cone

We begin by computing the corrections to the TI Dirac
cone to first order in perturbation theory. In so doing, we
make use of the corrections to a single Dirac cone derived
in Eqs. (4)–(8). We decompose the interlayer coupling terms
TQ, defined in Eq. (3), into TQ,k0,s, where TQ,k0,s couples each
graphene Dirac cone to the TI Dirac cone, with the k0 running
over valley and s over spin. At any particular Q, only one
valley will couple to the TI; without loss of generality, we
consider Q corresponding to the K point, so that TQ,K ′ = 0.
The interlayer coupling terms for other values of Q can then
be determined by time-reversal symmetry.

When the lattices are aligned, there is a moiré pattern that
arises from the lattice mismatch. In this case, we can choose
an orientation such that Q = Qxx̂. On the other hand, if we ig-
nore the lattice mismatch and consider arranging the graphene
layer on the TI surface with a small twist angle, we can take
Q = Qyŷ. In the most general case of a lattice mismatch and
a small twist angle, Q could point in an arbitrary direction;
our formalism covers this case, but we here focus on the two
limits.

Regardless of the combination of twist and mismatch, for
a spin-preserving coupling, the corresponding TQ,K,s will take
one of two forms (depending on s), with the rows correspond-
ing to spins in the TI layer and the columns corresponding to
sublattice in the graphene layer,

TQ,K,↑ =
[

t t
0 0

]
(12a)

or

TQ,K,↓ =
[

0 0
t t

]
. (12b)

For either of these TQ,K , t|| = ±it⊥, where t|| and t⊥ are defined
in Eq. (7). Therefore, the direct corrections C and D to the
Fermi velocity [computed according to Eq. (8) and inputted
into the Fermi velocity in Eq. (5)] both vanish. Consequently,

FIG. 10. Path along which spectra in Fig. 11 are plotted in the
case of lattice mismatch. For a twist, the figure is rotated 90 degrees
counterclockwise to account for the different values for Q.
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FIG. 11. Spectrum of TI-graphene heterostructure with zero interlayer hopping (left) and spin-preserving sublattice-independent interlayer
hopping t/vT I |Q| = 0.25 for a uniform lattice mismatch without twist (center) and twist without mismatch (right). We assume vG = 2vT I [23].

magic angles from spin-preserving hoppings do not exist for
any small twist or strain.

By the same logic, purely z-spin-flipping hoppings will
also not produce magic angles in this case. Unlike the
interface between two 3D TIs (Sec. III), we need both z-spin-
preserving and z-spin-flipping hoppings to produce magic
angles.

Another change compared to the interface between two 3D
TIs is that here, due to the small lattice mismatch, the coupling
to graphene shifts the TI’s surface Dirac cone up or down in
energy, while the Dirac cones at the interface between two 3D
TIs experience no such shift when the interlayer coupling is
spin preserving. [The lack of an energy shift in that case is a
consequence of the parameter B in Eq. (9b) vanishing for spin-
preserving coupling; here, it vanishes for a small twist, but not
for lattice mismatch.] In this case, the energy shift follows the
formula:

	E = − 12t2vG|Q|
v2

GQ2 + 12t2
. (13)

The sign of the energy shift depends on the direction of mis-
match, i.e., whether the graphene unit cell or the TI unit cell is
larger compared to the perfect supercell matching illustrated
in Fig. 8.

B. Global band structure

We now plot the band structure to see how our perturbation
theory holds up. We plot all spectra along the path shown in
Fig. 10, which is the same path used in [5].

We first examine spin-preserving, sublattice-independent
coupling (which does not produce magic angles). We present
one representative spectrum each for the cases of twist and
lattice mismatch in Fig. 11, computed with t/vT I |Q| = 0.25;
other values of t look qualitatively similar. The band structure
near the TI Dirac cone at A agrees with our perturbative cal-
culations: In the case of a lattice mismatch, it shows an energy
shift whose magnitude and direction matches Eq. (13); there
is no energy shift in the twist case; and in either case there is
only modest velocity renormalization. Figure 12 illustrates the
behavior of Fermi velocity and energy shift, as extracted from
band structure, as a function of twist angle. It shows that the
Fermi velocity does not experience nearly the renormalization
achieved at the interface between two 3D TIs (Fig. 5). It
also shows that at small twist angles and lattice mismatches
(large couplings), twisting suppresses Fermi velocity more
than mismatch for the same moiré lattice size.

The graphene cones at B, C, and D resemble the quadratic
bands of untwisted Bernal-stacked bilayer graphene. This is
because the TI couples graphene’s spin-up and spin-down
cones at K (since propagation in the TI layer flips the z
component of spin). These cones are not twisted relative to
each other, so they couple in much the same way as the Dirac
cones in the different layers of bilayer graphene, but with an
effective interlayer hopping parameter proportional to t2

vT I |Q|
(instead of tBLG).

This correction to the graphene Dirac cones is fourth order
in t , which agrees with our analytic calculation showing that
the only nonvanishing correction to the graphene cone to
quadratic order in t is an overall rescaling of the spectrum
(details in Appendix C 4).

FIG. 12. Renormalized TI Dirac cone velocity v∗
T I/vT I (top) and

energy shift E0/vT I |Q| (bottom) as a function of the spin-preserving
and sublattice-independent hopping parameter t/vT I |Q| extracted
from band structure calculations (solid lines) and computed pertur-
batively (dashed line, drawn only in the one case where it does not
overlap with a solid line), for the case of a small twist angle (red)
and small lattice mismatch (black). In the twist case, the energy and
Fermi velocity perfectly match the perturbative calculations, so those
lines are not drawn. In the lattice mismatch case, the Fermi velocity
has the same perturbative theory as the twist case (i.e., following the
solid-red line).
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Like the TI-TI interface, the spectra in Fig. 11 remain gap-
less at all energies. This is topologically required because the
Dirac cone on the 3D TI surface is protected by time reversal
symmetry; unlike the TI-TI case discussed in Sec. III C, here
the topological protection is strong and not weak (i.e., not
dependent on the approximate translation symmetries of the
moiré lattice) since there is only one TI surface state.

In summary, our calculations predict that arranging
graphene on the surface of a 3D TI with a small twist an-
gle is not a promising platform for creating flatter bands,
both because no gaps are topologically allowed to open in
the spectrum and because under the most physically intuitive
conditions, the Dirac cone is only marginally renormalized.

V. CONCLUSIONS

We have studied moiré heterostructures on the surface of
a 3D TI. We derived analytic expressions for the leading
order corrections to the velocity of the surface Dirac cone
induced by coupling to another lattice-matched Dirac material
arranged with a small twist angle. We applied our results to
two types of heterostructures: an interface between two TIs
and graphene on the surface of a TI. We derived conditions
for achieving a “magic” angle at which the Fermi velocity
vanishes.

