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We study the ground state and thermodynamic properties of the spin-half XXZ model, with an Ising interaction
Jz and a transverse exchange interaction Jx , on a pyrochlore tube obtained by joining together elementary cubes
in a one-dimensional array. Periodic boundary conditions in the transverse directions ensure that the bulk of the
system consists of corner-sharing tetrahedra, with the same local geometry as the pyrochlore lattice. We use exact
diagonalization, the density matrix renormalization group (DMRG), and minimally entangled typical thermal
states (METTS) methods to study the system. When Jz is antiferromagnetic (Jz > 0) and Jx is ferromagnetic
(Jx < 0), we find a transition from a spin liquid to an XY ferromagnet, which has power-law correlations at
T = 0. For Jz < 0 and Jx > 0, spin-two excitations are found to have lower energy than spin-one at the transition
away from the fully polarized state, showing evidence for incipient spin-nematic order. When both interactions
are antiferromagnetic, we find a nondegenerate ground state with no broken symmetries and a robust energy
gap. The low-energy spectra evolve smoothly from predominantly Ising to predominantly XY interactions. In
the spin-liquid regime of small |Jx|, we study the confinement of monopole-antimonopole pairs and find that
the confinement length scale is larger for Jx < 0 than for Jx > 0, although both length scales are very short.
These results are consistent with a local spin-liquid phase for the Heisenberg antiferromagnet with no broken
symmetries.
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I. INTRODUCTION

Recent years have seen significant advancements in com-
putational techniques for quantum spin systems [1], allowing
for a better understanding of their ground-state phases includ-
ing quantum spin liquids with long-range entanglement [2].
The extension of the density matrix renormalization group
(DMRG) to cylinders of increasing width has allowed sub-
stantial progress to be made on two-dimensional quantum spin
models such as the kagome lattice Heisenberg antiferromag-
nets [3,4].

The study of three-dimensional quantum spin models are
even more challenging as there are two transverse directions,
making the area-law entanglement grow very rapidly with
increase in transverse dimensions.

The quantum XXZ model on the pyrochlore lattice is a
key model in the search for quantum spin-liquid phases [5–8].
The possibility that highly resonating quantum ground states
can arise from the manifold of degenerate spin ice states,
with exotic fractionalized quasiparticles and emergent gauge
fields, has motivated many theoretical and experimental
works [9–16]. Yet, the ground state of perhaps the sim-
plest such model, the Heisenberg antiferromagnet on the
pyrochlore lattice, is not well established [8,17–31], even
as recent numerical studies observed a possible inversion
symmetry-broken ground state [21,22].

In this paper, we study the XXZ antiferromagnet on a py-
rochlore tube, shown in Fig. 1. Periodic boundary conditions
in the directions transverse to the tube imply that, in terms of

local coordination, the system is the same as the pyrochlore
lattice with corner sharing tetrahedron. We know that dimen-
sionality plays a central role in the development of long-range
order in the system. Here, our primary goal is to understand
short-range behavior in the model, which is less sensitive
to dimensionality and could be indicative of the presence of
short-range order in the full three-dimensional lattice as well.
We also study ways in which the low dimensionality alters the
long-distance behavior.

The three primary phases of the model are shown in Fig. 2.
The phase transition points are inferred from the spectra of the
32-site cluster with periodic boundary conditions obtained by
exact diagonalization (ED) and shown in Fig. 3. The blue and
red stars are obtained from a DMRG or ED calculation on a
96-site or 128-site lattice as discussed in Sec. IV. When the
Ising coupling is antiferromagnetic and the XX coupling Jx is
ferromagnetic, our study finds a transition from the spin liquid
phase to the XY ferromagnet as known for the pyrochlore
lattice [32]. There are quantitative differences in both the
location of the transition point and the nature of the phases—
long-range order is replaced by power-law correlations due
to one dimensionality. Finite-temperature properties at high
and intermediate temperatures also agree between our system
and the fully three-dimensional one [32]. However, the low-
temperature thermodynamic properties are clearly different,
as would be expected with changing dimensionality.

