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While the semiclassical Boltzmann approach has been widely adopted to study chiral-anomaly-related trans-
port in Weyl semimetals (WSMs), it predicts an unphysical diverging electrical conductivity when EF → 0,
where EF is the Fermi energy. Here, we develop a modified semiclassical equation of motion which includes
both the diagonal and off-diagonal contributions of the Berry curvature. On this basis, we derive an undivergent
classical formula for the positive longitudinal magnetoconductivity in a WSM which resolves the conflict
between the classical and ultraquantum approaches. We demonstrate that the chiral anomaly is closely related to
the topological pumping effect and it can be realized even in the absence of a magnetic field. With our findings we
propose a different perspective to understand the topological properties of WSMs and suggest a way to measure
the chiral anomaly using transport.
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I. INTRODUCTION

In the past few years, considerable attention has been
paid to topological phases of matter, ranging from gapped
topological insulators to various gapless topological semimet-
als [1–10]. Weyl semimetals (WSMs), a typical example of
three-dimensional topological semimetals, have been widely
studied on both the theoretical [11–35] and experimental
[36–50] sides. A WSM possesses linear-dispersion excitations
near the degenerate band touching points, referred to as Weyl
nodes, around which the Berry flux enclosed by the Fermi
surface is quantized. The Weyl nodes can be understood as
topological charges of definite chirality, acting as the source
or sink of the Berry curvature in momentum space [51–53].

Soon after the theoretical predictions [54,55], the WSM
state was experimentally found in TaAs [38–40] and later
in several different compounds [56–60]. Their peculiar topo-
logical properties endow WSMs with multiple interesting
physics. The most prominent ones are the chiral anomaly and
chiral magnetic effect (CME). In the context of topological
field theory, the CME and chiral anomaly in WSMs can be
observed when the paired Weyl nodes are separated in energy-
momentum space by a nodal separation four-vector (b0, b).
While the four-vector does not break the chiral symmetry
of the action, it breaks the system’s Lorentz symmetry [61].
Consequently, as the four-vector is eliminated by a series
of infinitesimal chiral transformations, a Chern-Simons-like
term from the path integral measure will be introduced
[61–64] and then results in the anomalous electromagnetic
response j = e2

2π2 h̄ (b0B + b × E ). The gauge invariance of the
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system will lead to the continuity equation

∂ν jν5 = e2

2π2h̄2 E · B, (1)

with jν�1
5 ( j0

5 ) being the chiral current (charge) density and
E and B being external electric and magnetic fields. The
chiral anomaly described by Eq. (1) indicates the violation
of the number conservation laws of the chiral charge when
E · B �= 0, which creates a charge imbalance between the two
opposite Weyl nodes, leading to the so-called chiral chemical
potential. The CME j ∼ b0B indicates that the measurable
charge current can be triggered by a magnetic field if the Weyl
nodes are separated in energy or the chiral chemical potential
exists.

In the semiclassical perspective, the emerging anomalous
phenomena in WSMs are attributable to the Berry curvature
in the quasiclassical equations of motion (EOMs) [65]. To-
gether with the Boltzmann equation, one can derive a term
∝(E · B)B/E2

F in the charge current density, which is in-
terpreted as the chiral-anomaly-related positive longitudinal
magnetoconductivity (LMC) in WSMs [13,14,20–23], where
EF is the Fermi energy. The observation of the chiral anomaly
in solid states not only is of great conceptual interest but also
paves the way for realizing high-speed electronic circuits and
computers [66–68]. Therefore, in recent years, great efforts
have been devoted to searching for evidence of the chiral
anomaly in various Weyl materials [69–71].

The semiclassical Boltzmann approach has been widely
adopted to study chiral-anomaly-related transport in WSMs,
but it predicts an unphysical diverging positive LMC when
EF → 0. In addition, the Boltzmann approach focuses mainly
on nonequilibrium electron transport after the steady state has
been established, while the circumstances before the steady
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state is formed have been considered less. In the ultraquantum
limit, it is known that the chiral anomaly is attributed to the
zeroth chiral Landau levels (LLs) and the resulting positive
LMC exhibits an EF -independent plateau for |EF | < √

2h̄ωc,
with ωc being the cyclotron frequency [19,71]. Besides the
conflict between the classical and ultraquantum limits, a uni-
fied classical theory across these two limits to understand the
chiral anomaly is still lacking. Additionally, another natural
question is whether the E · B term is essential for the chiral
anomaly. Recently, Rylands et al. showed that the electric
and magnetic fields on the right-hand side of Eq. (1) can be
modified by the fluctuations induced by interacting matter
[64]. Although the right hand side of Eq. (1) still emerges in
the form Ẽ · B̃, with Ẽ and B̃ being, respectively, the effective
electric and magnetic fields in the presence of interactions,
their result implies an alternative path to determine the chiral
anomaly.

In this paper, we draw a connection between the chiral
anomaly and the topological pumping effect [72–75] by deriv-
ing a modified semiclassical EOM including the off-diagonal
contribution of the Berry curvature. Based on this, we study
magnetotransport in WSMs beyond the Boltzmann approach.
We find that a magnetic field couples with the Berry curvature
by driving the fermions to rotate around the Weyl nodes,
during which time the Weyl fermions will acquire a Berry
phase to induce the CME. Upon application of parallel electric
and magnetic fields, the chemical potential will increase in
one valley but decrease in the other. As a result, a chiral chem-
ical potential will be established between the Weyl valleys,
which in turn breaks the chiral symmetry and generates the
positive LMC. With the topological pumping mechanism, we
further demonstrate that the chiral anomaly can be realized
even without E · B. More importantly, our theory successfully
overcomes the difficulty of the unphysical divergence pre-
dicted by the Boltzmann theory, bridging the gap between the
classical and ultraquantum approaches. The rest of this paper
is organized as follows. In Sec. II, we introduce the model and
method. The magnetic-field-driving CME and chiral anomaly
are discussed, respectively, in Secs. III and IV. The ac electric-
field-driving chiral anomaly is discussed in Sec. V, and the last
section contains a short summary.