One of our main results is that at the interface between two
identical 3D TIs arranged with a small twist angle, a spin-
flipping interlayer hopping term is a necessary ingredient to
achieve a magic angle. The same is true for graphene on a 3D
TI. While such a term is symmetry-allowed (enforcing time-
reversal and rotational symmetry), it is not clear what physical
mechanism would give rise to it. In future work, it would be
interesting to perform first-principles calculations for different
material combinations (such as graphene on Bi2Se3 or Bi2Te3,
or the interface between two 3D TIs) to determine under what
conditions the spin-flipping interlayer hopping terms arise.

On the other hand, we found that magic angles are achieved
without spin-flipping interlayer hopping at twisted interfaces
between two lattice-matched TIs whose Dirac cones have
opposite winding number (see Fig. 3). At the magic an-
gle, such an interface realizes locally flat bands. Unlike in
twisted bilayer graphene, the flat bands are not gapped from
the conduction/valence bands due to topological constraints.
Nonetheless, such locally flat bands will enhance the density
of states at the Dirac point, which is favorable for realizing
instabilities to superconducting or quantum anomalous Hall
states [10,12–19].

This analysis therefore provides two routes for inducing
magic angles on the surface of a 3D TI. There are also several
potential routes to creating flat bands in such systems that go
beyond the setups considered in this paper.

One route would be to consider an interface between two
materials with Dirac cones at �. We did not consider this case
here because such interfaces would generically gap, and there-
fore exhibit qualitatively different behavior than other twisted
interfaces, although this case has been studied recently for thin
slabs [51]. Whether the resulting bands contain interesting
features (e.g., van Hove singularities [10]) remains an open
question.

Another route would be to reduce the rotational symme-
try. We limited ourselves to Dirac cones that would remain
isotropic to linear order in the twisted heterostructure, i.e.,
those that remain a center of three- or fourfold rotation. If
one considers Dirac cones with less rotational symmetry, then
even where a vanishing Fermi velocity is impossible, it may be
possible to achieve a significantly enhanced density of states
via anisotropic band flattening [45,46]. In such a setup, one
may have “partial magic angles” where Dirac cone velocity
vanishes in one direction. The interacting instabilities of a 3D
TI with such a Dirac cone provide a potential scenario for
further study.
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APPENDIX A: GENERAL HAMILTONIANS
FOR DIRAC MATERIALS

In this Appendix, we discuss the Dirac Hamiltonian in a
single layer. In Appendix A 1, we discuss our basis choice for
the Dirac Hamiltonian. In Appendix A 2 we consider the rep-
resentations of rotational and time-reversal symmetry on this
Hamiltonian, and show that, after a further change of basis,
time-reversal symmetry can be brought to a canonical form
of iσyK . Finally, in Appendix A 3 we elaborate on the details
and symmetry representation of the graphene Hamiltonian,
along with explicit matrices that perform the aforementioned
changes of basis.

1. Dirac Hamiltonians

Let us begin by considering a two-state Hamiltonian in two
dimensions, which identically vanishes in energy at k = 0.
The most general expansion to linear order in k can be ex-
pressed as

H (k) = (a · k)I + k · b · σ + (c · k)σz. (A1)

If the spectrum is isotropic, then the vectors a and c must
vanish, while the tensor b is constrained to the trace and
antisymmetric parts (which commute with rotations). Then
the Hamiltonian can be written as a sum of two terms,

H (k) = b1s(k̄ · σ ) + b1a(k̄ × σ ). (A2)

We can then perform a unitary transformation described by
the matrix

exp (i arctan(b1a/b1s)σz/2). (A3)

This will transform our Hamiltonian into√
b2

1s + b2
1a(k̄ · σ ). (A4)

Thus, an isotropic Dirac cone at k = 0 can generically be
written as vk̄ · σ in the appropriate basis.
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A Dirac cone not at the origin will instead take the form
v(k − k0) · σ . For this reason, we now define k̄ as the dif-
ference in momentum space between k and the center of the
Dirac cone k0,

k̄ = k − k0. (A5)

This leads to the more general assertion that any isotropic,
gapless Dirac cone at charge-neutrality can have an effective
Hamiltonian written in the form HD(k̄), with HD as defined in
Eq. (1).

More generally, for a Hamiltonian with multiple Dirac
cones indexed by the Dirac points k0,i, we can do the same
operations for each cone in terms of k̄i := k − k0,i.

At the level of the perturbative small-angle calculation
performed here, we can drop the i subindex, and regard k̄ as
a formal parameter rather than a point in momentum space
per se. This is computationally convenient because it allows
for valley-mixing basis changes (which we will use in the fol-
lowing section); accordingly, we will use k̄ without subindex
in the rest of this paper’s exposition. (To extract the physical
meaning of the terms we compute, the basis change must be
reversed to disentangle the valleys.)

Therefore, under the assumptions we make in this paper, if
we index our Dirac cones by i and j, we can always write a
single-layer Hamiltonian as

H (k̄) = HD(k̄)δi j . (A6)

2. Time-reversal and rotational symmetry

We now also assume that our materials have both time-
reversal symmetry T and in-plane n-fold rotational symmetry
Cn. Note both of these operations leave each layer invariant,
so we can discuss them before coupling two layers; however,
in materials with multiple Dirac cones, the symmetries do not
have to leave each Dirac cone invariant—the Dirac cones may
be mixed under the symmetry transformations.

Time-reversal symmetry can be expressed as the condition
that

T Hk̄T −1 = H−k̄ . (A7)

Similarly, if we denote by R the usual action of Cn on the
plane, then the rotation symmetry requires

CnHk̄C
†
n = HRk̄ . (A8)

We now derive the matrix forms of T and Cn, which will
be implemented by anti-unitary and unitary matrices, respec-
tively, when acting on our Dirac Hamiltonian in Eq. (A6).
Given that T is antiunitary, it can generally be written as

T = T̃i j (iσyK), (A9)

where T̃ is a matrix in i j space (trivial in σ space) whose
structure will depend on the specific problem at hand. Since
T is antiunitary and satisfies T 2 = −1, it must be that T̃ T̃ † =
T̃ T̃ ∗ = 1, and therefore that T̃ is complex symmetric.

The rotation matrix can be written as

Cn = Ũi j exp(iπσz/n). (A10)

Similar to time-reversal symmetry, there is a matrix Ũ , which
acts only in i j space and will depend on the specific problem.
Ũ must be unitary and have the property that Ũ n = 1.

To simplify our calculations of twisted multi-Dirac band
structures (Appendix C), we would like to simplify the form
of T̃ and Ũ as much as possible. As these unitary transforma-
tions should also preserve the form of our Hamiltonian, we
constrain ourselves to only operating on the i and j indices
(rather than on those of HD(k̄)).

Since T̃ is complex-symmetric, we can perform an
Autonne-Takagi factorization [52,53] to diagonalize it into δi j .
(Note the condition that T 2 = −1 plays a vital role in this
decomposition by ensuring the symmetry of T̃ ; therefore, this
decomposition does not directly apply to spinless models.)

