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We numerically study the phase diagram of bosons tightly trapped in the lowest band of an optical lattice
and dispersively coupled to a single-mode cavity field. The dynamics is encompassed by an extended Bose-
Hubbard model. Here, the cavity-mediated interactions are described by a two-body potential term with a global
range and by a correlated tunneling term where the hopping amplitude depends on a global observable. We
determine the ground-state properties in one dimension by means of the density matrix renormalization group
algorithm, focusing on the effects due to the correlated tunneling. The latter is responsible for the onset of bond
orders, manifesting in one insulating and two gapless bond-ordered phases. We discuss the resulting phases for
different geometries that correspond to different relative strengths of the correlated tunneling coefficient. We
finally analyze the scaling of the entanglement entropy in the gapless bond-ordered phases that appear entirely
due to global interactions and determine the corresponding central charges.

DOI: 10.1103/PhysRevB.106.075137

I. INTRODUCTION

Ultracold atomic gases in optical lattices realize the
strongly correlated dynamics of the Hubbard model with
tunable interactions [1–5]. The dispersive coupling with a
high-finesse resonator, additionally, allows one to design in-
teractions whose range can be tailored and whose strength
can be tuned [6,7]. One prominent example is the all-to-all
interaction in a quantum gas of bosons realized by coupling
an electric dipole transition with a single-mode resonator [8].
Here, the appearance of phases with density modulations was
observed by tuning the effective strength of the coupling with
the cavity. These patterns support coherent scattering into the
cavity mode [8] and can be either superfluid or incompress-
ible. The experimentally measured phases are captured by the
ground state of an extended Bose-Hubbard model with global
interactions, as shown in Refs. [9–12]. This model describes
the effect of the cavity-mediated potential by means of an
interaction term between a pair of sites that depends on the
on-site density and has a global range.

Ab initio derivations of the Bose-Hubbard model show,
however, that two-body interactions give rise to further terms
describing correlated tunneling [13–18]. These contributions
can be important in determining the phase of superconduc-
tors [19–21], frustrated quantum magnets [22,23], and dipolar
gases [14,15,24–26]. They can interfere with single-particle
hopping [18,26,27] and, in the cavity quantum electrodynam-
ics (QED) setup, give rise to an effective periodic modulation
of the bonds. Indeed, at half filling this interference is at the
basis of the emergence of self-organized topological insulat-
ing phases [18].

In this work, we characterize the quantum ground
state of the extended Bose-Hubbard model of cavity QED

taking into account both the cavity-induced density-density
and correlated hopping terms for different lattice geometries.
We consider a one-dimensional lattice and determine the
quantum phases for half and unit fillings using the density
matrix renormalization group (DMRG) algorithm [28–31] ex-
tended to the case of global interactions [18,32]. We show
that correlated tunneling gives rise to a bond order that can be
supersolid, superfluid, or insulating. We analyze, in particular,
the scaling of the entanglement entropy at the bond superfluid
and bond supersolid phases. Our analysis complements and
extends the study of Ref. [18] by investigating the phase
diagram for generic geometries. These geometries were also
considered in Ref. [17] where the ground state of atoms in
small chains using exact diagonalization was discussed.

The paper is organized as follows. In Sec. II we review
the extended Bose-Hubbard model of cavity QED and dis-
cuss the dependence of its coefficients on the cavity system
parameters. In Sec. III, we present the ground-state phase
diagrams calculated by means of the DMRG approach and
analyze the nature of the phase transitions. We then perform
the scaling analysis of the entanglement entropy in the gapless
bond-ordered phases that are stabilized entirely by the cavity-
mediated global terms. The conclusions are drawn in Sec. IV.
The Appendixes provide details on the determination of the
coefficients of the extended Bose-Hubbard model.

II. EXTENDED BOSE-HUBBARD MODEL WITH
CAVITY-MEDIATED INTERACTIONS

The system we consider consists of N bosons tightly bound
in the lowest band of a one-dimensional optical lattice with L
sites. Let âi and â†

i denote the bosonic operators destroying
and creating, respectively, a boson at site i = 1, . . . , L with
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[âi, â†
j ] = δi, j , and n̂i = â†

i âi being the corresponding particle

number operator. The Hamiltonian ĤEBH determining their
dynamics is the one of the extended Bose-Hubbard model
[17,33],

ĤEBH = ĤBH + ĤC
BH, (1)

which is the sum of the standard Bose-Hubbard Hamiltonian
ĤBH,

ĤBH = −t
∑

j

(â†
j â j+1 + H.c.) + U

2

∑
j

n̂ j (n̂ j − 1), (2)

and of the terms containing the cavity-mediated interactions
[13,17],

ĤC
BH = U1

L
(z2D̂2 + zy(D̂B̂ + B̂D̂) + y2B̂2). (3)

The details of the derivation of Hamiltonian (3) follow from
Refs. [10,33,34] and are reported in Ref. [18] (see also
Appendix A). The coefficients in Eq. (2) are positive and are
the nearest-neighbor hopping rate t and the strength of the
on-site repulsion U . The coefficient U1 scaling the cavity term
in Eq. (3) can be either positive or negative; the factor 1/L
warrants extensivity [13,33]. Operators D̂ and B̂ depend on
the on-site densities and hoppings, respectively [17,18]:

D̂ =
∑

j

(−1) j n̂ j, (4)

B̂ =
∑

i

(−1)i(â†
i+1âi + H.c.), (5)

where the staggered sum emerges when the cavity wavelength
is twice the lattice periodicity [10,33]. The coefficients y and z
are dimensionless parameters whose strength depends on the
setup’s geometry and are discussed in the following.