II. MODEL AND METHOD

We start with a general low-energy description,

Hw(k) = χ h̄υF σ · k, (2)

for the WSMs, where χ = ± represent two Weyl nodes of
opposite chiralities, σ = (σx, σy, σz ) denotes the vector of the
Pauli matrix, and k is the wave vector measured from the
Weyl nodes. Diagonalizing Eq. (2) yields the energy spec-
trum ε

χ

k,s = sh̄υF k, where s = ± label the conduction and

valence bands and k =
√

k2
x + k2

y + k2
z accounts for the mag-

nitude of the wave vector. The corresponding wave function
is ψχ

s (k) = (cosϕ, sin ϕeiφ )T , where ϕ = θ
2 + 1−sχ

4 π , with
θ = cos−1(kz/k) and φ = tan−1(ky/kx ). As the Weyl fermions
are coupled to external fields, the system can be captured by

H = Hw(k) − j(r) · A − e�, (3)

in which A (�) denotes the electromagnetic vector (scalar)
potential and j(r) = −eṙ is the charge current density opera-
tor. The external fields are assumed to be homogeneous in real
space.

For convenience, we rewrite the Hamiltonian as an explicit
function of the external fields as H = Hw(k) − F · r, where
the generalized force is defined as [76]

F = −∇U (r, ṙ) + d

dt

∂U (r, ṙ)

∂ ṙ
, (4)

with U (r, ṙ) = eṙ · A − e�. Using the Heisenberg EOM
ih̄Ȯ = [O,H(k)], we can derive for ṙ = h̄−1∇kHw(k) and
k̇ = h̄−1F. Then, the expectation of ṙ can be evaluated by〈

ψχ
s (t )

∣∣ṙ∣∣ψχ
s (t )

〉 =
∑

p

〈
ψχ

p

∣∣ṙρ(t )
∣∣ψχ

p

〉
, (5)

where ρ(t ) = |ψχ
s (t )〉〈ψχ

s (t )| is the density matrix operator
and ψχ

s [ψχ
s (t )] denotes the wave function in the absence

(presence) of the external perturbation U (r, ṙ) = −h̄k̇ · r.
Within linear-response theory, we can express the per-

turbed density matrix as ρ(t ) = ρ0 + ρ1(t ), where ρ0 =
|ψχ

s 〉〈ψχ
s | is the equilibrium density matrix and

ρ1(t ) = − i

h̄

∫ t

−∞
dt ′[e−iHw(t−t ′ )/h̄U (r, ṙ)eiHw(t−t ′ )/h̄

× ρ0 − ρ0e−iHw(t−t ′ )/h̄U †(r, ṙ)eiHw(t−t ′ )/h̄]. (6)

Subsequently, we can obtain (see Appendix A)

ˆ̇k = − e

h̄
E − e

h̄
ˆ̇r × (∇ × A), (7a)

ˆ̇r = 〈�|∂Hw(k)

h̄∂k
|�〉 −

⊕
s

Tr[ˆ̇k × �̂s(k)], (7b)

with E = −∇� − ∂t A, where the operators are 2 × 2 ma-
trices in the Hilbert space � = {|ψχ

+〉, |ψχ
−〉}, e.g., Ô =

〈�|O|�〉, with O = {r, ṙ, k̇}, and �̂s(k) = −i〈�|r|ψχ
s 〉 ×

〈ψχ
s |r|�〉. Different from the conventional semiclassical

EOM, Eq. (7) includes the off-diagonal contribution of the
Berry curvature. Without the off-diagonal elements of �̂s(k),
the last term in Eq. (9) reduces to ˆ̇k × i(r̂ × r̂). In classical
mechanics, this term vanishes for the vector algorithm in plane
geometry, and ˆ̇r = 〈�|∂kHw/h̄|�〉 returns to the classical
limit. However, in quantum mechanics, the vector is defined
in the Hilbert space, in which r is an operator acting on the
basic wave functions, such that r̂ × r̂ can be nonvanishing,
especially for topological electronic structures. For exam-
ple, in momentum space, r̂ → i〈�|∇k|�〉 becomes the Berry
connection, and �̂k ≡ −i(r̂ × r̂) = (ηx cot θ − ηz )χk/(2k3)
defines the Berry curvature, where ηx,y,z represents the Pauli
matrix for the � Hilbert space. Then, with the relation
B = ∇ × A, the diagonal part of Eq. (7) recovers the well-
known quasiclassical EOM derived from the wave packet
dynamics [65].