This change of basis yields new rotation matrices Ui j from
our previous Ũi j , such that the rotation in the new basis is
Ui j exp(iπσz/n). These matrices U cannot generally be sim-
plified by a further basis transformation while preserving the
properties established thus far. (We still have the ability to
act on the i j indices with a real orthogonal matrix without
disturbing either our Hamiltonian or the form of T , but this is
of comparatively limited use.)

In some cases, it is beneficial to diagonalize in the basis of
T ′ := C2T , instead of T . This will most often the case if the
model has a subset of Dirac cones (decoupled from the rest)
invariant under T ′ but not T , which occurs, for instance, in
twisted bilayer graphene, where the K and K ′ Dirac cones are
decoupled from each other.

In this circumstance, T ′ takes the matrix form

T ′ = T̃ ′
i j (σxK). (A11)

The condition that T ′2 = +1 results in T ′
i j also being

complex-symmetric, and therefore the same Autonne-Takagi
factorization applies to reduce this to δi j . However, this diag-
onalization cannot (generally) be performed simultaneously
with the previous one, so one basis or the other should be
chosen for the computation on a case-by-case basis.

3. Effective graphene Hamiltonian and symmetry
representations

We now present the application of the above methodology
to graphene as a concrete example. In the process, we develop
a model of “half-graphene”, which will serve an effective
simpler stepping stone in our calculations.

a. Graphene fundamentals

We can write an effective graphene Hamiltonian as four
Dirac cones coupled to sublattice, indexed by spin and valley,

HG =

⎡
⎢⎣

vk · τ 0 0 0
0 vk · τ 0 0
0 0 −vk · τ ∗ 0
0 0 0 −vk · τ ∗

⎤
⎥⎦. (A12)

We will here use τ to refer to the sublattice degree of
freedom, σ to refer to the spin degree of freedom, and μ to
refer to the valley degree of freedom. Therefore, the above
Hamiltonian can be equivalently written as

HG = v[kxτxμz + kyτyμ0]σ0. (A13)

In this basis, time-reversal symmetry will be written as

T = iσyμxK. (A14)
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For rotations, it will be computationally convenient to sep-
arately consider C2 and C3 (rather than C6). These take the
form

C2 = iσzτxμx, (A15)

C3 = − exp(iπσz/3) exp(iπτzμz/3). (A16)

b. Half-graphene model

A computationally simpler model would have only one
Dirac cone each at K and K ′. Considering a spinless model of
graphene will not work if we want to preserve time-reversal
symmetry with T 2 = −1. However, what we can do is write
a Hamiltonian for a material like graphene with spin-valley
locking. In other words, we take a material with Dirac cones
coupled to sublattice at K and K ′, but take a single Dirac cone
at K with one spin and one at K ′ with the opposite spin. This
setup breaks C2 symmetry, but preserves both C3 and time
reversal.

The effective Hamiltonian of such a model, before any
basis change, could be written by picking out the first and
fourth cones of our previous graphene model,

HHG =
[
vk · τ 0

0 −vk · τ ∗

]
. (A17)

We can therefore inherit our symmetry representations
from that model as well. Let σ denote the combined spin-
valley degree of freedom. Then, time reversal takes the
form

T = iσyK. (A18)

Similarly, threefold rotations take the form

C3 = − exp (iπσz(τz + τ0)/3). (A19)

c. Basis change in half-graphene

We now take our simplified model of half-graphene and put
it into the standard form with a Hamiltonian of (vk · τ )σ0 with
T = iσyK.

First, we transform the Hamiltonian to our standard form
with a σy transformation on the second Dirac cone only. Time-
reversal then takes the form (iτyK)σx. We can easily transform
σx into σz with a rotation by eiπσy/4, after which we transform
the second Dirac cone by a factor of i to eliminate the minus
sign (exploiting antiunitarity to eliminate the cone-dependent
phase in T ).

Combining these transformations together yields the ma-
trix (

1 + i

2

)[
iτ0 −τy

−τ0 iτy

]
. (A20)

Due to this complicated transformation, the τ and σ ma-
trices in this basis refer to some combination of the original
degrees of freedom in a nonobvious way. (That is, we use
these symbols to refer to the indices in the matrix structure
rather than their original degrees of freedom.)

With our Hamiltonian and time-reversal symmetry both in
standard form, only the C3 rotation operator remains non-
trivial. That the operator is a symmetry of the Hamiltonian

determines how it acts on τ space, so what remains is to de-
termine how it acts on σ space, which is precisely specifying
the matrix U in Eq. (A10). Computing U in this case yields a
standard rotation matrix

U3,HG = exp(iπσy/3). (A21)

d. Basis change in graphene

We now perform an analogous series of steps in our full
graphene model. There is some additional freedom in our
basis change here that we exploit to make our rotational
symmetries as simple as possible. In the end, our basis trans-
formation is

(
1 + i

2

)⎡
⎢⎣

iτ0 0 0 −τy

−τ0 0 0 iτy

0 iτ0 τy 0
0 τ0 iτy 0

⎤
⎥⎦. (A22)

With our basis transformations performed, we can now
write the rotations in the new basis. Again, we take Eq. (A10)
and specify the U matrices defined therein, this time both for
C3 and C2 symmetry,

U3 = exp(iπσy/3)μ0, (A23)

U2 = σ0μx. (A24)

That these expressions factor is precisely the motivation for
working with C3 and C2 rather than C6: C3 now acts trivially
on the μ indices and C2 acts trivially on the σ indices, whereas
C6 acts nontrivially on both indices simultaneously.

Moreover, we can now see the exact sense in which our
half-graphene model was, indeed, half of graphene: Our full
model of graphene can be written as two C2-related copies
of our half-graphene model. This will allow us to work out
the details of the C3 symmetry in our half-graphene model
in Sec. C 3, then add the details of C2 symmetry in the full
graphene model in Appendix C 4.

APPENDIX B: INTERLAYER COUPLINGS

In this Appendix, we derive the coupling between two
layers stacked with a relative twist angle. We begin with a
general derivation of interlayer couplings in a tight-binding
model given the lattice vectors of each layer and then spe-
cialize to the case of small twist angle about a commensurate
crystal structure. We then specialize to the case of coupled
Dirac cones and incorporate the constraints of time-reversal
and rotational symmetry.

1. General two-layer tight-binding couplings

We begin by considering the interlayer coupling between
two layers with different lattices, with no constraints on the
Hamiltonian of each layer.

Letting I, J index all nonmomentum degrees of freedom
(sublattice, orbital, spin, etc., but not valley, since it is in-
cluded in the integral over k) of layer 1 and I ′, J ′ of layer 2,
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the two-layer Hamiltonian can generally be written as

H =
∑
I,J

∫
BZ 1

d2kψ
†
1,I,kHIJ

1 (k)ψ1,J,k +
∑
K,L

∫
BZ 2

d2k′ψ†
2,I ′,k′HI ′J ′

2 (k′)ψ2,J ′,k′

+
[∑

I,J ′

∫
BZ 1

d2k
∫

BZ 2
d2k′(ψ†

1,I,kT IJ ′
(k, k′)ψ2,J ′,k′ ) + H.c.