We note that the term D̂2 is a global density-density in-
teraction, that promotes the onset of a population imbalance
between even sites (with j = 2n) and odd sites (with j =
2n + 1) [8–10]. The two other terms, D̂B̂ + B̂D̂ and B̂2, de-
scribe correlated tunneling processes induced by the cavity
field.

A. Bose-Hubbard coefficients

The coefficients in Eq. (1) are numerically calculated from
the overlap integrals using the Wannier functions of the lowest
band of the static optical lattice. In our calculations they are
varied taking into account that in the experiment the control
parameters are the depth of the optical lattice, the s-wave scat-
tering length, and the cavity interaction amplitude and its sign.
When we sweep across the phase diagram, we keep fixed the
lattice depth at the value V0 = 4ER, where ER = h̄2k2/(2m) is
the recoil energy for atoms of mass m, and k the lattice and
cavity wave number. Therefore, in our numerical calculations
the tunneling coefficient is kept constant. The ratio t/U is
varied by tuning U via the s-wave scattering length. The sign
of the detuning between cavity and driving laser determines
the sign of the coefficient U1. Moreover, the detuning and the
strength of the cavity field determine the magnitude of |U1|
[13,33–35]. Thus, in our calculations the ratios U1/U and t/U
are varied by simultaneously changing U1 and U .

FIG. 1. The coefficients z, |y|, t/ER, and U/(gER ) as a function
of the lattice depth V0, in units of the recoil energy ER, for φ = 0
(upper panel), φ = π/4 (middle panel), and φ = π/2 (lower panel).
The vertical dashed line corresponds to the lattice depth of V0 = 4ER.
The coefficient g scaling the on-site repulsion coefficient contains the
physical variables including the scattering length; therefore, U/(gER )
is the overlap integral solely depending on the Wannier functions,
which in turn are determined by V0.

The coefficients y and z in Eq. (3) are overlap integrals
between the Wannier functions w j (x) and the cavity mode
function cos(kx + φ) (see Appendix A):

z =
∫ aL

0
dx w j (x)2 cos(kx + φ),

y =
∫ aL

0
dx w j (x)w j+1(x) cos(kx + φ), (6)

where j denotes the lattice site about which the Wannier
function is centered, a is the lattice periodicity, a = π/k,
and φ is the phase shift between the lattice and the cavity
standing wave. The phase shifts φ = 0 and φ = π/2 corre-
spond to trapping the atoms at the antinodes and at the nodes,
respectively, of the cavity standing wave. This is realized by
tuning the laser either on the blue or on the red side of the
cavity resonance. In this paper we will also consider the case
φ = π/4, for which both y and z are different from zero. We
remark that y � 0 for the parameter regimes we inspect.

Figure 1 displays the coefficients z and |y| as a function of
V0 for the three different phase shifts φ = 0, π/4, and π/2
considered in this paper. We also display the tunneling rate
t and the on-site coefficient U for comparison, keeping in
mind that these quantities are independent of φ. The upper
panel shows the parameters for φ = 0, where the y coefficient
vanishes within machine precision. For φ = π/4 both y and
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z are finite: the z coefficient is almost independent of the
lattice depth V0, while |y| decreases monotonically with V0.
For φ = π/2 (see lower panel) the z coefficient is zero within
machine precision. The vertical dashed line in Fig. 1 indicates
the value of V0 considered in this work. For φ = 0 the values
of the overlap integrals are given by z = 0.8279 and y = 0;
thus we neglect the correlated tunneling. For φ = π/2 we
find y = −0.0658 and z = 0. In this case the cavity-mediated
interactions are solely described by the term proportional to
B̂2. Setting φ = π/4 the overlap integrals are z = 0.5854 and
y = −0.0465 and we expect to observe an interplay between
the density-density potential and the correlated tunneling.

B. Observables

The ground state of Hamiltonian (1) is determined in one
dimension and for a fixed number of bosons on a finite lat-
tice L with open boundaries. The numerical program we use
is based on the DMRG algorithm; we refer the readers to
Ref. [18] and to Appendix B for details on its implementation.
In what follows we introduce and describe the observables we
use in order to identify the quantum phases.

We identify superfluidity by a nonvanishing value of the
single-particle correlations. In turn, a phase is incompressible
(insulator) when the single-particle correlations vanish and
there is a finite energy gap between the ground and the excited
states in the thermodynamic limit. In order to gain informa-
tion on the properties of the superfluid phase, we analyze
the Fourier transform of the single-particle correlations, the
so-called single-particle structure form factor, that is defined
as [26]

M1(k) = 1

L2

∑
i, j

eik(i− j)〈â†
i â j〉, (7)

where 〈·〉 denotes the expectation value over the ground state.
This quantity can be experimentally revealed by means of
time-of-flight measurements [3]. Depending on the value of
k at which |M1(k)| reveals a maximum, off-diagonal order
can exhibit modulations in the phase. In the absence of the
cavity, the ground-state superfluid is spatially homogeneous
and characterized by a nonvanishing value of M1(k) at k = 0.