In the adiabatic approximation, the external fields regu-
late � slowly by the replacement k → k(t ). In this situation,
we can approximate k̇ · r → i∂t , which means neglecting the
off-diagonal elements of k̇, such that Eq. (7b) recovers the
velocity υ̂χ

α (k, t ) = ∂Hk/h̄∂kα − �̂α (k, t ) for the adiabatic
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pumping current density [65]

jχP,α = − e

V

∑
k

1

T

∫ T

0
dtTr

[
υ̂χ
α (k, t ) f (Hk)

]
, (8)

where Hk = diag(εχk,+, ε
χ

k,−) and �̂α (k, t ) = i[〈∂kα�|∂t�〉 −
〈∂t�|∂kα�〉] is the Berry curvature defined in the kα-t pa-
rameter space, with V = LxLyLz being the sample’s volume,
f (ε) = [1 + eβ(ε−EF )]−1 being the electron distribution func-
tion, and β−1 = kBT being the thermal fluctuation energy. The
velocity of the carriers, owing to

�̂α (k, t ) = −χηθ
ηzεαβγ k̇β (t )kγ (t )

2
[
k2

x (t ) + k2
y (t ) + k2

z (t )
] 3

2

, (9)

can be chirality dependent, where ηθ = η0 + iηy cot θ and
εαβγ is the Levi-Civita antisymmetric tensor.

III. MAGNETIC-FIELD-DRIVING CME

For simplicity, we fix B = Bêz and turn off the electric
field by setting E = 0. In the adiabatic approximation, we can
derive for

∂kα
∂t

= −s
eBυF

h̄k
εαβzkβ + O(B2). (10)

The magnetic field itself does not alter the electrons’ energy,
so k remains unchanged. By differentiating both sides of
Eq. (10) with respect to t , we can obtain the equation of simple
harmonic motion ∂2

t kx,y + ω2
k kx,y = 0, with ωk = eBυF/(h̄k)

being the angular frequency. Subsequently, we can solve for
kx,y(t ) = kx,y|φ→φ+sωkt , such that the coordinate-dependent
vector potential A can be equivalent to a time-dependent
vector potential with eh̄−1∂t Ax,y = ∂t kx,y. In other words, the
magnetic field acts like an in-plane rotating electric field driv-
ing the wave vector to circle around the Weyl nodes. While
a Bloch electron rotates around the monopole in momentum
space, it would acquire a Berry phase, causing the topological
pumping effect. Therefore, we would expect current to be
pumped by the magnetic field itself, manifesting the CME.

Importantly, the rotating direction of the wave vectors in
the valence band is opposite to that in the conduction band.
Meanwhile, the Berry curvatures in the conduction and va-
lence bands also have opposite signs. Hence, the pumping
direction, as demonstrated below, will be identical for the
conduction and valence bands. By substituting kx,y(t ) into
Eq. (9), we find

υ̂χ
α (k, t ) = ηzυF

kα
k

− χηθ
eBυF

2h̄k2

(
δα,z − kzkα

k2

)
, (11)

with �B = √
h̄/eB being the magnetic length. We see that,

although the driven wave vector kx,y(t ) is time dependent, the
anomalous velocity �̂z(k, t ) = χηθυF sin2 θ/(2�2

Bk2) is time
independent, which indicates a uniform-speed pumping pro-
cess. It is in contrast to the variable-speed pumping for the ac
electric field because the Hilbert space here driven by the mag-
netic field rotates with a constant speed, during which time
the electrons feel identical strength of the Berry curvature,
as shown by Figs. 1(a) and 1(b), where the fermions move
along the latitude of the energy contour. The Weyl nodes,
as the center of the energy contour, are always within the

FIG. 1. (a) and (b) Schematics for the pumping process of the
Weyl fermions with magnetic field. The yellow (cyan) sphere repre-
sents the Fermi surface of the Weyl valley with positive (negative)
chirality, on which the black, green, and red arrows indicate, re-
spectively, the direction of the Berry curvature, magnetic-induced
effective electric field, and anomalous velocity. (c) The Weyl cones
for ky = 0, with the black circles denoting the energy contour and the
arrows indicating the direction of the anomalous velocity, where the
red lines correspond to the chiral LLs in (d).

closed path of the electrons. Consequently, for magnetic field
driving, all the states below the Fermi surface will contribute
to the pumping, as demonstrated by Fig. 1(c). However, for ac
electric field driving, as discussed in Sec. V, the Weyl cones
are shifted integrally along the electric field, and equivalently,
the driven electrons will rotate around an in-plane wave vec-
tor, as illustrated by Fig. 2(c). During this process, the Weyl
fermions change their energy and feel different strengths of
the Berry curvature, thus causing a variable-speed pumping
process. Moreover, when k2

x + k2
y > k2

c , with kc = eE⊥/(h̄ω)
determined by the ac electric field [for example, the green
lines in Fig. 2(c)], the Weyl nodes are out of the electrons’
closed path and therefore make no contribution to the pump-
ing effect. This also can be seen from the numerical results
presented in Fig. 2(d). In this sense, the pumping efficiency of
the magnetic field is much higher than that of the ac electric
field.