Our main focus here is the case of antiferromagnetic trans-
verse couplings. This case is particularly challenging because
of the absence of quantum Monte Carlo algorithms without
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FIG. 1. A pyrochlore tube lattice with length L = 4 (cubic unit
cells) in the long direction. There are four tetrahedra in each cube
and the total number of sites N = 4 × 4 × L = 64. The side length
of the cube is set to be 1 and hence the distance between the nearest
neighbor sites of the pyrochlore lattice is

√
2/4. Primitive transla-

tional vectors for the 3D pyrochlore lattice (0, 1/2, 1/2), (1/2, 0,
1/2), and (1/2, 1/2, 0) are represented by red arrows in the figure.

FIG. 2. The upper panel shows the three primary ground-state
regimes of the model as a function of φ defined by the relations
Jz = J cos φ, Jx = J sin φ: (i) Ising ferromagnet (FM), also called
all-in-all-out (AIAO) phase (see text), (ii) XY ferromagnet. and (iii)
spin liquid. The nature of the spin-liquid phase and whether there are
multiple phases within the spin-liquid region is a primary focus of
our study. The lower panels show the phases with |Jz| = 1. The phase
transition points are inferred from the spectra of the 32-site cluster
with periodic boundary conditions obtained by exact diagonalization
(ED) as well as from a DMRG or ED calculation on a 96-site or
128-site cluster discussed in Sec. IV.

FIG. 3. Low-lying spectrum of an L = 2 periodic cluster with
32 spins obtained by exact diagonalization (ED). The states are
characterized by their Sz quantum numbers. Three classes of ground-
state regimes are evident from the figure: a high-Sz ground-state
phase in the middle, which corresponds to an Ising ferromagnet
(0.63π � φ � 1.25π ), and two Sz = 0 ground-state regimes on the
sides ending at the highly degenerate spin ice states at φ = 0 or 2π .
Energy levels at Sz = ±k are degenerate due to spin flip symmetry.

a sign problem for this system [32,33]. Previous studies have
proposed a number of different types of order in the system in-
cluding a variety of quantum spin liquids [17,20,25], nematic
quantum spin-liquid [8], valence-bond order [29,30], broken
symmetry between up- and down-pointing tetrahedra [21,22],
and broken time-reversal symmetry. Thus, even the question
of short-range order in this system is far from settled. In
our study, we find a nondegenerate ground state with no
broken symmetries and a robust energy gap for the Heisen-
berg antiferromagnet. Our results support the development of
short-range nematic correlations near the Heisenberg limit,
which persists all the way to the XY limit (Jx → ∞). In the
latter case, such correlations can be seen by coming from the
ferromagnetic Ising side [8]. As in the three-dimensional (3D)
case, we find that the lowest excitations in the ferromagnetic
phase, on approach to the transition, carry spin-two and not
spin-one, thus suggesting an incipient nematic order.

We also examine the confinement of monopole-
antimonopole pairs due to the quasi-one-dimensionality
of the system in the spin ice phase at small transverse Jx. We
look at the lowest energy state in the Sz = 1 sector in a system
with periodic boundary conditions. This forces at least two
tetrahedra to not satisfy the ice rules. In other words, they
contain the monopole excitations. For very small transverse
couplings, there are only two such tetrahedra. We examine the
distribution of distances between the monopole-antimonopole
pairs. We find that for ferromagnetic transverse coupling,
the confinement length is larger than the confinement length
for the antiferromagnetic transverse coupling, although both
length scales are quite short.

Another issue of interest is the persistence of finite-
temperature entropy plateaus in quantum systems, where such
plateaus must be rounded due to quantum fluctuations [32,34].
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The minimally entangled typical thermal states (METTS) al-
gorithm is an extension of DMRG that allows us to study the
finite-temperature properties of the system [35,36]. We obtain
heat capacity and entropy as a function of temperature. We
find that the plateau in the entropy at the well-known Pauling
value, a key signature of classical spin ice [9], is lost as one
moves away from the Ising limit. Ultimately, our quasi-one-
dimensional system has a robust gap and the temperature scale
over which the entropy goes to zero from its spin-ice value is
much larger than in the three-dimensional pyrochlore lattice.
This reflects the absence of a gapless photon mode in the
quasi-one-dimensional system. It is also consistent with the
view that low-temperature properties of the model are strongly
modified due to the altered dimensionality.