]
. (B1)

We now simplify T (k, k′) by imposing some minimal as-
sumptions. We start by Fourier transforming T IJ ′

(k, k′),

T IJ ′
(k, k′) =

∑
R,R′

e−ik·(R+rI )eik′ ·(R′+rJ′ )T IJ ′
(R, R′). (B2)

In the above equation, R and R′ denote the centers of the
unit cells of the two layers, whereupon rI and r′

J denote the
location of sublattices I and J ′ relative to the centers of their
respective unit cells.

We then make a standard moiré tight-binding assumption
that the crystal locally has the translation invariance of the
original lattice, i.e.,

T IJ ′
(R, R′) = t IJ ′

(R + rI − R′ − rJ ′ ). (B3)

Combining this equation with the previous one and Fourier
transforming again allows us to simplify significantly,

T IJ ′
(k, k′)

=
∑
R,R′

e−ik·(R+rI )eik′ ·(R′+rJ′ )t IJ ′
(R + rI − R′ − rJ ′ )

=
∑
R,R′

e−ik·(R+rI )eik′ ·(R′+rJ′ )
∑

k′′
eik′′ ·(R+rI −R′−rJ′ )t IJ ′

k′′

=
∑
R,R′

∑
k′′

e−i(k−k′′ )·Rei(k′−k′′ )·R′
ei(k′′−k)·rI e−i(k′′−k′ )·rJ′ t IJ ′

k′′

=
∑
G,G′

∑
k′′

δk+G,k′′δk′+G′,k′′ei(k′′−k)·rI e−i(k′′−k′ )·rJ′ t IJ ′
k′′

=
∑
G,G′

δk+G,k′+G′ei(G·rI −G′ ·rJ′ )t IJ ′
k+G. (B4)

In the above expressions, k′′ is allowed to run over all of
momentum space, whereas G and G′ are the reciprocal lattice
vectors of the two layers.

This final expression relates the coupling between two
materials of arbitrarily mismatched lattices to the Fourier
transform of the tight-binding interlayer hopping t IJ (r).

2. Small-angle twisting

We now look specifically at the case where the two layers
are twisted with a small angle relative to a commensurate cell
and, further, that the low-energy physics is well described by
a k · p expansion about a particular point k0 in the BZ. (The
derivation proceeds similarly for a small lattice mismatch
instead of a small twist angle.)

Making the substitutions k → k0 + k̄, k′ = k′
0 + k̄′,

Eq. (B4) becomes

T IJ ′
(k, k′) =

∑
G,G′

δk̄+k0+G,k̄′+k′
0+G′ei(G·rI −G′ ·rJ′ )t IJ ′

k̄+k0+G. (B5)

From here, we explicitly separate out twist angle depen-
dence: we split k0 as k0 = k̂0 + δk0, where k̂0 is twist angle
independent and |δk0| ∼ θ |k0|. Therefore, for small twist an-
gle, δk0 will be small. (As an example, in graphene, k̂0 would
be the position of the K point before twisting, and δk0 would
be its deviation after twisting.) We do a similar decomposition
with G, k′

0, and G′.
We now suppose that the interlayer spacing is much greater

than the interatomic spacing, which motivates an assumption
that t decays slowly in position space and therefore quickly
in momentum space [5]. Then, the smallest values for k̄ +
k0 + G (i.e., within the first few BZ) dominate. Combined
with our assumption for small k̄, this justifies the following
decomposition:

δk̄+k0+G,k̄′+k′
0+G′ � δk̂0+Ĝ,k̂′

0+Ĝ′δk̄+δk0+δG,k̄′+δk′
0+δG′ . (B6)

The first term is θ independent: it implies that cones will
only couple after twisting if they fold onto the same point in
the BZ before twisting, allowing us a simple way to determine
what valleys do or do not couple. The second term then speci-
fies the twist angle dependence, as it contains the θ -dependent
terms.

To simplify, we explicitly input the rotation by declaring
δG′ = MĜ′, δk′

0 = Mk̂′
0, and δG = δk0 = 0, where M is the

difference between the rotation matrix and the identity. Then,
with an approximation in t to lowest order in k̄, we end up
with the following expression for T IJ ′

(k, k′):∑
Ĝ,Ĝ′

δk̂0+Ĝ,k̂′
0+Ĝ′︸ ︷︷ ︸

Valley matching

δk̄,k̄′+M(k̂′
0+Ĝ′ )︸ ︷︷ ︸

θ/Q-dependence

ei(Ĝ·r̂I −Ĝ′ ·r̂J′ )t IJ ′
k̂0+Ĝ︸ ︷︷ ︸

Coupling strength

(B7)

where r̂I,J ′ denote the positions of the sublattice degrees of
freedom before being twisted. Finally, we define Q := k̄′ − k̄
and express this interlayer hopping as TQ, giving the notation
from the main text in Eq. (3).

3. Symmetry constraints on TQ

We now derive the effect of symmetry on the interlayer
coupling terms. In so doing, we explicitly assume the Dirac
Hamiltonian is written in the basis discussed in Appendix A,
including the specified form of the symmetry operators.

For simplicity of expression, we explicitly break the TQ

into a set of 2-by-2 matrices TQ,i j′ . Note that i j′ used here
are not the same as IJ ′ in the previous section: IJ ′ run
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over all nonvalley degrees of freedom, whereas i j′ run over
time-reversal-invariant Dirac cones (which may include valley
degrees of freedom).

Time-reversal symmetry relates Q to −Q, and gives the
relation

σ yT ∗
ik,−Qσ y = Tik,Q. (B8)

For in-plane rotations, we return to the U matrices defined
following Eq. (A10), which may be different for each layer.
Call the matrix for one layer U and for the other U ′. Imple-
menting the rotation in momentum space by Q �→ RQ, the
resulting constraint is

eiθσz/2[Ui jTjk′,RQU ′†
k′l ′]e

−iθσz/2 = Til ′,Q. (B9)

Notice that the constraints imposed by time-reversal and
rotation symmetry in Eqs. (B8) and (B9) relate the interlayer
coupling at different Q. Thus, once TQ is known for one choice
of Q, it is determined for all other Q related by time-reversal
or rotation symmetry. The exception to this is the combined
symmetry operation C2T , which leaves Q invariant and (due
to antilinearity) acts as a reality constraint on each individual
TQ.