Actually, the physical picture from Eq. (7) can be more
intuitive. For example, if only the diagonal contribution is
included, the solution to Eq. (7) is ˆ̇k = −eEeff/h̄, and

ˆ̇r = ∂Hk

h̄∂k
+ e

h̄
Eeff × �̂k, (12)

where the effective electric field is Eeff = Dk h̄−1∂kHk × B,
with Dk = (1 + eB · �̂k/h̄)−1. The Berry curvature and effec-
tive electric field are schematically shown in Figs. 1(a) and
1(b). As illustrated by Figs. 1(a) and 1(b), when the magnetic
field drives the Bloch electrons moving along the latitude of
the energy contour, the Berry curvature will induce a tangent
anomalous velocity along the longitude, as illustrated by the
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FIG. 2. (a) The chiral chemical potential vs kF and (b) the LMC
vs 1/B, with μ0 = eEzυF τ and σ0 = �σzz(B = 1T). The black solid
and blue dashed lines represent the results obtained from the classical
and ultraquantum limits, respectively. (c) Schematic of the ac electric
field pumping process, in which the left (right) cone is plotted for the
positive (negative) Weyl valley, and (d) �σzz(E⊥) as a function of
E⊥, with the jumping point corresponding to kc = kF .

red arrows in Figs. 1(a) and 1(b). To leading order in mag-
netic field, the velocity given by Eq. (12) equals Eq. (11).
Above, because the off-diagonal contribution of the Berry
curvature has been neglected, the pumping current density
for a given energy is quantized to 2χ/3 in units of Be2/h2

[see Eq. (A14)]. If the off-diagonal elements in Eq. (7) are
included, the z component of the velocity becomes

υ̂χ
z (k, t ) = ηzυF

kα
k

− χ
eBυF

2h̄k2
(1 + χηz cos θ ). (13)

Then, the pumping current density on the Fermi surface is
quantized exactly to the topological charge χ , as demonstrated
by Eq. (A16), which characterizes the topological property of
the WSMs more robustly.

As discussed above, each constant-energy surface enclos-
ing the Weyl node will contribute a quantized current density
χBe2/h2. Therefore, at low temperatures with f (εχk,s) 
�(EF − ε

χ

k,s), by summing over all the contributions below
the Fermi level, we can estimate the chirality-resolved current
density as

jχP,α = χ
e2

h

E� + EF

h
Bδα,z, (14)

where E� is an energy cutoff for the linear dispersion.
Equation (14) shows that the magnetic field can indeed pump
current ∝B as a characteristic phenomenon of the CME. The
pumping current satisfies the symmetry jχP,z = − j−χ

P,z ; namely,
it flows in opposite directions for Weyl valleys of opposite
chirality, so the net charge current will vanish. As the chiral
symmetry is broken, e.g., the Weyl nodes are separated in
energy by b0 or a chiral chemical potential �μ is established
between the Weyl valleys, nonvanishing charge current jc

P,z =
b0Be2/h2 or 2�μBe2/h2 can be measured. This is consistent
with the prediction of topological field theory.

IV. MAGNETIC-FIELD-DRIVING CHIRAL ANOMALY

Intuitively, charge current will emerge if an additional
electric field is applied along the pumping direction because
when the Bloch electrons in opposite Weyl valleys are pumped
along or against the electric field, the chemical potential will
decrease in one valley but increase in the other. Then, the
chiral symmetry will be broken, and a chiral chemical poten-
tial could be established between the Weyl valleys and further
lead to observable charge current. To verify this argument, we
apply an electric field Ez = −∂t Az along the z direction. The
Hamiltonian according to Eq. (3) becomes

H̃k = Hk +
∫ t

0
dt ′ jz(r)Eze

−�t ′/h̄, (15)

with τ = h̄/� being the lifetime of the fermions and jz(r) =
−eυ̂χ

z (k, t ) given by Eq. (13). Since the Berry curvature is
ill defined for k = 0, εχk,s = 0 is a singularity of the distri-
bution function f (ε̃χk,s), with ε̃

χ

k,s being the energy for H̃k.

Therefore, the Taylor expansion f (ε̃χk,s)  f (εχk,s) + gχk
∂ f (εχk,s )

∂ε
χ

k,s

breaks down at εχk,s = 0, leading to invalidation of the Boltz-
mann approach. This is the origin of the unphysical diverging
electrical conductivity in the Boltzmann theory. This issue can
be addressed as follows.

Due to the topological electronic structure, a weak mag-
netic field will separate the spectrum into two parts: a part
with achiral dispersion ε

χ

k,s  sh̄υF k which maintains the
shape of the Weyl cone and possesses chirality-dependent
Berry curvature and another part with chiral dispersion ε

χ

kz,0
=

−χ h̄υF kz but without Berry curvature. Details are presented
in Appendix B. Consequently, the achiral dispersion, i.e., the
Weyl cone, acquires an anomalous velocity at each k point,
as if it were decorated with chiral channels, as shown by
Figs. 1(a)–1(c). Upon application of parallel electric and mag-
netic fields, the chemical potential, by averaging the second
term in Eq. (15) over the Fermi surface, will change by

�μχ = h̄

�̃

−eEz
∑

ks υ̂
χ
s,z(k, t )δ

(
EF − ε

χ

k,s

)
∑

ks δ
(
EF − ε

χ

k,s

) + ∑
kz
δ
(
EF − ε

χ

kz,0

) , (16)

with �̃ = �/(1 − e−�t/h̄), so that the Fermi energy will be
renormalized. It can be verified that the density of states
(DOS) of the chiral channels satisfies the identity

Nch ≡
∑

kz

δ
(
EF − ε

χ

kz,0

) =
∣∣∣∣∣
∑

ks

υ̂χ
s,z(k, t )

υF
δ
(
EF − ε

χ

k,s

)∣∣∣∣∣. (17)

Accordingly, we can express the chiral chemical potential as

�μ = h̄

�̃

eEzυF

1 + N−1
ch

∑
ks δ

(
EF − ε

χ

k,s

) . (18)

In the diffusive regime, the system reaches the steady state
rapidly by impurity scattering, such that we can replace t →
∞ and obtain for the steady state Fermi energy EF + χ�μ

with the chiral chemical potential

�μ = eEzυFτ

1 + 2�2
Bk2

F

. (19)
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Consequently, the steady-state LMC reads

�σzz(B) ≡ j+P,z + j−P,z
Ez

= 2e2

h

1

2π�2
B

υF τ

1 + 2�2
Bk2

F

. (20)

Obviously, the LMC is no longer divergent when EF → 0,
which also can be seen from Fig. 2(a). In the ballistic regime
where the travel time of the Weyl fermions is far smaller than
the relaxation time, i.e., d < h̄υF/�, with d being the distance
between the measuring electrodes, the LMC ∝d , while its
magnetic field and EF dependences remain unchanged.