II. MODEL

The XXZ Hamiltonian on a pyrochlore lattice is given by

H =
∑

〈i,j〉
JzS

z
i Sz

j + Jx
(
Sx

i Sx
j + Sy

i Sy
j

)
, (1)

where 〈i, j〉 denotes the nearest neighbors on the pyrochlore
lattice. �Si = h̄

2 �σi (we set h̄ = 1, and �σi are Pauli matrices)
is the spin operator for site i. Jx and Jz describe the cou-
pling strength in the transverse (X,Y) and Ising (Z) directions
respectively. Both negative (ferromagnetic) and positive (an-
tiferromagnetic) Jz and Jx will be considered in this work. To
view the global phase diagram, it is useful to define

Jz = J cos φ, Jx = J sin φ, (2)

with J > 0. For studying energy- and temperature-dependent
properties, we set |Jz| = 1.

In physical realizations of the model in rare-earth-metal
pyrochlores, the spin operators in Eq. (1) are defined in a
local coordinate system, where the positive z direction at a
site points from the center of the neighboring down tetrahe-
dron to the center of the neighboring up tetrahedron. Thus, a
ferromagnetic Ising order for our model in the Sz direction
corresponds to an all-in–all-out (AIAO) state in the global
coordinate system (also shown in Fig. 2), where all spins
point in for each up tetrahedron and point out for each down
tetrahedron or vice versa. In this paper, we will mostly use the
local coordinate system to describe the spin state.

A pyrochlore tube lattice consists of cubic unit cells of
a face-centered cubic (FCC) lattice with a four-point basis,
joined along one direction. The side length of the cube is set
to be 1 and hence the distance between the nearest neighbor
sites of the pyrochlore lattice is

√
2/4. A tube of length L = 4

(in terms of the cubic unit) (N = 64 sites) is shown in Fig. 1.
We use periodic boundary condition (PBC) in the transverse
direction. In the DMRG and METTS studies, mostly open
boundary condition (OBC) in the long direction is used to
simplify the calculations. A more detailed discussion of the
lattice structure can be found in the Appendix.

A panoramic view of the phases of the model can be
obtained from looking at the low-lying states of a 32-site peri-
odic cluster as shown in Fig 3. The data are obtained by exact
diagonalization (ED) calculation. Each state is characterized
by its conserved Sz quantum number. The phase in the middle
(near φ = π ) corresponds to the local-basis Ising ferromagnet

or the all-in–all-out (AIAO) phase. The phase to the right of
this is a local XY ferromagnet, which ends in a quantum spin
liquid as we approach the highly degenerate spin ice state
at φ = 2π . The phase to the left of the AIAO phase is the
primary focus of our investigation in this paper. It also ends
in a quantum spin-liquid phase as we approach the highly
degenerate spin ice state at φ = 0.

III. METHODOLOGY

The density matrix renormalization group (DMRG) [37]
has become the most powerful method for ground-state stud-
ies of 1D systems. Here we apply it to a quasi-1D pyrochlore
tube lattice. The important condition behind the success of the
method is area-law entanglement and existence of a reduced
state space which can capture all the interesting physics.

DMRG in its modern form is based on a matrix prod-
uct state (MPS) ansatz, which is variationally optimized to
converge to the desired ground state [1,3,4]. The ansatz is
based on a Schmidt decomposition of wave functions. For any
bipartition of a system into subsystems A and B, a wave func-
tion can be expressed as |ψ〉 = ∑

iA, jB
MiA, jB |i〉A| j〉B, where

|i〉A and | j〉B represent bases of states on subsystems A and
B. The matrix MiA, jB encodes the entanglement between the
subsystems. Within a matrix product state approximation, one
truncates the singular value decomposition M = USV †, by
either choosing a maximal number of singular values (also
referred to as the maximal bond dimension D) or by choosing
D such that the total sum of squares of truncated singular
values, or truncated weight, is less than a cutoff ε. In our study,
we typically use a truncated weight cutoff of ε = 10−6. In the
Appendix, we have checked the convergence of our results
when decreasing the cutoff ε.