The superfluid (SF) phase acquires further features in the
presence of the cavity field, depending on whether the ex-
pectation values 〈D̂〉 and/or 〈B̂〉 [compare Eqs. (4) and (5)]
are different from zero in the thermodynamic limit. For this
purpose we identify the order parameters

OD = 1

L
|〈D̂〉|, (8)

OB = 1

2L
|〈B̂〉| , (9)

which can be measured by detecting the light at the cavity
output [8,36–38]. The order parameter OD signals the onset of
density modulation (even-odd population imbalance), while
OB signals the formation of dimers along the lattice [17],
namely, a so-called dimerized or bond-ordered state [39,40].
In addition to the “normal” SF, the emerging SF phases can be
lattice supersolid (SS) in the presence of diagonal long-range
order (OD �= 0 and OB = 0); bond SF (BSF) for homoge-
neous density and bond order (OD = 0 and OB �= 0), or bond

TABLE I. Table of the quantum phases of the ground state of
Eq. (1), of their acronyms, and of the corresponding behavior of the
order parameters.

Phase Abbreviation OD OB max|M1(k)|
Mott-insulator MI 0 0 0
Density wave CDW �= 0 0 0
Bond insulator BI 0 �= 0 0
Superfluid SF 0 0 M1(0)
Supersolid SS �= 0 0 M1(0)
Bond superfluid BSF 0 �= 0 M1(± π

2 )
Bond supersolid BSS �= 0 �= 0 M1(± π

2 )

supersolid (BSS) when both order parameters are nonvanish-
ing. The phases and the corresponding order parameters are
summarized in Table I. The onsets of these gapless phases,
i.e., SS, BSF, and the BSS, occur due to a spontaneous break-
ing of a discrete Z2 lattice translational symmetry. Such a
spontaneous discrete symmetry breaking is captured by the
twofold ground-state degeneracy in these phases (Sec. III E).

The insulating phases, having vanishing M1(k) in the ther-
modynamic limit, are classified according to the values of the
population imbalance and of the bond order parameters. The
bond insulator (BI) is characterized by OB �= 0, the charge-
density wave (CDW) by OD �= 0, while in the Mott insulator
(MI) all order parameters here discussed vanish (see Table I).
Similarly to the SS, BSF, or BSS phases, the insulating BI
and CDW phases are also Z2-symmetry-broken phases. We
remark that we have also determined the parity and string
order parameters [41,42] in the resulting phases: for the pa-
rameter regimes considered we do not find signatures of the
Haldane insulator (cf. Ref. [18]). This is consistent with other
numerical studies on globally interacting systems [43].

III. GROUND-STATE PHASE DIAGRAM

We determine the phase diagrams for fixed densities as
a function of the ratios U1/U and t/U that we vary as
previously specified. We consider in particular the densities
ρ = 1/2 and ρ = 1 since they are commensurate with the
long-range potential; thus they can give rise to insulating
phases in addition to the gapless ones. In our model the ratio
U1/U controls the onset of structures that support the buildup
of an intracavity field, while t/U determines the strength of
quantum fluctuations. We sweep the ratio U1/U from posi-
tive to negative values for different φ. Depending on φ we
rescale U1 by the maximum between the coefficients z2 and
y2 [i.e., max(z2, y2)], thus giving the effective strength of the
cavity-induced interaction. The ground-state phase diagram
is calculated by means of the DMRG algorithm with open
boundary conditions.

In the following we present the phase diagram for a finite
system of size L = 60 sites and identify the transition lines
when the corresponding order parameter exceeds a threshold
value: The line separating the incompressible and the com-
pressible phases is set at the threshold value max |M1(k)| =
0.1. Bond and density-wave order are signaled by OD > 0.02
and OB > 0.02, respectively. We also analyze the order pa-
rameters across different transitions for different system sizes
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FIG. 2. Color plots of the phase diagrams in the plane U1/U
and t/U for φ = 0 and density ρ = 1 (upper row) and ρ = 1/2
(lower row). The subplots show the maximum of |M1(k)| (left panels)
and the density-wave order parameter (right panels); the phases are
identified according to Table I. In the CDW phase two neighboring
sites forming a unit cell have occupations ni = 2ρ, ni+1 = 0, where
ρ = 1/2, 1. Note that the interaction strength U1 in the plots is scaled
by z2. The phase diagrams are obtained using DMRG on a lattice with
size L = 60 and open boundaries. Here, t/U is varied from 0.01 to 1
in a logarithmic scale in 101 steps, while U1/U is varied from −20
to 20 in uniform steps of width 0.1.

L ∈ [40, 120] in order to determine the nature of the phase
transitions and to verify the stability of the phase diagram
with the varying system size. We finally determine the central
charge of the bond-ordered gapless phases, BSF and BSS, that
are due to the global interactions.