For 2�2
Bk2

F � 1, Eq. (20) can be approximated as

�σzz(B) = e2

4π2 h̄

(eB)2υ2
F

E2
F

υF τ, (21)

which exhibits a B2-dependent positive LMC scaled with
1/E2

F . This is exactly the expression derived by the semiclassi-
cal Boltzmann approach [13,14,20–23] . In the opposite limit,
i.e., 2�2

Bk2
F � 1, we can reduce Eq. (20) to

�σzz(B) = e2

2π2h̄

eBυF τ

h̄
, (22)

which predicts a B-dependent and EF -scaled unsaturated
LMC. This expression recovers the one derived in the ul-
traquantum limit [19,71]. In the ultraquantum limit, the
spectra are quantized to the LLs, and by replacing k2

F →
�−2

B

∑[�2
Bk2

F /2]
n=1 [1 − 2n/(�2

Bk2
F )]−

1
2 , the positive LMC will ex-

hibit the periodic-in-(1/B) quantum oscillations, as shown by
Figs. 2(a) and 2(b). Therefore, within our theory, the results in
the semiclassical and ultraquantum limits are consistent with
each other.

V. ac ELECTRIC-FIELD-DRIVING CHIRAL ANOMALY

From the discussions above, we know that the chiral
anomaly, in fact, has a topological pumping origin because
the Bloch electrons are driven by the magnetic field to rotate
around the Weyl nodes. With this mechanism, we can realize
the chiral anomaly using a compound electric field instead of
a magnetic field.

To demonstrate this point, we turn off the magnetic field in
the following and assume a rotating electric field is applied to
the x-y plane, i.e., Ex(t ) = E⊥ sinωt and Ey(t ) = −E⊥ cosωt .
In the adiabatic approximation, the wave vector according
to Eq. (7a) will be renormalized as kx(t ) = kx + kc cosωt
and ky(t ) = ky + kc sinωt , where kc = eE⊥/(h̄ω). The time-
dependent spectrum is given by

ε̃
χ

k,s = sh̄υF

√
k2

x (t ) + k2
y (t ) + k2

z . (23)

The gap-closing point according to Eq. (23) is modified
to kw = −kc(cosωt, sinωt, 0), so that the Weyl cones are
shifted integrally along the electric field. Equivalently, the
driven electrons for a given wave vector will rotate around an
in-plane wave vector, as shown by the red and green lines in
Fig. 2(c). During this process, the Weyl fermions change their
energy and feel different strengths of the Berry curvature. As
a result, the anomalous velocity

�s,χ
z (k, t ) = sχ

eE⊥
h̄

ky(t ) sinωt + kx(t ) cosωt

2
[
k2

x (t ) + k2
y (t ) + k2

z

] 3
2

(24)

is time dependent, which implies a variable-speed pumping
process. Over a pumping period T = 2π/ω, the averaged
current density is given by

jχP,z = eω

2πV

∫ T

0
dt

∑
ks

�s,χ
z (k, t ) f

(
ε̃
χ

k,s

)
. (25)

For the purpose of illustration, we first consider the case of
ideal WSMs, whose Fermi level locates exactly at the Weyl
nodes. At low temperatures, we can reduce Eq. (25) to

jχP,z = eω

2π

1

4π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkyCχ (kx, ky), (26)

where the Chern number

Cχ (kx, ky) = 1

2π

∫ T

0
dt

∫ ∞

−∞
dkz�

−,χ
z (k, t ) (27)

is constructed by the torus of the two variables kz ∈ (−∞,∞)
and t ∈ [0, T ). Subsequently, we can derive for

Cχ (kx, ky) = χ�
(
k2

c − k2
x − k2

y

)
. (28)

Hence, the pumping current density in the χ valley reads

jχP,z = χ
e2

4πh

eE2
⊥

h̄ω
. (29)

From Eq. (29), we see that an out-of-plane current can
be pumped by the in-plane rotating electric field. However,
similar to the case of magnetic field driving, the net pump-
ing current vanishes for the chiral symmetry jχP,z = − j−χ

P,z .
Actually, even for finite EF �= 0, the charge current can be ex-
pected to be vanishing because of the symmetries �s,χ

z (k, t ) =
−�s,−χ

z (k, t ) in Eq. (25).
Analogously, if we apply an additional electric field Ez

along the z direction, the Fermi energy, resembling Eq. (16),
will change by

�μχ = −eEzτ
∑

ks �
s,χ
z (k, t )δ

(
EF − ε

χ

k,s

)
N ′

ch + ∑
ks δ

(
EF − ε

χ

k,s

) . (30)

Here, the DOS of the chiral channels is given by N ′
ch =

| ∑ks �
s,χ
z (k, t )δ(EF − ε

χ

k,s)/υF |. Accordingly, the chiral
chemical potential, as defined by Eq. (18), is given by