We use another MPS-based technique, the min-
imally entangled typical thermal states algorithm
(METTS) [35,36,38,39], to compute finite-temperature
quantities. Instead of converting quantum problems into
classical ones and sampling both quantum and thermal
fluctuations as in a typical quantum Monte Carlo algorithm,
METTS provides a way to directly sample quantum states. It
begins with expressing the expectation value of an observable
O, at inverse temperature β as

〈O〉 = 1

Z Tr(e−βHO)

= 1

Z
∑

i

〈i|e−βH/2Oe−βH/2|i〉 (3)

= 1

Z
∑

i

P(i)〈φ(i)|O|φ(i)〉, (4)

where |φ(i)〉 = P(i)−1/2e−βH/2|i〉 and P(i) = 〈i|e−βH |i〉. Z is
the partition function and |i〉 is any orthonormal basis set.
Notice that the probability of the quantum state |φ(i)〉, P(i),
is real and non-negative. Thus, the METTS algorithm is free
of any Monte Carlo sign problems as long as one can effi-
ciently perform the imaginary time evolution of each state,
which is the case for states of quasi-one-dimensional systems
represented as MPS. Since the computational cost of using
MPS increases rapidly as the entanglement entropy of a state
grows, a natural choice of the orthonormal basis |i〉 is classical
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product states. The METTS algorithm allows the construction
of a sequence of product states by collapsing the previous
quantum state obtained after the operation of e−βH/2 into a
local basis. It guarantees that quantum states are sampled
efficiently and with the desired distribution.

The step which controls the efficiency and accuracy of the
METTS algorithm is the operation of e−βH/2 on each product
state. This is first accomplished by the time-evolving block
decimation (TEBD) [40,41] algorithm for time-evolving
MPS, which is controlled and accurate and allows one to adap-
tively grow the MPS bond dimension D. It is followed by the
more efficient two-site time-dependent variational principle
(TDVP) [42,43] algorithm (which scales as ND3d2β, where
N is the number of sites and d is the degrees of freedom
for the local site) to further increase the bond dimension D
and finally one-site TDVP for a fixed large bond dimension,
which is approximately twice as fast as the two-site TDVP
algorithm. The errors of TEBD have two sources: One is the
time step error introduced by the Trotter approximation and
the other one is the truncation of the state to the maximum
bond dimension. TDVP algorithm suffers from a projection
error onto the manifold of MPS at given bond dimension,
as well as the truncation error of the state. The truncation
error cutoffs we use for TEBD and TDVP are 10−12 and 10−6

respectively and we set the maximum bond dimension to be
500. The realistic bond dimensions depend on the parameters
we study and are determined by the cutoff in our simulations.
For the model and parameters we present here, the typical
bond dimension is around 300 or less. The same approach
was recently used to study finite-temperature properties of the
Hubbard model [44,45]. More detailed discussions of these
algorithms can be found in the review [46]. All simulations in
this work use the ITensor library [47].

IV. RESULTS FOR T = 0 PROPERTIES

In this section, we discuss DMRG results for ground-state
properties of the model. We compute the ground-state energy,
energy gap, bipartite entanglement entropy, and a variety of
correlation functions of relevance to the different phases. For
each set of Hamiltonian parameters, we typically perform 30
DMRG sweeps across the lattice. We set the maximum bond
dimension to D = 2000 and the truncation error cutoff to
ε = 10−6, the latter setting the actual bond dimension used
in the calculations. By varying ε, we have checked that our
results are well converged with respect to the truncation error.
We present results for different signs of Jz and Jx in the
subsections below.

A. Antiferromagnetic Jz and ferromagnetic Jx:
Transition from a spin liquid to an XY ferromagnet

For ferromagnetic Jx < 0 and antiferromagnetic Jz = 1, the
phase at small |Jx| is a quantum spin-liquid which must be
separated from an XY ferromagnetic phase at larger |Jx| by
a phase transition. To study these phases and the transition,
we calculate the transverse spin-spin correlation functions and
structure factors

Sxx
FM = 1

N

∑

i,j

〈
Sx

i Sx
j

〉
, (5)

FIG. 4. Upper: Ferromagnetic structure factor in the x compo-
nent as a function of coupling strength Jx for N = 64 and N = 96
systems for Jz = 1 and Jx < 0. Lower: The logarithm of spin-spin
correlations as a function of the logarithm of site distance. A linear
relationship for Jx = −0.2 and Jx = −0.5 indicates a power lower
decay of spin-spin correlations. N = 96 and N = 64 data are repre-
sented by circle and diamond symbols respectively.