A. Phase diagrams for φ = 0

For φ = 0 the cavity-induced interactions in the extended
Bose-Hubbard Hamiltonian consist solely of global density-
density interactions. These interactions are periodic, with a
periodicity that is twice the lattice periodicity. The corre-
sponding phase diagram has been extensively studied in the
literature for attractive interactions, corresponding to negative
values of U1 [8–12,17]. In this case the cavity potential favors
the formation of ordered structures which support photon
scattering into the cavity. For U1 positive, on the other hand,
the cavity-induced potential is repulsive and the energy is
minimized for uniform densities, at which OD vanishes.

Figure 2 displays the maximum of |M1(k)|, signaling su-
perfluidity, and the density-wave order parameter OD. For
positive U1 and for half filling the ground state remains in a SF
phase for the whole t/U parameter range, while at unit density
we find the MI-SF transition. Interestingly, the transition line
slightly depends on the value of U1 and in particular is shifted
to larger values of t/U as U1 increases: the repulsive cavity
interaction tends to stabilize the incompressible phase.

The situation is different for attractive global interactions
(U1 < 0). Here, we identify the transition line U (c)

1 separat-
ing the homogeneous phase from the density wave, which

−1.5 −1.0 −0.5 0.0
z2U1/U

0.00

0.25

0.50

0.75

1.00

O D

(a)

CDW MI

t/U = 0.05

L = 40

L = 60

L = 80

L = 100

L = 120

−2.0 −1.5 −1.0 −0.5 0.0
z2U1/U

0.00

0.25

0.50

0.75

1.00

O D
, m

ax
M

1(
k
) OD

max M1(k)

(b)

CDW SF

SS

t/U = 0.5

−0.4 −0.2 0.0 0.2 0.4
z2U1/U

0.0

0.1

0.2

0.3

0.4

0.5

O D

(c)

CDW SF

t/U = 0.05

−10 −8 −6 −4 −2
z2U1/U

0.0

0.1

0.2

0.3

0.4

0.5

O D
,m

ax
M

1(
k
)

(d)

CDW SF

SS

t/U = 1.5

FIG. 3. The order parameters OD and | max M1(k)| as a func-
tion of U1/U for φ = 0, fixed t/U (as specified in the panels),
and different system sizes L ∈ [40, 120] [see legend in (a)]. The
upper (lower) panels give the observables’ behavior at density ρ = 1
(ρ = 1/2) across different phase transitions. The red vertical lines
indicate the value of U1/U at which we identify a phase transition;
the corresponding phases are reported. For ρ = 1 (a) the MI-CDW
transition is first-order discontinuous, while (b) the SF-SS transition
is continuous and the CDW-SS transition is either continuous or a
crossover. In the case of ρ = 1/2 (c) the SF-CDW and (d) the SF-SS
transitions are continuous, while the SS-CDW transition could be
either continuous or a crossover.

is a monotonously increasing function of t/U . The transi-
tion line qualitatively agrees with the one found by means
of a mean-field ansatz for a grand-canonical ensemble [12]:
At half-filling it vanishes at t/U = 0, U (c)

1 (0) = 0, while
at unit density U (c)

1 (0) < 0. A direct transition between SF
and the incompressible CDW is found at half filling and for
0 > U (c)

1 � −U , while for U (c)
1 � −U a SS phase separates

SF from CDW. At unit density there is no direct CDW-SF
transition: The two phases are always separated either by a
MI or by a SS phase. We also note that the area covered by
the SS phase in parameter space is larger at unit density than
at half filling.

By inspecting the behavior of the order parameters across
different phase transitions (see Fig. 3), we deduce the nature of
the transitions. Interestingly, for ρ = 1/2, the transitions SF-
SS and SF-CDW are now characterized by a smooth change
in the density-wave order parameter (lower panels of Fig. 3),
signaling that these transitions are continuous. The CDW-SS
transition, instead, is either continuous or a crossover. In the
case of ρ = 1 (upper panels in Fig. 3), a jump in the order
parameter OD signals a discontinuous transition between the
MI and the CDW phase.

B. Phase diagrams for φ = π/2

We now discuss the case in which the cavity-mediated
interactions are described by a global correlated hopping term.
This configuration can be realized experimentally when the
atoms are tightly confined at the nodes of the cavity field. In
our model, this case corresponds to the choice φ = π/2 in the
cavity standing wave, resulting in z = 0 in Eq. (3).
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FIG. 4. Same as Fig. 2 but for φ = π/2. Here, the right column
displays the bond order parameter, OB. Note that the interaction
strength U1 in the plots is now rescaled by y2 and we vary U1/U
in the range [−400, 400] in steps of size 4 to generate the data.

Figure 4 displays the phase diagrams for density ρ = 1
(upper row) and ρ = 1/2 (lower row). For U1 > 0 the ground
state at half filling is SF. At unit density, the MI-SF transition
line is visibly shifted to smaller values of t/U as U1 increases:
the size of the incompressible phase is reduced because the
weight of quantum fluctuations at small t/U is enhanced
due to the contribution of the global hopping. This trend is
also visible in the color plot of the maximum of M1(k) for
ρ = 1/2.