�μ = eEzτ

1 + ∑
ks δ

(
EF − ε

χ

k,s

)
/N ′

ch

= eEzυFτ

1 + 2�2
⊥k2

F

, (31)

where �⊥ = √
h̄υF/(eE⊥|F |) and

F = 1

4π

∫ π

0
dθ

∫ 2π

0
dφ

λ sin θ + sin2 θ cosφt

[1 + λ2 + 2λ sin θ cosφt ]
3
2

, (32)

with φt = φ − ωt and λ = kc/kF . After the angular integral,
F is time independent. Then, the pumping charge current
density takes the form

jc
P,z = e

V

∑
ksχ

�s,χ
z (k, t ) f

(
ε
χ

k,s − χ�μ
)

= 2e

h

1

2π�2
⊥

eEzυF τ

1 + 2�2
⊥k2

F

. (33)

As can be seen, the out-of-plane component Ez breaks the chi-
ral symmetry and then generates an observable charge current.
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Or we can say that, with the in-plane ac electric field turned
on, the out-of-plane conductivity will increase by

�σzz(E⊥) ≡ [
jc
P,z(E⊥) − jc

P,z(E⊥ = 0)
]/

Ez

= 2e

h

1

2π�2
⊥

eυF τ

1 + 2�2
⊥k2

F

. (34)

As plotted in Fig. 2(d), �σzz(E⊥) exhibits a step change
at kc = kF because the trajectory of the Bloch electrons on
the Fermi surface cannot encircle the Weyl nodes for kc < kF

[see Fig. 2(c)]. For kc > kF , the electron states on the Fermi
surface will be activated to contribute the topological pumping
effect. Therefore, the step change of �σzz(E⊥) with respect
to kc can serve as a signal of the chiral anomaly. Different
from the magnetic-field-driving case, the wave vectors driven
by the ac electric field rotate in the same direction for the
conduction and valence bands. Therefore, the contributions
from the conduction and valence bands possess opposite signs
and will cancel each other. For a finite Fermi energy crossing
the conduction band, as we increase kc, the contribution from
the conduction band will be canceled more and more by
the valence band, and as a result, �σzz(E⊥) decreases with
increasing kc.

To observe the proposed phenomenon, the angular fre-
quency of the ac electric field should fulfill the condition ω �
2π/τ , which ensures that the electrons have accomplished
a complete cyclotron motion with respect to the Weyl node
before being scattered by impurities. At low temperature, the
measured relaxation time in WSMs is τ ∼ 45ps [77,78], cor-
responding to the frequency (∼2×1010 Hz) of a microwave.
Therefore, microwave or far-infrared light could be the appro-
priate frequency for experimental observation. The circular
photogalvanic effect in WSMs has been studied previously,
such as in Refs. [78,79]. In these theories, the photovoltaic
effects were realized either by transfer of the photon angu-
lar momentum to electrons or finite tilts of the Weyl cone,
which require intrinsic broken chiral or inversion symmetry

in the spectrum. In contrast, the mechanism studied here does
not involve the above intrinsic symmetry-breaking or photon
absorption/emission process. The chiral chemical potential
here is established by the joint effect of the external electric
field and adiabatic dynamics of electron orbitals. The light-
induced conductivity increment is attributed to the pumping
effect because of the Berry phase that arises from the non-
trivial change in the Bloch wave function over a period of the
pumping cycle.

VI. CONCLUSION

In summary, we developed a modified semiclassical EOM
with the off-diagonal contribution of the Berry curvature in-
cluded, with which we derived a unified formula across the
classical and ultraquantum regimes for the chiral chemical
potential and LMC. Our formula avoids the unphysical diver-
gence in the Boltzmann theory and bridges the gap between
the classical and ultraquantum approaches. We demonstrated
that the chiral anomaly in WSMs is closely related to the
topological pumping effect, and with the topological pump-
ing mechanism, we showed that the chiral anomaly can be
realized in the absence of magnetic field.
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APPENDIX A: DERIVATION OF THE SEMICLASSICAL
EQUATION OF MOTION

By substituting Eq. (6) into Eq. (5), we can derive

〈
ψχ

s (t )
∣∣ṙ∣∣ψχ

s (t )
〉 = 〈

ψχ
s

∣∣ṙ∣∣ψχ
s

〉 − i

h̄

∫ ∞

0
dτ

〈
ψχ

s

∣∣[ṙe−iHwτ/h̄U (r)eiHwτ/h̄ − e−iHwτ/h̄U †(r)eiHwτ/h̄ṙ
]∣∣ψχ

s

〉
= 〈

ψχ
s

∣∣∂Hw(k)

h̄∂k

∣∣ψχ
s

〉 + ∑
p

[〈
ψχ

s

∣∣∂k

∣∣ψχ
p

〉〈
ψχ

p

∣∣k̇ · r
∣∣ψχ

s

〉 − 〈
ψχ

s

∣∣r · k̇
∣∣ψχ

p

〉〈
ψχ

p |∂k

∣∣ψχ
s

〉]

= 〈
ψχ

s

∣∣∂Hw(k)

h̄∂k

∣∣ψχ
s

〉 + ∑
pq

[〈
ψχ

s

∣∣∂k

∣∣ψχ
p

〉(〈
ψχ

p

∣∣k̇∣∣ψχ
q

〉 · 〈
ψχ

q

∣∣r∣∣ψχ
s

〉) − (〈
ψχ

s

∣∣r∣∣ψχ
p

〉 · 〈
ψχ

p

∣∣k̇∣∣ψχ
q

〉)〈
ψχ

q

∣∣∂k

∣∣ψχ
s

〉]