together with energy gap and entanglement entropy. The fer-
romagnetic structure factor is plotted as a function of coupling
strength Jx in Fig. 4 upper panel. Results for two lattice sizes
N = 64 and N = 96 are shown in the plot. Sxx

FM starts from a
small value at Jx = 0 and gradually increases as Jx becomes
more negative. When |Jx| < |Jc ∼ −0.2|, for different lattice
sizes Sxx

FM curves roughly overlap. In contrast, for |Jx| > |Jc|,
there is a significant increase in Sxx

FM as lattice size grows,
indicating development of longer range ferromagnetic (FM)
correlations in the transverse direction.

The lower panel in Fig. 4 shows the logarithm of spin-spin
correlation ln(SxSx(r)) as a function of the logarithm of the
distance ln(r). For smaller Jx the plot curves down, showing
exponential decay. For larger Jx, the plot settles down to a
linear relationship, indicating a power law decay of spin-spin
correlations, as expected for a quasi-1D lattice. We note that
in 3D, there is a transition to a long-range ferromagnetic XY
phase at Jx ≈ −0.104 [32].

The energy gap 	 = E1 − E0, where E0 is the ground-state
energy and E1 is the first excited state energy if the ground
state is nondegenerate (if the ground state is degenerate, then
E1 = E0), and bipartite entanglement entropy SA|B as a func-
tion of Jx are shown in the upper and lower panels of Fig. 5
respectively. When |Jx| < 0.2, the energy gap is only weakly
size dependent, while for |Jx| > 0.2, the gap decreases with
lattice size and clearly extrapolates to zero for |Jx| > 0.3
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FIG. 5. Energy gap 	 and entanglement entropy SA|B vs Jx for
Jz = 1 and Jx < 0. In the power-law XY FM phase |Jx| > 0.2, the
extrapolated energy gap closes and the entanglement entropy grows
logarithmically with size. The energy gap is finite and nearly size
independent in the spin-liquid phase.

as expected in a power-law XY ferromagnetic phase. The
robust energy gap in the spin-liquid phase is in contrast to the
gapless photon mode in the three-dimensional system. In the
power-law ferromagnetic phase, the bipartite entanglement
entropy, when the system is divided into two equal halves,
grows logarithmically with system size and is consistent with
a conformally invariant behavior with central charge c = 1
(more details can be found in the Appendix). These results
are as expected for the power-law ferromagnetic phase in one
dimension.

B. Antiferromagnetic Jz and antiferromagnetic Jx

For positive (antiferromagnetic) Jx and Jz couplings, we
have measured spin-spin, dimer-dimer, and nematic corre-
lation functions. All the correlation functions show rapid
exponential decay. We focus on the nematic structure factor
Snematic defined as

S1 = 1

Nb

∑

〈i j〉〈i′ j′〉

〈(
Sx

i Sx
j − Sy

i Sy
j

)(
Sx

i′S
x
j′ − Sy

i′S
y
j′
)〉

(6)

and

S2 = 1

Nb

∑

〈i j〉〈i′ j′〉

〈(
Sx

i Sy
j + Sy

i Sx
j

)(
Sx

i′S
y
j′ + Sy

i′S
x
j′
)〉
, (7)

where 〈i j〉 and 〈i′ j′〉 denote the nearest neighbor bonds of
the pyrochlore lattice and Nb is the total number of these
bonds. These two types of definitions are equivalent, and the
results given by S1 and S2 are found to be identical and shown
in Fig. 6. A long-range order is not observed but a short-
range nematic order develops near the Heisenberg limit and
persists for Jx � 1. We define the corresponding nematic cor-
relation function between two bonds with sites (i, j) and (i′ j′)

FIG. 6. Upper: Nematic structure factor Snematic as a function of
coupling strength Jx for N = 64 and N = 96 systems. Overlap of dif-
ferent lattice sizes curves imply that it is a short-ranged order. Lower:
The logarithm of bond-bond nematic correlations as a function of the
logarithm of bond distance. The slopes are −13, −7.9, −6.8 for Jx =
0.2, 1.0, 10.0, indicating correlation lengths are 0.08, 0.13, 0.15 in
units of a cubic unit cell respectively for these cases. Correlation
lengths in terms of nearest neighbor distance are 0.21, 0.36, and
0.42. N = 96 and N = 64 data are represented by circle and diamond
symbols, respectively.