For U1 < 0 we observe a transition from SF to bond order.
Similar to the case φ = 0, also here the transition shifts to
larger values of t/U as |U1| increases: the cavity-induced
correlated hopping tends to stabilize bond order, as expected.
Remarkably, at U1 < 0 we do not find incompressible phases
for ρ = 1: in the considered parameter region the bond-
ordered phase is BSF. Figure 5 displays the behavior of the
order parameters at the transition between the BSF and the
MI phase: both M1(k) and OB display a continuous behavior
signaling a continuous transition. On the other hand, at higher
t/U , the transition between the SF and the BSF phase is of
first-order kind as visible in the discontinuity of max M1(k)
and OB.

The phase diagrams at ρ = 1/2 differ from the ones at
ρ = 1 due to the appearance of an insulating phase with
bond order separating the BSF from the homogeneous phase.
This phase is found for sufficiently small values of t/U .
In Ref. [18] we showed that this is a topological insulator,
which shares several analogies with the Su-Schrieffer-Heeger
model. Inspection into the behavior of the order parameters
shows that the transitions SF-BI and BI-BSF are continuous
(Fig. 5), while the direct transition SF-BSF is discontinuous
(cf. Ref. [18]).

C. Phase diagrams for φ = π/4

We now discuss the ground-state phase diagrams emerging
from the interplay of the density-density attractive potential
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FIG. 5. The order parameters OD and | max M1(k)| as a function
of U1/U for φ = π/2, fixed t/U (as specified in the panels), and
different system sizes L ∈ [40, 120] [see legend in (a)]. The up-
per (lower) panels give the observables’ behavior at density ρ = 1
(ρ = 1/2) across different phase transitions. The red vertical lines
indicate the value of U1/U at which we identify a phase transition;
the corresponding phases are reported. For ρ = 1 (a) the MI-BSF
transition is continuous. Similarly, (c) for ρ = 1/2, the transitions
SF-BI and BI-BSF are continuous. The SF-BSF transitions, on the
other hand, are discontinuous for both (b) ρ = 1 and (d) ρ = 1/2.

and the correlated tunneling. We choose φ = π/4 for which
both z and y in Eq. (3) are different from zero, and recall that
z ∼ 10|y| (see Fig. 1). Therefore, the coefficient scaling the
correlated tunneling is one order of magnitude smaller than
the coefficient scaling the cavity-induced potential term.

Figure 6 displays the order parameters for SF, density-
wave, and bond order for unit density and for half filling. For
U1 > 0 the behavior we observe is essentially the same as for
φ = 0. Instead, for U1 < 0 the phase diagram becomes richer.
In the first place, at small values of t/U we observe a transi-
tion from the homogeneous phases to an insulating phase with
both density-wave and bond order. This transition occurs for
both density ρ = 1 and 1/2. The new phase is an insulator of
dimers with population imbalance within the dimer. We dub
this phase CDW+BI since both order parameters OD and OB

are nonzero. As visible in Fig. 7, the transition from the SF
or SS to the CDW+BI at unit density is continuous, while the
MI to the CDW+BI transition is discontinuous. For ρ = 1/2,
instead, all the transitions are continuous or crossovers. At
larger tunneling rates t/U the CDW+BI phase undergoes a
transition to a SS phase for both ρ = 1 and 1/2. The SS
phase is signaled by the nonzero values of the maximum of
M1(k) and by the vanishing value of the bond order parameter
OB. The density-wave order parameter, instead, stays finite
across the transition. We note that the transition CDW+BI to
SS is continuous (or a crossover) for both unit density and
half filling (Fig. 7). The SS phase is then separated from the
SF phase by a continuous transition for both ρ = 1 and 1/2
(analogously to the φ = 0 geometry).

We now discuss the phases encountered keeping t/U fixed
and tuning U1/U to larger values along the negative axis.
At unit density we observe a transition from CDW+BI to
a compressible phase that has both density-wave and bond
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FIG. 6. Color plots of the phase diagrams in the plane U1/U and t/U at φ = π/4 and for density ρ = 1 (top) and ρ = 1/2 (bottom). The
subplots show the maximum of |M1(k)| (left panels), the density-wave order parameter (central panels), and the bond order parameter (right
panels); the phases are labeled according to Table I. The phase diagrams are calculated using DMRG on a lattice with L = 60 sites and open
boundary conditions, where we have varied U1/U from −200 to 200 in steps of size 2. Note that the interaction strength U1 is scaled by z2 in
all subplots.

order. This phase is a SS phase exhibiting dimers—the BSS
phase. Hence, at unit density and for low tunneling rates, large
cavity-mediated interactions promote superfluidity, which at
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FIG. 7. The order parameters, OD and | max M1(k)|, as a func-
tion of U1/U for φ = π/4, fixed t/U (as specified in the panels),
and different system sizes L ∈ [40, 120] [see legend in (a)]. The
upper (lower) panels give the observables’ behavior at density ρ = 1
(ρ = 1/2) across different phase transitions. The red vertical lines
indicate the value of U1/U at which we identify a phase transition;
the corresponding phases are reported. For ρ = 1 (a) the MI to
CDW+BI transition is first-order discontinuous, while (b) the SF-SS
transition is continuous. The CDW+BI to the BSS transition in (a) is
either continuous or a crossover. In the case of ρ = 1/2, the (c) SF
to CDW+BI and (d) SF-SS transitions are continuous, while (d) the
SS to CDW+BI transition is either continuous or a crossover.

first sight seems counterintuitive. Interestingly, for the pa-
rameter window we have considered, we do not find a BSS
phase at half filling. However, from the pattern of M1(k), we
suspect that the BSS will also appear at half filling but at larger
negative values of U1/U .