= 〈
ψχ

s

∣∣∂Hw(k)

h̄∂k

∣∣ψχ
s

〉 + ∑
pq

〈
ψχ

p

∣∣k̇∣∣ψχ
q

〉 × i
(〈
ψχ

q

∣∣r∣∣ψχ
s

〉 × 〈
ψχ

s

∣∣r|ψχ
p

〉)
, (A1)

where we have used the relations r → i∂k and, for q �= p,〈
ψχ

p

∣∣∂kHw(k)
∣∣ψχ

q

〉 = (
ε
χ

k,q − ε
χ

k,p

)〈
ψχ

p

∣∣∂k

∣∣ψχ
q

〉
. (A2)

Therefore, in the Hilbert space � = {|ψχ
+〉, |ψχ

−〉}, we can express Eq. (A1) in the matrix form as

ˆ̇r = 〈�|∂Hw(k)

h̄∂k
|�〉 −

(
Tr[ˆ̇k × �̂+(k)] 0

0 Tr[ˆ̇k × �̂−(k)]

)
= 〈�|∂Hw(k)

h̄∂k
|�〉 −

⊕
s

Tr[ˆ̇k × �̂s(k)], (A3)
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where we denote ˆ̇r = 〈�|ṙ|�〉, ˆ̇k = 〈�|k̇|�〉, and

�̂s(k) = −i〈�|r∣∣ψχ
s

〉 × 〈
ψχ

s

∣∣r|�〉. (A4)

With the identities dA
dt = ∂t A + (ṙ · ∇)A and

∇(ṙ · A) = ṙ × (∇ × A) + (ṙ · ∇)A, (A5)

we find

ˆ̇k = h̄−1F̂ = e

h̄
〈�|

[
∇� − ∇(ṙ · A) + dA

dt

]
|�〉

= e

h̄
(∇� + ∂t A) − e

h̄
ˆ̇r × (∇ × A). (A6)

Then, Eqs. (A3) and (A6) can be expressed as Eq. (7) in the
main text.

Within the adiabatic approximation, we can replace i∂t →
k̇ · r in the second line of Eq. (A1), which means neglecting
the off-diagonal elements of k̇, such that Eq. (A1) returns to

the conventional adiabatic pumping formula

〈
ψχ

s (t )
∣∣ṙ∣∣ψχ

s (t )
〉 = 〈

ψχ
s

∣∣∂Hw(k)

h̄∂k

∣∣ψχ
s

〉
− i

[〈
∂kψ

χ
s

∣∣∂tψ
χ
s

〉−〈
∂tψ

χ
s

∣∣∂kψ
χ
s

〉]
. (A7)

If we neglect the off-diagonal elements of ˆ̇k, i.e.,〈
ψχ

p

∣∣k̇∣∣ψχ
q

〉 =
( e

h̄
∇� − e

h̄

〈
ψχ

p

∣∣ṙ∣∣ψχ
q

〉 × B
)
δp,q, (A8)

with ∇� = −E − ∂t A and B = ∇ × A, the diagonal parts of
ˆ̇r and ˆ̇k reduce to be

ˆ̇k = − e

h̄
(E + ∂t A) − e

h̄
ˆ̇r × B, (A9)

ˆ̇r = ∂Hk

h̄∂k
+ ˆ̇k × i(r̂ × r̂), (A10)

which is the conventional semiclassical equation of motion,
where, for brevity, we denote Hk = diag(εχk,+, ε

χ

k,−) and Ô =
〈�|O|�〉, with O = {r, ṙ, k̇}.

In fact, the off-diagonal elements of ˆ̇k will couple with the
off-diagonal elements of the Berry curvature, and the resulting
contribution

�̂(off )
s (k, t ) = e

h̄

∑
p�=q

ε
χ

k,q − ε
χ

k,p

h̄

(〈
ψχ

p

∣∣r∣∣ψχ
q

〉 × B
) × (〈

ψχ
q

∣∣r|ψχ
s 〉 × 〈

ψχ
s

∣∣r∣∣ψχ
p

〉)
, (A11)

with p̄ = −p, can be important to the transport. For the
purpose of illustration, we turn off the electric field and
provide a magnetic field B = Bêz. It is verified that the
physical quantity �̂k ≡ i(r̂ × r̂) equals exactly the Berry
curvature

�̂α (k) = iεαβγ

〈
∂�

∂kβ

∣∣∣∣ ∂�∂kγ

〉
= χkα

2k3

⎛
⎝ −1 kz√

k2
x +k2

y
kz√

k2
x +k2

y

1

⎞
⎠

= −χkα
2k3

(ηz − ηx cot θ ). (A12)

The diagonal part of the Berry curvature is representation
independent, while the off-diagonal part relies on the rep-
resentation. For example, Eq. (A12) is expressed in the
σz representation and in the σx representation; the off-
diagonal part changes to be ∼ηxkx/

√
k2

y + k2
z . Without the

off-diagonal elements of the Berry curvature, the anomalous
velocity is

�̂(dig)
s,α (k, t ) = −χ

eBυF

2h̄k2
δα,z + χ

eBυF

2h̄k2

kαkz

k2
, (A13)

which is the last term in Eq. (11) in the main text. The integral
of �̂

(dig)
s,α (k, t ) over the momentum on a given constant-

energy surface ε
χ

k,s = ε will contribute a pumping current
density

jχP,α = −e
∫

d3k

(2π )3 �̂
(dig)
s,α (k, t )δ

(
ε − ε

χ

k,s

) = 2

3
χ

e2

h2
Bδα,z.