respectively, as B(r) = 〈(Sx
i Sx

j − Sy
i Sy

j )(S
x
i′S

x
j′ − Sy

i′S
y
j′ )〉, where

r is the distance between the bond centers. The lower panel
shows that nematic correlations decay rapidly with distance
for all values of Jx. If one insists on a power law decay and
fits the curve that way one would find a very large power (of
order 10), indicating the correlation decays rapidly, like the
exponential decay.

Figure 7 shows the energy gap and entanglement entropy of
the system for various sizes. There is a robust energy gap for
all values of Jx. Although the entanglement entropy increases
with size of the system, it ultimately saturates rather than
continuing to increase. These results are consistent with a
gapped ground state with a finite correlation length and no
broken symmetries.

C. Ferromagnetic Jz and antiferromagnetic Jx:
Instability of the ferromagnetic state

In this section, our primary goal is to study the instability
of the Ising ferromagnetic state as the transverse coupling
Jx is increased relative to Jz < 0. As before, we set |Jz| = 1.
Since, the z couplings are unfrustrated, one needs to go well
past Jx = 1 to see the transition away from the fully polarized
ferromagnetic state. One-particle excitations around the ferro-
magnetic state can be calculated analytically. Since the Hilbert

075135-5



FENG, WIETEK, STOUDENMIRE, AND SINGH PHYSICAL REVIEW B 106, 075135 (2022)

FIG. 7. Energy gap 	 and entanglement entropy SA|B vs Jx for
Jx > 0 and Jz = 1. A robust energy gap is observed for all Jx val-
ues and entanglement entropy saturates ultimately when lattice size
increases.

space for two-particle states in an N-site cluster is only of size
N (N − 1)/2, relatively large system sizes can be diagonalized
exactly.

We study periodic clusters up to N = 128 spins. The results
for Sz = 1 and Sz = 2 excitations with respect to the ferro-
magnetic ground state are nearly size independent. As shown
in Fig. 8, we find that the spin-two excitations become lower
in energy relative to the spin-one excitations for Jx > 2.2. For
Jx > 2.6, the two-spin flipped state is lower in energy than the
ferromagnetic state.

The transition away from the ferromagnetic state happens a
bit earlier. In Fig. 9, we show the lowest energy of states with
different Sz quantum numbers relative to the Ising ferromag-
netic state for different values of Jx. This calculation is for
the 32-site cluster. The ground state switches from the Ising

FIG. 8. Excitation energy 	 for Sz = 63 and Sz = 62 excitations
from the ferromagnetic state Sz = 64 for Jz = −1 and Jx > 0. The
results are essentially size independent and were checked up to
128-site periodic cluster.

FIG. 9. Lowest energy states, relative to the ferromagnetic state,
in different Sz sectors for the 32-site periodic cluster. Close to the
transition at φ/π ≈ 0.61 we observe an even-odd effect, i.e., a dif-
fering energy dependence whenever Sz is even or odd, indicative of
nematic order.

ferromagnetic state to the singlet state at Jx ≈ 2.3. As one
goes into the singlet ground state, a strong odd-even behavior
in the variation of lowest energy with Sz persists as a function
of spin. To be more explicit, when the order parameter has
a vector nature (such as for any magnetic order), the lowest
excitations carry spin one. But, when the order parameter is an
axis not a vector (called directrix in liquid crystal theory [48]),
then the order parameter is a rank-two tensor and the lowest
energy excitation should carry spin two. These results are
indicative of a nematic state, where elementary excitations
have a spin-two character. This behavior persists as Jx is
further increased. Nematic states at the transition between
ferromagnetic and antiferromagnetic states have been previ-
ously observed on an extended kagome lattice Heisenberg
model [49].