In the case of identical materials, there may also be layer-
interchanging rotations, like C2x or C2y. These follow a similar
formula to the in-plane rotations, except instead of relating T
to T , they relate T to T †. Letting φ denote the angle between
the axis of rotation and the x axis, define

σφ = cos(φ)σx + sin(φ)σy. (B10)

Then, letting LQ denote the action of the rotation on Q and
V a material-dependent transformation matrix representing
the action of the symmetry on the i j indices,

σφ[Vi jT
†
jk′,−LQV †

k′l ′]σφ = Til ′,Q. (B11)

There is a subtlety here in the formula involving T−LQ

instead of TLQ. Specifically, Q is defined as the difference in
momentum from layer 1 to layer 2 [see below Eq. (B7)]. When
the two layers are exchanged, the meaning of Q has to change
accordingly, which swaps Q → −Q.

In practice, it is only necessary to consider one out-of-plane
rotation symmetry, since the others are generated by products
with the in-plane rotations. When considering a particular Q,
it is prudent to consider an out-of-plane rotation that preserves

that Q (as done in Sec. III A), so that the out-of-plane rotation
imposes a constraint on TQ, rather than relating two distinct
terms TQ and T−LQ. This then (being an antilinear constraint
on a single Q, akin to C2T ) imposes a reality constraint on
individual TQ. A material with both C2T and such an out-of-
plane symmetry may have conflicting reality constraints that
can cause certain interlayer hopping terms to vanish, as again
can be seen in Sec. III A.

These symmetries are the only ones that we expect to arise
in generic models, since reflection symmetries are (gener-
ically) broken in twisted bilayers and internal symmetries
are model-specific. Without further constraints, we expect all
interlayer hopping terms that satisfy Eqs. (B8), (B9), and
(B11) to arise, although symmetry does not constrain their
amplitudes.

APPENDIX C: CALCULATIONS OF SELF-ENERGY

In the following Appendix, we compute the self-energy of
a Dirac cone in one layer of material that results from hopping
into the other layer. We show that the self-energy takes the
general form given by Eq. (4) and derive the coefficients
defined in Eq. (8). We also derive the more general results that
arise when there is more than one Dirac cone in each layer.

We begin by discussing the general case in the special basis
described in Appendix A (in particular parts A 1 and A 2). We
then discuss the extent to which this calculation requires this
change of basis and the extent to which it can be ignored.

With the general case worked out, we proceed to compute
the quadratic corrections to graphene (and our simplified half-
graphene model) described in A 3.

1. General calculation

We first calculate the self-energy of a Dirac cone in layer 1
due to its coupling to a Dirac cone in layer 2; the self-energy
of the Dirac cone in layer 2 from hopping into layer 1 is
identical up to the definition of Q (which is the momentum
shift in going from layer 1 to layer 2, not the converse) and
an interchange of the roles of T and T †. The calculation of
self-energy, to lowest-order in perturbation theory, proceeds
as follows:

�i j (k̄, ω) =
∑
Q,l ′

TQ,il ′ [ω − v(k̄ + Q) · σ ]−1T †
Q, jl ′ (C1)

� −
∑
Q,l ′

1

v2Q4
TQ,il ′ [Q

2ω + v(Q2(k̄ · σ ) − 2(Q · k̄)(Q · σ ) + Q2(Q · σ ))]T †
Q, jl ′ (C2)

= −
∑
Q,l ′

1

2v2Q4
{(TQ,il ′T

†
Q, jl ′ + T−Q,il ′T

†
−Q, jl ′ )Q

2ω + vQ2(TQ,il ′ (Q · σ )T †
Q, jl ′ − T−Q,il ′ (Q · σ )T †

−Q, jl ′ )

+ v[TQ,il ′ (k̄ · (Q2I − 2Q ⊗ Q) · σ )T †
Q, jl ′ + T−Q,il ′ (k̄ · (Q2I − 2Q ⊗ Q) · σ )T †

−Q, jl ′ ]} (C3)

= −
∑
Q,l ′

1

2v2Q4
{(TQ,il ′T

†
Q, jl ′ + σy(TQ,il ′T

†
Q, jl ′ )

∗σy)Q2ω + vQ2(TQ,il ′ (Q · σ )T †
Q, jl ′ + σy(TQ,il ′ (Q · σ )T †

Q, jl ′ )
∗σy)

+ v(TQ,il ′ (k̄ · (Q2I − 2Q ⊗ Q) · σ )T †
Q, jl ′ − σy(TQ,il ′ (k̄ · (Q2I − 2Q ⊗ Q) · σ )T †

Q, jl ′ )
∗σy)}. (C4)
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Let us now explain each equality: Equation (C2) is derived
by expanding Eq. (C1) to linear order in the dimensionless
parameters ω/v|Q| and |k̄|/|Q|. Equation (C3) is derived by
averaging the terms TQ and T−Q, and Eq. (C4) relates T−Q,il ′ to
TQ,il ′ by the constraint imposed by time reversal symmetry in
Eq. (B8).

The above equation for the self-energy expanded to linear
order in k̄ and ω can be decomposed as

�i j (k̄, ω) = Ai jω + Bi j + k̄ · Vi j, (C5)

where the coefficients can be further decomposed as

Ai j = Ai jσ0 + iA′
i jσz + iA′′

i j · σ, (C6a)

Bi j = Bi jσ0 + iB′
i jσz + iB′′

i j · σ, (C6b)

Vi j = Vi jσz + iV ′
i jσ0 + Mi j · σ. (C6c)

In the above equations, aside from the i j indices, some of the
coefficients have implicit indices implied by the dot products,
i.e., A, A′, B, and B′ are scalars; A′′, B′′, V , and V ′ are two-
component vectors; and M is a rank-2 tensor.

The factors of i have been chosen so that all are real due to
time-reversal symmetry. Since the self-energy is Hermitian,
all unprimed coefficients are symmetric in the i j indices,
whereas all primed or double-primed indices are antisymmet-
ric. (In particular, the antisymmetric terms vanish on the i j
diagonal, and therefore do not appear in the case of a single-
Dirac cone, for which i = j = 1).

We rewrite the above equations in terms of traces over the
T matrices using the following identities for 2x2 Hermitian
matrices H :

H + σyH∗σy = T r[H]σ0, (C7a)

H − σyH∗σy = T r[Hσμ]σμ. (C7b)

By applying these identities to Eq. (C4) and isolating the
coefficients defined in Eqs (C5)–(C6), we find the following
explicit expressions for the individual coefficients defined in
Eq. (C6):

Ai j =
∑
Q,i′

1

2v2Q2
�T r[TQ,ii′T

†
Q, ji′ ], (C8a)

A′
i j =

∑
Q,i′

1

2v2Q2
�T r[TQ,ii′T

†
Q, ji′σ

z], (C8b)

A′′μ
i j =

∑
Q,i′

1

2v2Q2
�T r[TQ,ii′T

†
Q, ji′σ

μ], (C8c)

Bi j =
∑
Q,i′

1

2vQ2
�T r[TQ,ii′ (Q · σ )T †

Q, ji′ ], (C9a)

B′
i j =

∑
Q,i′

1

2vQ2
�T r[TQ,ii′ (Q · σ )T †

Q, ji′σ
z], (C9b)

B′′μ
i j =

∑
Q,i′

1

2vQ2
�T r[TQ,ii′ (Q · σ )T †

Q, ji′σ
μ], (C9c)

V μ
i j =

∑
Q,i′

1

2vQ2

(
δ

μ

λ − 2
QμQλ

Q2

)
�T r[TQ,ii′σ

λT †
Q, ji′σ

z],

(C10a)

V ′μ
i j =

∑
Q,i′

1

2vQ2

(
δ

μ
λ − 2

QμQλ

Q2

)
�T r[TQ,ii′σ

λT †
Q, ji′ ],

(C10b)

Mμν
i j =

∑
Q,i′

1

2vQ2

(
δ

μ

λ − 2
QμQλ

Q2

)
�T r[TQ,ii′σ

λT †
Q, ji′σ

ν].