(A14)

If we include the off-diagonal contribution, the anomalous
velocity becomes

�̂s(k, t ) = �̂
(dig)
s (k, t ) + �̂

(off )
s (k, t )

= χ
eBυF

2h̄k2

(
1 + sχ

kz

k

)(
kxkz

k2
x + k2

y

,
kykz

k2
x + k2

y

,−1

)
.

(A15)

Then, the pumping current density for each constant-energy
surface

jχP,α = −e
∫

d3k

(2π )3 �̂s,α (k, t )δ
(
ε − ε

χ

k,s

) = χ
e2

h2
Bδα,z

(A16)
will be quantized exactly to the chirality χ of the Weyl node,
which characterizes the topological nature of the system more
robustly.

APPENDIX B: DISCUSSION OF THE CHIRAL CHANNELS
AND SEMICLASSICAL QUANTIZATION

OF THE WAVE VECTOR

Upon application of the magnetic field, the wave vector,
according to the Peierls substitution, turns out to be

k → κ = k + e

h̄
A, (B1)

and the system Hamiltonian becomes Hw(κx, κy, κz ). It is easy
to verify the commutation relation

κ × κ = −i
e

h̄
(∇ × A). (B2)
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As a consequence, for B = Bêz, κx and κy are noncommutable,
i.e.,

[κx, κy] = −i
eB

h̄
= − i

�2
B

, (B3)

with �B = √
h̄/eB being the magnetic length. Then, let us con-

sider the eigenvalue problem Hw(κx, κy, kz )ψ = Eψ , namely,

χ h̄υF

(
kz κx − iκy

κx + iκy −kz

)(
a
b

)
= E

(
a
b

)
, (B4)

from which we can obtain

(
κ2

x + κ2
y + i[κx, κy]

)
a =

(
E2

h̄2υ2
F

− κ2
z

)
a, (B5a)

(
κ2

x + κ2
y − i[κx, κy]

)
b =

(
E2

h̄2υ2
F

− κ2
z

)
b. (B5b)

These two equations cannot be satisfied simultaneously unless
[κx, κy] = 0. For κ2

x + κ2
y � 1/�2

B, we may regard κx and κy as
commutable, such that the eigenvalue problem can be solved
approximately as �̃ = {|ψ̃χ

+〉, |ψ̃χ
−〉}, where

∣∣ψ̃χ
s

〉 = 1

A

(
κx − iκy

sχ
√
κ2

x + κ2
y + κ2

z − κz

)
, (B6)

with A being the normalized coefficient. Then, we can de-
fine the Berry curvature as usual in the parameter space
(κx, κy, κz ), i.e.,

�̃α (k) = iεαβγ

〈
∂�̃

∂κβ

∣∣∣∣ ∂�̃∂κγ
〉
, (B7)

which can be obtained from Eq. (A12) with the replacement
k → κ. However, as κ2

x + κ2
y ∼ 1/�2

B, especially for the lim-
iting case κ2

x + κ2
y → 0, the contradiction between the two

equations in Eq. (B5) becomes irreconcilable.
To resolve the conflict, we should quantize κx,y by the

Sommerfeld quantization condition∮
p · dr =

(
n + 1

2

)
h. (B8)

We first introduce the quasicoordinates ξx = �2
Bκy and ξy =

−�2
Bκx, according to the commutation relation between the

coordinate and wave vector [x, kx] = i. Then, we perform the
quantization∮

κxdξx = �2
B

∮
κxdκy = 2π

(
n + 1

2

)
(n = 1, 2, 3, . . . ),

(B9)

which leads to

κ2
x + κ2

y = 2n + 1

�2
B

. (B10)

Therefore, Eq. (B5) can be expressed as

(
κ2

x + κ2
y

)
φm =

(
E2

h̄2υ2
F

− κ2
z − 1

�2
B

)
φm, (B11a)

(
κ2

x + κ2
y

)
φn =

(
E2

h̄2υ2
F

− κ2
z + 1

�2
B

)
φn, (B11b)

where φm,n is the eigenfunction of κ2
x + κ2

y . Consequently,
if n = m + 1, the two equations in Eq. (B5) can be satisfied
simultaneously. After that, the energy can be solved to be

ε
χ

n�1,s(kz ) = sh̄υF

√
κ2

x + κ2
y + κ2

z − 1/�2
B

= sh̄υF

√
2n

�2
B

+ k2
z , (B12)

which becomes the achiral Landau levels. Additionally, for
κ2

x + κ2
y = 0, we can find another solution,

a = 0,
E2

h̄2υ2
F

− k2
z = 0, (B13)

to Eq. (B5), which, according to Eq. (B4), gives a chirality-
dependent energy level

ε
χ

0 (kz ) = −χ h̄υF kz, (B14)

corresponding to the wave function

|ψ̃χ

0 〉 =
(

0
1

)
. (B15)

Therefore, as the magnetic field is turned on, the spectrum
will be separated into two parts: a part with achiral dispersion
ε
χ

k,s  sh̄υF

√
k2

x + k2
y + k2

z which maintains the shape of the
Weyl cone and possesses chirality-dependent Berry curvature
and a part with chiral dispersion ε

χ

0 (kz ) = −χ h̄υF kz but with-
out Berry curvature. Consequently, the achiral dispersion, i.e.,
the Weyl cone, acquires an anomalous velocity at each k point,
as if it were decorated with chiral channels, as plotted in
Figs. 1(a)–1(c).
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