D. Discussion

The phase diagrams for the three geometries have been also
analyzed in Ref. [17] using exact diagonalization and small
chains. In this work, we refrained from making a systematic
comparison of our predictions with the results of Ref. [17]. In
fact, our results are qualitatively and quantitatively different
in most regions of the phase diagram. We believe that the
discrepancy is mainly due to the very small size considered
in Ref. [17]. To give a few examples, in Ref. [17] and at
half filling the authors reported insulating phases for U1 > 0,
while instead the phase we find is always SF. Other phases,
such as the superfluid dimer (SFD) dimers (that would here
correspond to a sort of BSF phase) are reported in regions
of the phase diagram where the DMRG predicts different
ground-state phases. A Gutzwiller mean-field analysis con-
firms the DMRG result and often finds that the SFD (or BSF)
phase in those regions is a metastable, excited state.

Remarkably, the phase diagram in Fig. 3 at ρ = 1/2 is
in qualitative agreement with the mean-field predictions for
a grand-canonical ensemble [9,12], despite the fact that in
the present paper it has been determined using DMRG in
one dimension. There are instead qualitative differences when
comparing the phase diagram at unit density. For φ = π/2
an analysis based on a Gutzwiller mean field for a canonical
ensemble qualitatively reproduces the DMRG phase diagram
for ρ = 1. It does not capture, however, the BI phase at half
filling (see Ref. [18]).
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FIG. 8. The energy gaps in the SS, the BSF, and the BSS phase
at unit filling. In the left panel, we plot the energy gap between the
ground and the first excited states (E1 − E0) as a function of the sys-
tem size L confirming the ground-state degeneracy in these phases.
The right panel shows the gap between the ground and the second
excited states (E2 − E0) that decays to zero in the thermodynamic
limit as ∼1/L, confirming the gapless character of the phases. Here
we consider an even number of sites for the SS phase and an odd
number of sites for the BSF phase with open boundary conditions,
while for the BSS phase we impose periodic boundary conditions
with even number of sites.

E. Symmetry-broken gapless phases

We have shown that the attractive cavity potential stabilizes
inhomogeneous gapless phases, the SS, the BSF, and the BSS
phase. These phases have long-range diagonal order, signaled
by the nonvanishing order parameters OD and/or OB, and
off-diagonal correlations that decay algebraically with the
distance. The long-range order in these three gapless phases
manifests itself due to a spontaneous breaking of discrete Z2

lattice translational symmetry by doubling of the unit cell.
A way to verify such a spontaneous symmetry breaking is
by checking the ground-state degeneracy for finite system
sizes. For spontaneous Z2 symmetry breaking, the energy gap
between the ground state and the first excited state must fall to
zero much faster than ∼1/L (ideally, the gap should diminish
exponentially in the system size), while the spectral gap, as
measured by the gap between the ground state and the second
excited state should vanish as ∼1/L in a gapless phase.

In the SS phase (OD �= 0), the order develops in the sites
by Z2 symmetry breaking, and therefore the ground state
must be twofold degenerate for an even number of sites for
large enough system sizes. In the left panel of Fig. 8 we plot
the degenerate gap, i.e., the gap between the ground and the
first excited states (E1 − E0). The gap reaches the numerical
precision (�10−10) set by DMRG simulations as we increase
the system size. The right panel shows the gap between the
ground and the second excited states (E2 − E0) as a function
of 1/L. It decays to zero as ∼1/L, confirming the gapless
nature of the phase. The number of sites will be odd when an-
alyzing the BSF phase (OB �= 0), because the order develops
in the bonds. Therefore, an even number of bonds (and hence
odd number of sites) is needed to observe the ground-state
degeneracy. In Fig. 8 we verify the ground-state degeneracy
along with gapless nature of the BSF phase for an odd number
of sites (L = 41, 61, 81, . . .). In the BSS phase (OD and OB

both are nonzero), the order develops in both sites and bonds.
Therefore, we need to impose periodic boundary conditions
with an even number of sites and/or bonds to observe the

degeneracy. We find that, even for system size L = 8 with pe-
riodic boundary conditions, the gap in the BSS phase reaches
numerical precision (Fig. 8); thus we expect that it vanishes in
the thermodynamic limit.