(C11)

So far, we have only imposed time-reversal symmetry (in the
form noted in Appendix A 2, using the constraints derived
in Appendix B 3). To further constrain the form of the self-
energy, we should impose rotational symmetry. While we
cannot further simplify without knowing the specific form
of the rotation matrices U (defined in Appendix A 2), which
are material dependent, we now outline the procedure for
simplifying further.

The core aspect of the simplification is relating the terms
in the sums over Q in Eqs. (C8)–(C11) using Eq. (A10).
Writing, for instance, Eq. (C8a) as Ai j = ∑

Q Ai j (Q) and

noting Ail (RQ) = Ui jA jk (Q)U †
kl , it follows that Ai j can be

expressed in terms of only a single representative Q0 (of
each symmetry-related set of Q), i.e., we need only com-
pute Ai j (Q0). Summing over different Q is then equivalent
to picking out the rotation-invariant part of Ai j (Q0) (under
the representation of rotations given by the U matrices) and
multiplying by an appropriate symmetry factor.

The same procedure can be applied to the rest of Eqs. (C8)–
(C11) very similarly. The only modification required is
incorporating the μ and ν indices, where present: A′′(Q), etc.,
pick up a (vector) transformation on those indices in addition
to the U matrices that transform the i j indices. This makes
the decomposition into irreps different, but the philosophy is
the same: find the rotation-invariant part of those matrices and
multiply by an appropriate symmetry factor.

It is often useful to decompose M into the irreps of the μν

indices (before considering the i j indices): the trace C, the
antisymmetric part D, and the symmetric trace-free part N ,
i.e.,

Mμν
i j = Ci jδ

μν + Di jε
μν + Nμν

i j . (C12)

We can be more concrete in the specific case where there
is only one Dirac cone. In this case, all primed coefficients
vanish as discussed below Eq. (C6). In addition, U is simply
a phase factor. Thus, we only need consider the rotational
transformations of A, B, V , and M, all of which are specified
by U being a phase: A(Q) and B(Q) are identical for all Q;
V (Q) transforms like a vector; and M(Q) transforms like a
two-index tensor.

In the sum over Q, therefore, the V (Q) will cancel for
any rotational symmetry (including C2): denoting the rotation
operation on a vector by R, our above calculation reveals
that V (RnQ) = RnV (Q), and so the sum of rotation-related
Q terms vanishes [

∑
n V (RnQ) = 0].

A similar but more complicated representation theory ar-
gument reveals that M is constrained to only its trace and
antisymmetric parts C and D (i.e., N vanishes). This yields the
single-cone result given in Eq. (4), with coefficients as given
in Eq. (8).
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2. U (N) symmetry

The above calculation, in principle, only holds in the spe-
cial basis in which both materials have a k · σ Hamiltonian
and time reversal takes the form iσyK . This requires a change
of basis that is inconvenient for developing intuition in mate-
rials where the cones do not naturally come in such a form,
such as graphene (where time-reversal does not naturally flip
the internal degree of freedom of a Dirac cone).

However, using our final results (C8)–(C11), we find that
the expression for self-energy of the first layer is invariant
under a change of basis in the second layer that acts only
on the i′ j′ indices, since they are summed over. Thus, our
result is invariant under the change of basis indicated in A 2
(for the second layer), although not under the change of basis
described in Appendix A 1.

In this paper, this invariance allows us to avoid changing
the graphene basis in Sec. IV; otherwise, we would be forced
to make all the changes of basis highlighted in Appendix A 3.
Instead, we only need transform the Hamiltonian to a vk · σ

form (as described in Appendix A 1), which is trivial for the
purposes of our calculation.

However, note the full basis change on the first layer (the
one for which we are calculating the self-energy) is still nec-
essary: A unitary change of basis on the i j indices will not
necessarily leave �i j invariant. Hence, for the computation of
the self-energy of the graphene cones Appendices C 3 and C 4,
the complex changes of basis are still necessary.

3. Half-graphene corrections

We now apply the above computational method to the case
of the corrections to graphene from tunneling into the Dirac
cone on the surface of a TI, assuming for simplicity that only
the smallest set of Qs contribute non-negligibly to the sums
in Eqs. (C8)–(C11). We begin with the simpler half-graphene
model presented in Appendix A 3.

For each of the terms presented in Eqs. (C8)–(C11), we can
divide the contributions into rotational irreps (where the action
of the rotations are defined by the action of U on the i j indices
combined with the usual action on any vector indices μν).
For the trivial irreps, the summands for different (symmetry-
related) Qs will all be identical, and hence we can simply take
a representative Q and multiply by a symmetry factor of 6. For
nontrivial irreps, the summands will cancel.

Consider first the corrections from A, A′, B, B′, C, and D
[as defined in Eqs. (C6) and (C12)]. For these terms, since
there are no vector indices, any irreps with i j indices that
transform nontrivially under C3 will vanish in the sum over Q,
which means [using the representation of rotational symmetry
given in Eq. (A21)] these terms can only contribute σ0 or σy

terms; the pair (σx, σz ) transform like a vector instead. By
symmetry in i j, the unprimed terms contribute σ0 and the
primed σy. Therefore, the contributions from these terms to
the self-energy in Eq. (C5) can be written as

(A0ω + B0)τ0σ0 + (A′
0ω + B′

0)τzσy + C0(k̄ · τ )σ0

+D0(k̄ × τ )σ0.

Next, consider the terms with vector indices: A′′μ
i j , B′′μ

i j ,
V μ

i j , and V ′μ
i j [as defined in Eq. (C6)]. Again, we find the

irreps that transform trivially. As μ is a vector index, another
vector index from the i j is required, and such an index can
be found in the vector combination (σ x, σ z ). However, since
these matrices are symmetric in i j, the only term they can
contribute to is V , and so A′′ = B′′ = V ′ = 0.

The surviving term V , we have now decomposed as V μ
i j =

V μ
a σ a

i j where a = x, z and μ = x, y. The rotationally-invariant
terms are those that contract the μ and a indices via dot and
cross products, as follows: for any matrix Sa

μ, the rotation-
invariant parts are the contractions of V μ

a with Sa
μ and ε ν

μ Sa
ν .

Therefore, the contribution to the self-energy from V de-
composes as

(k̄ · Vi j ) = V1
(
k̄xσ

x
i j + k̄yσ

z
i j

) + V2
(
k̄xσ

z
i j − k̄yσ

x
i j

)
.

This choice of V1 and V2 is, of course, not unique, but the
invariant subspace will be the same for all choices of decom-
position.

We can similarly decompose our last coefficient, Nμν
i j : the

μν indices are a combination of αx and αz, which transform
as a vector, and therefore we must take a corresponding com-
bination of σ x and σ z, as before. Therefore, we can express
our solution as

Nμν
i j = N1

(
αμν

x σ x
i j + αμν

z σ z
i j

) + N2
(
αμν

x σ z
i j − αμν

z σ x
i j

)
.

Concatenating these all together, we find the corrections
to the self-energy for our half-graphene model (in the special
basis of Appendix A 3 c can be written in terms of ten coeffi-
cients,

�HG(k̄, ω) = (A0ω + B0)τ0σ0 + (A′
0ω + B′

0)τzσy

+C0σ0(k̄ · τ ) + D0σ0(k̄ × τ )

+ [V1(k̄xσ
x + k̄yσ

z ) + V2(k̄xσ
z − k̄yσ

x )]τz

+ (N1σ
x + N2σ

z )(k̄xτy + k̄yτx )

+ (N1σ
z − N2σ

x )(k̄xτx − k̄yτy). (C13)

In the original basis, the self-energy takes the form

�HG(k̄, ω)

= (A0ω + B0)τ0σ0 + (A′
0ω + B′

0)τzσ0

+C0

[
k̄ · τ 0

0 −k̄ · τ ∗

]
+ D0

[
k̄ × τ 0

0 −k̄ × τ ∗

]
+ [V1(k̄xσ

y + k̄yσ
x ) + V2(k̄xσ

x − k̄yσ
y)]τx

+ (τ0 − τz )(N1(k · σ ) − N2(k × σ )). (C14)

Some of these terms may vanish to lowest order in perturba-
tion theory; Eq. (C13) is the most general form constrained by
symmetry.

For spin-preserving sublattice-independent hopping with
amplitude t , we can explicitly compute these terms by by
multiplying the term from Q = |Q|x̂ (for twist) or Q = |Q|x̂
(for lattice mismatch) by a symmetry factor of six. We find
that (in either case) the only nonvanishing coefficient in the
self-energy is

A0 = 3t2

v2Q2
. (C15)

Hence, in this half-graphene model with spin-preserving
sublattice-independent hopping to the TI layer, the effect of
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the lowest-order self-energy corrections is an overall energy
rescaling by a factor of 1 + A0.

a. Corrections to TI cone from spin-preserving hopping

For sake of completeness, we here include the self-energy
corrections to the TI Dirac cone with spin-preserving hopping
in this model. Similar to graphene (as discussed in Sec. IV A),
we can split TQ into TQ,K and TQ,K ′ (with no extra spin index
in this case). Taking a Q for which TQ,K is nonvanishing, we
find that it takes one of the forms,

TQ,K,↑ =
[

a b
0 0

]
(C16a)

or

TQ,K,↓ =
[

0 0
a b

]
. (C16b)

All other TQ are symmetry-related, as in the graphene case.
Note unlike graphene, the two coefficients a and b can be
different due to the lack of C2 symmetry.

Like graphene, the C and D coefficients vanish, but the A
and B coefficients do not. As a consequence of these coeffi-
cients, the energy shift is

	E = − 6abvHG|Q|
v2

HGQ2 + 3(a2 + b2)
. (C17)

4. Full graphene corrections

We now work with our full model of graphene, using the
half-graphene case as a starting point. We work in the basis
described in Appendix A 3 d.

We first decompose the indices i j into subindices for the μ

and σ degrees of freedom. For example, Ai j = Apa,qb, where
the μ indices are μpq and the σ indices are σab. As discussed
below Eqs. (A23) and (A24), the unitary rotation matrix U3

only acts nontrivially on the ab indices, while U2 only acts
nontrivially on the pq indices, which allows us to straightfor-
wardly separate the two symmetries (rather than working with
a more complicated U6 = U2U

−1
3 matrix).

As we did for the half-graphene case, we begin by consid-
ering the scalar coefficients A, B, C, D, A′, and B′. We now
filter down to the subrepresentations trivial under both C3 and
C2. C3 implies each coefficient must commute with σy and
C2 implies it must commute with τx, by similar logic to that
used in Appendix C 3. Considering these in the context of
the symmetry properties of the different matrices yields the
following contribution to the self-energy:

[(A1μ0 + A2μx )σ0τ0 + (A′
1μ0 + A′

2μx )σyτz]ω

+ (B1μ0 + B2μx )σ0τ0 + (B′
1μ0 + B′

2μx )σ0τz

+ (C1μ0 + C2μx )σ0(k · τ ) + (D1μ0 + D2μx )σ0(k × τ ).

We next consider the vector parts A′′, B′′, V , and V ′. The vector
index must pair with a combination of ab and pq indices,
which transforms like a vector under both C3 and C2. We use
(σx, σz ) as a vector-like pair as before for our ab indices, and
either μy or μz in our pq indices (to anticommute with μx for
C2). Combining this with the knowledge that V is symmetric
and the others are antisymmetric in i j, the resulting allowed

terms are

[A′′
1 (σxτx + σzτy) + A′′

2 (σxτy − σzτx )]μyω

+ [B′′
1 (σxτx + σzτy) + B′′

2 (σxτy − σzτx )]μy

+ [V ′
1 (k̄xσx + k̄yσz ) + V ′

2 (k̄xσz − k̄yσx )]τ0μy

+ [V1(k̄xσx + k̄yσz ) + V2(k̄xσz − k̄yσx )]τzμz.

Finally, we consider the two-index N matrix, which again
is decomposable into αx and αz. These transform like a vector
under C3 but a scalar under C2, resulting in the allowed terms:

N = (N1μ0 + N2μx )(αxσx + αzσz )

+ (N3μ0 + N4μx )(αxσz − αzσx ).

Therefore, the full self-energy of this system, in the special
basis presented in Appendix A 3 d, is

�G(k̄, ω)

= [(A1μ0 + A2μx )σ0τ0 + (A′
1μ0 + A′

2μx )σyτz]ω

+ (B1μ0 + B2μx )σ0τ0 + (B′
1μ0 + B′

2μx )σ0τz

+ (C1μ0 + C2μx )σ0(k · τ ) + (D1μ0 + D2μx )σ0(k × τ )

+ [A′′
1 (σxτx + σzτy) + A′′

2 (σxτy − σzτx )]μyω

+ [B′′
1 (σxτx + σzτy) + B′′

2 (σxτy − σzτx )]μy

+ [V ′
1 (k̄xσx + k̄yσz ) + V ′

2 (k̄xσz − k̄yσx )]τ0μy

+ [V1(k̄xσx + k̄yσz ) + V2(k̄xσz − k̄yσx )]τzμz

+ (N1μ0 + N2μx )[(kxτy + kyτx )σx + (kxτx − kyτy)σz]

+ (N3μ0 + N4μx )[(kxτy + kyτx )σz − (kxτx − kyτy)σx].