F. Scaling of the entanglement entropy
in the gapless bond-ordered phases

Let us now analyze the two bond superfluid phases we find,
namely, the BSF for φ = π/2 and the BSS for φ = π/4 and
at unit density. We determine in particular the scaling of the
entanglement entropy with the system size. The entanglement
entropy of a lattice partition comprising the sites � = 1, . . . , j
is defined as

S j = −Tr[ρ j ln ρ j], (10)

where j denotes the bond that separates the system into two
parts, and ρ j = Tr j+1, j+2,...,L |ψ〉 〈ψ | is the reduced density
matrix obtained from the ground state |ψ〉 by tracing out the
degrees of freedom of the second partition. In a gapless crit-
ical system with open boundary conditions the entanglement
entropy scales with the size of the block of consecutive sites
according to [44–46]

S j = c

6
ln

[
2L

π
sin (π j/L)

]
+ b′, (11)

where c is the central charge of the corresponding conformal
field theory (CFT) that describes the criticality and b′ is a
nonuniversal constant. In Bose-Hubbard models with short-
range interaction, the gapless critical phases, e.g., SF and SS
phases, obey the entropy scaling formula (11) with c = 1 that
corresponds to the CFT of free compactified bosons described
by Tomonaga-Luttinger liquid theory [47]. However, the fate
of such an entropy scaling in the presence of infinite-range
global interactions is still an open question. This question is
particularly intriguing when considering the BSF and BSS
phases in our study, since these gapless phases are due to the
infinite-range interactions.

Figure 9 displays the entanglement entropy as a function
of the chord length ln[ 2L

π
sin(π j/L)] in the BSF and the BSS

phases for system sizes L = 60, 80, 100, and 120. Interest-
ingly, although these phases appear when the global correlated
tunneling and the potential dominate over the short-ranged
counterparts, the entropy still shows a linear growth with
respect to the chord length and hence a logarithmic divergence
with respect to the system size. Moreover, the corresponding
central charges are c � 1, as in the cases of SF and SS phases
of the Bose-Hubbard model with short-range interactions.

IV. CONCLUSIONS

In this work we have presented a numerical analysis of
the quantum phases of bosons in an extended Bose-Hubbard
model with global density-density interactions and global
correlated tunneling. The quantum phases have been studied
for a one-dimensional lattice and for configurations which
are consistent with the setups of cavity quantum electrody-
namics, where the global interactions are mediated by multi-
ple scattered photons in the dispersive optomechanical regime
[8,48]. The geometry we considered permits one to tune the
relative strength of the coefficients scaling the long-range
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FIG. 9. The scaling of entanglement entropy in the BSF (top
panel) and the BSS (bottom panel) phases according to the formula
in Eq. (11). For both cases t = 0.5U ; the other parameters are given
in the legends. The numerical fits yield c = 1.00(2) and c = 0.99(5),
respectively. Note that for the BSF we get two distinct straight lines,
both having a slope of ∼1/6, corresponding to the entanglement
entropy when the partition is cut at a strong and at a weak bond,
respectively. In the BSS the fluctuations of the entropy with respect
to the mean slope of 1/6 are due to the modulations of densities and
bonds across the system.

potential and the correlated tunneling terms in the extended
Bose-Hubbard model

In the geometry where correlated tunneling vanishes, the
cavity-mediated potential induces density-wave order and the
phase diagrams we obtain are consistent with the ones pre-
dicted in higher dimensions [9–12]. In the geometries where
correlated tunneling cannot be discarded, we find phases with
bond order. These phases are analogous to valence bond solids
and fluids in spin systems [39]. We remark that bond-ordered
phases are also present in other systems, for instance in zigzag
optical lattices with density-dependent gauge fields [49], in
spin-1/2 dipolar Fermi gases in lattice potentials [50], and in
honeycomb lattices with anisotropic tunneling [40]. In con-
trast to those models, here the bond order is a self-organized
phase induced by photon-atom interactions in a cavity.

The interplay of the cavity-induced potential and correlated
tunneling gives rise to phases that can simultaneously exhibit
density-wave and bond order. Remarkably, at low tunneling
and unit density the cavity interactions favor a bond super-
solid, where one would otherwise expect an incompressible
phase. We have analyzed the nature of these self-organized
bond superfluid phases for exemplary parameter regimes by
means of the scaling of the entanglement entropy and found
that these phases have the same central charge as the super-
fluid phases of short-ranged Bose-Hubbard models.

Bond and density-wave order correspond to self-organized
patterns which scatter coherently into the cavity mode. Corre-
spondingly, they are associated with the onset of an intracavity
field that is proportional to density-wave and bond-order

parameters and can be measured at the cavity output
[13,35,38]. Superfluidity can be revealed by time-of-flight
measurements [35]. The low energy gap could be determined
by means of a pump-probe experiment.

Bond order in these dynamics can be often understood
in terms of interference between single-particle hopping and
correlated tunneling [18,26]. The very same interference is at
the basis of the phases observed in one dimension for corre-
lated tunneling with short-range interactions, even though the
resulting phases are different [25,26]. In two dimensions the
phases result from an interesting interplay between frustration
and quantum interference [27,51]. The extension of these dy-
namics to global interactions is nontrivial and will be subject
of future works.

ACKNOWLEDGMENTS

R.K. and G.M. acknowledge the support of the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), Project-ID 429529648 TRR 306 QuCoLiMa (“Quantum
Cooperativity of Light and Matter”) and Priority Program
SPP1929 GiRyd (“Giant Interactions in Rydberd Systems”).
They also acknowledge the support of the German Ministry of
Education and Research (BMBF) via the QuantERA projects
“QTFLAG” and “NAQUAS.” Project NAQUAS has received
funding from the QuantERA ERA-NET Cofund in Quan-
tum Technologies implemented within the European Union’s
Horizon 2020 Programme. T.C. and J.Z. acknowledge the
support of PL-Grid Infrastructure and the National Science
Centre (Poland) under project Opus 2019/35/B/ST2/00034
(J.Z.) and Unisono 2017/25/Z/ST2/03029 (T.C.) realized
within the QuantERA ERA-NET QTFLAG collaboration.
The DMRG simulations have been performed using the ITen-
sor library [52].

APPENDIX A: ON THE EXTENDED BOSE-HUBBARD
MODEL OF CAVITY QUANTUM ELECTRODYNAMICS

The extended Bose-Hubbard model of Eq. (1) is found by
performing the Wannier expansion of the Hamiltonian Ĥeff =
Ĥ + ĤC as a function of the bosonic field operators �(r) with
[�(r), �†(r′)] = δ(r − r′). The Hamiltonian term Ĥ consists
of the kinetic energy, the potential of the optical lattice, and
contact interaction between the atoms:

Ĥ =
∫

d3r�̂†(r)

(
− h̄2

2m
∇2 + Vtrap

)
�̂(r) (A1)

+ g

2

∫
d3r�̂†(r)2�̂(r)2 , (A2)

while the effect of the atom-cavity coupling is described by
the effective long-range Hamiltonian [13,34]

ĤC = U1

L

(∫
d3r�̂†(r)h(r)�̂(r)

)2

, (A3)

where h(r) is the spatial mode function of the cavity field, with
max |h(r)| = 1. Hamiltonian (A3) is obtained by eliminating
the cavity field assuming that this evolves on a faster time
scale than the atomic motion. The details of the derivation
of Eq. (A3) starting from the full atom-photon master equa-
tion (that accounts for cavity losses) have been reported and
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discussed in Refs. [13,33,36,38] (see also Ref. [53] for a sys-
tematic semiclassical treatment). We note that in Eq. (A3) we
have neglected a term resulting from the dynamical Stark shift
of the cavity field. We further remark that the coefficient U1 is
proportional to the intensity of a transverse laser field, driving
the atoms, and that its sign is experimentally controlled by the
sign of the detuning between the cavity and laser frequency
[13,33,54].

In our work we assume a trapping potential of the form
Vtrap = Vlat(x) + mω2

2 (y2 + z2) with ω the trap frequency and

Vlat(x) = V0 sin2(kx).

The trap frequency ω is chosen so that the atoms can be
assumed to be in the ground state of the transverse trapping
potential. In the single-band approximation the Wannier ex-
pansion of the bosonic field reads

�(r) =
∑

j

w j (x)ψ0(y, z)â j, (A4)

where w j (x) are one-dimensional Wannier functions centered
on j sites along the x direction, ψ0(y, z) is the ground-state
wave function of the transverse harmonic trap, and â j annihi-
lates a boson at site j and in the ground state of the harmonic
trap.

The cavity spatial mode function is here assumed to be
given by its expression in the paraxial approximation,

h(r) = cos(kx + φ) ,

assuming that the transverse size of the atomic gas is much
smaller than the mode waist.

By using Eq. (A4) in Hamiltonian Ĥ and performing the
integrals as outline in Refs. [13,34,36], one obtains the Bose-
Hubbard Hamiltonian of Eq. (1).

APPENDIX B: DETAILS ABOUT DMRG SIMULATIONS

The DMRG algorithm [28,29] that we employ is based on a
matrix product state (MPS) ansatz [30,31] to find the ground

state and low-lying excited states of the system. We employ
the global U (1) symmetry corresponding to the conservation
of the total number of particles [55,56]. For that purpose, we
use the ITensor C++ library [52] where the matrix product
operator (MPO) for the all connected long-range Hamiltonian
can be constructed exactly [57,58] using the AutoMPO class.
In our Hamiltonian (1) [with Eq. (3)], when both B̂ and D̂
terms are nonzero the MPO bond dimension turns out to be
13. The maximum number of bosons (n0) per site has been
truncated to 6.

We consider random entangled states, |ψini〉 =
1√
50

∑49
i=0 |ψ rand

i 〉, where |ψ rand
i 〉 are random product states

with fixed density (either ρ = 1 or 1/2), as our initial states
for the DMRG algorithm. The maximum bond dimension of
MPS has been restricted to χmax = 600, so that the discarded
weights of the singular values remain below 10−10 even in
the gapless phases for system sizes up to L � 120. It is to
be noted that in the case of small system sizes or the gapped
phases, the final bond dimension may not reach χ = 600,
as in our DMRG sweeps we discard any singular values
having weights below 10−12. We verify the convergence of
the DMRG algorithm by checking the deviations in energy
in successive DMRG sweeps. When the energy deviation in
successive sweeps falls below 10−12, we conclude that the
resulting MPS is the ground state of the system.

To obtain low-lying excited states, as in Fig. 8, we first
shift the Hamiltonian by a weight factor multiplied with the
projector of the previously found state. To be precise, for
finding the nth excited state |ψn〉, we search for the ground
state of the shifted Hamiltonian,

Ĥ ′ = Ĥ + W
n−1∑
m=0

|ψm〉 〈ψm| , (B1)

where W should be guessed to be sufficiently larger than En −
E0.
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