(C18)

This 24-coefficient equation is the fully general self-energy
for all possible varieties of coupling. Some terms may vanish
to leading order in perturbation theory.

For the special case of spin-preserving sublattice-
independent coupling, which is the most physically intuitive
tunneling term, the only nonvanishing term to first order (both

for lattice mismatch and for twist) is A0 = 3t2
0

v2Q2 , and hence
(like the half-graphene case) the practical effect of the lowest-
order corrections is a rescaling of the self-energy.

APPENDIX D: EXTENSIONS

We now discuss straightforward but nontrivial extensions
of the self-energy computed in Appendix C 1.

1. C2T symmetry

In a material that lacks T symmetry but possesses C2T
symmetry, it is more convenient to diagonalize in the ba-
sis of C2T than T . This is also the case in twisted bilayer
graphene, where each valley is invariant under C2T . Fortu-
nately, the calculation of the self-energy with C2T symmetry
is methodologically similar to the calculation with T sym-
metry shown in Sec. C 1, although, in general, more terms
appear.

Specifically, the calculation is identical up to Eq. (C2),
but then instead of averaging over TQ and T−Q and using T
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symmetry to relate them, we use the fact that TQ = 1
2 (TQ +

(C2T )TQ(C2T )−1), at which point the calculation proceeds
similarly.

If we use Autonne-Takagi factorization on C2T as dis-
cussed in Appendix A 2, simplifying the operator to σxK, then
we instead find a self-energy of

�i j (k̄, ω)

=
∑
Q,l ′

TQ,il ′ [ω − v(k̄ + Q) · σ ]−1T †
Q, jl ′ (D1)

� −
∑
Q,l ′

1

v2Q4
TQ,il ′ [Q

2ω + v(Q2(k̄ · σ )

− 2(Q · k̄)(Q · σ ) + Q2(Q · σ ))]T †
Q, jl ′ (D2)

= −
∑
Q,il ′

1

2v2Q4
{(TQ,il ′T

†
Q,il ′ + σx(TQ,il ′T

†
Q,il ′ )

∗σx )Q2ω

+ vQ2(TQ,il ′ (Q · σ )T †
Q,il ′ + σx(TQ,il ′ (Q · σ )T †

Q,il ′ )
∗σx )

+ v(TQ,il ′ (k̄ · (Q2I − 2Q ⊗ Q) · σ )T †
Q,il ′

+σx(TQ,il ′ (k̄ · (Q2I − 2Q ⊗ Q) · σ )T †
Q,il ′ )

∗σx )}. (D3)

Then the self-energy takes the same form as Eq. (C5), ex-
cept the symmetry decomposition of the matrices in Eq. (C6)
are replaced with

Ai j = Ai jσ0 + iA′
i jσz + A′′

i j · σ, (D4a)

Bi j = Bi jσ0 + iB′
i jσz + B′′

i j · σ, (D4b)

Vi j = Vi jσ0 + iV ′
i jσz + Mi j · σ. (D4c)

In this case [contrary to the terms in Eq. (C6)], unprimed
and double-primed terms are real symmetric matrices in
i j, whereas (only) single-primed terms are antisymmetric in
those indices. (Also note the corresponding interchange of V
and V ′, since C2T imposes different constraints.)

The equations for these coefficients are generally the same
as Eqs. (C8)–(C11), except that real and imaginary parts of
the trace are changed.

For a single-cone material, the self-energy simplifies to

�C2T (k̄, ω) � (A0I + A1 · σ )ω + (B0I + B1 · σ )

+ k̄ · M · σ + (k̄ · V̂ )I. (D5)

We have not yet applied rotational symmetry. In a generic
model, we naively expect more terms allowed by C2T (with-
out T ) than by T (without C2T ): the i j-symmetric (i.e.,
unprimed) parts of (C6) allow two scalars, one vector, and a
tensor; here we have three vectors instead of one (and none of

the three vectors in the C2T care are the same as the vector in
the T case).

However, when rotation symmetry is present, Eq. (D5)
again simplifies to Eq. (4). In particular, any rotational sym-
metry will cause the A1, B1, and V terms to vanish (and
a rotation of order greater than 2 will cause the nonscalar
portion of M to vanish), in exactly the same fashion as the
T -based calculation. Then, the remaining coefficients (A0, B0,
and the remaining parts of M) are precisely analogous to the
coefficients in (4). Thus, we find a similar condition on magic
angles.

As an example of where this would be useful, consider (a
spinless model of) TBLG. While TBLG can in principle be
accounted for by a T -based transformation, it is much simpler
to use this C2T -based result because C2T leaves each valley
invariant. The ultimate consequence of this is the analogy
between AB hopping in TBLG and spin-flipping hopping in
our TI-TI model discussed in Sec. III.

2. More general Dirac Hamiltonians

We now offer a few comments on extending to a broader
class of Dirac Hamiltonians, including Dirac cones not at
charge neutrality, gapped Dirac cones, and anisotropic Dirac
cones. In all cases, the calculation is straightforward to adapt,
but it is worth highlighting the extent to which these alterna-
tive Hamiltonians may yield qualitative changes.

For Dirac cones not at charge neutrality, we find that the
coefficients A and B mix, i.e., if A0 and B0 are the coefficients
at charge neutrality, then away from charge neutrality A and B
are both linear combinations of A0 and B0.

For Dirac cones with mass terms, several new contribu-
tions to V and M appear (potentially yielding interesting new
physics). To compute the self-energy, it is most convenient to
choose a different basis than the one outlined in Appendix A:
one would rather have the Hamiltonian (with mass term) in
the form v(k · σ )τ0 + mσzτz with time-reversal symmetry in
the form T = iτxσyK.

This can always be done: performing the sequence of steps
through (A 2) puts the mass term as imσzÂi j , for Â a real
antisymmetric matrix. This Ai j can always be remapped to a
block-diagonal τy while preserving the form of time-reversal
symmetry (by a Youla decomposition), at which point we
have our Hamiltonian in the form v(k · σ )τ0 + mσzτy, with
T = iσyτ0K. From here, a quarter-rotation about τx will put
both matrices in the above-specified form.

Finally, anisotropies also produce additional contributions
to M and V , which may lead to different kinds of behavior.
For example, anisotropy may lead to “partial magic angles,”
wherein one direction of a Dirac cone has a vanishing Fermi
velocity and the other does not (as discussed in [45,46]).
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