One of the most noticeable aspects of the 32-site cluster
spectra in Fig. 3 is the smooth behavior across the Heisenberg
model point of the Hamiltonian (φ = π/4). It strongly sug-
gests that as one goes from the predominantly Ising coupling
to the predominantly XY coupling, the ground-state phase
does not change. It argues against any special state or an in-
creased degeneracy at the Heisenberg point. To the extent this
behavior is representative of the 3D system, it argues against
many proposed ground states for the Heisenberg model in-
cluding dimerization, long-range nematic, broken inversion,
or time-reversal symmetry. One possibility is that this behav-
ior arises due to quasi-one-dimensionality and the resulting
confinement discussed in the next section. The short-range
correlated quantum spin-liquid phase is mostly featureless.

V. CONFINEMENT OF MONOPOLE-ANTIMONOPOLE
PAIRS

In this section, we examine the confinement of monopole-
antimonopole pairs due to quasi-one-dimensionality of the
system in Fig. 10. To do this, we perform DMRG simulations
on a 192-site clusters with periodic boundary conditions in all
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FIG. 10. [(a), (b)] Probability of monopole-antimonopole pair
separations P vs pair separations r and [(c), (d)] logarithm of the
probability ln(P) vs separation r.

directions. We consider the Sz = 1 sector, which guarantees
that at least one pair of monopole-antimonopole pairs must be
present in each classical configuration. We collapse many in-
dependent classical Ising configurations |ψ ′〉 from the ground
state |ψ0〉 obtained by DMRG with probability |〈ψ ′|ψ0〉|2.
Sampling from the desired distribution is nontrivial. An MPS-
based algorithm makes it realizable and a detailed discussion
of the algorithm can be found in Refs. [36,50]. Around
1000 classical configurations are collected. The location of
monopole-antimonopole pair and their distance is recorded.
In this way, the probability distribution function associated
with their separation is constructed and by plotting it against
the logarithm of the separation, the confinement length is
obtained.

We find for antiferromagnetic Jx coupling Jx = +0.01, the
probability P of separation between monopole-antimonopole
pairs decreases exponentially as the separation r increases.
The probability almost vanishes when r > 2. We also get a
linear relationship between the logarithm of the probability
ln(P) and pairs separation r in the lower panels. The fitting
curves are ln(P) = −2.2r + 1.2 for Jx = +0.01 and ln(P) =
−0.93r + 0.83 for Jx = −0.01, suggesting that the correla-
tion lengths are 1/2.2 ≈ 0.45 and 1/0.93 ≈ 1.08 in units of
the length of a unit cube respectively. In other words, for
ferromagnetic Jx the confinement distance is longer than for
antiferromagnetic Jx.

VI. FINITE-TEMPERATURE PROPERTIES

In this section, we study the finite-temperature properties
of the model using the METTS method. This allows us to
show that basic thermodynamic properties such as internal
energy, heat capacity, and entropy at intermediate and high
temperatures are not much affected by the dimensionality of
the system. On the other hand, the low-temperature proper-
ties can be qualitatively different. We are also interested in
studying the rounding of entropy plateaus due to quantum
fluctuations [32–34].

FIG. 11. Energy E , heat capacity C, and entropy S per site as a
function of temperature T for fixed Jz = 1 and several different spin
X and Y coupling strengths Jx = 0,−1/11, −0.2. Different lattice
sizes N = 64 (square point) and N = 96 (solid lines) are shown in
all the panels. The green triangular QMC data points for the 3D
pyrochlore lattice are obtained from Ref. [32].

We first present results for an antiferromagnetic Jz and a
ferromagnetic Jx. We fix Jz = 1.0 and vary Jx. A range of
values are considered. In Fig. 11, we show plots of the ther-
modynamic properties for Jx = −1/11,−0.2. The parameter
Jx = −1/11 is close to the transition to the XY ferromag-
netic phase in the 3D pyrochlore lattice and there is quantum
Monte Carlo data available in the literature [32] to compare
with. In the figure, energy E as a function of temperature
T are shown for two different lattice sizes N = 64 (square
points) and N = 96 (solid lines). Heat capacity C and en-
tropy S are obtained by using the formula C(T ) = dE

dT and

S(T ) = S(Tmax) − ∫ Tmax

T
C
T dT respectively. We assume S(T =

0.01, Jx = −0.2) = 0 and S(T = 0.01, Jx = 1.0) = 0 since
the system is gapped at these Jx values. For negative Jx entropy
S(Tmax, Jx ) is assumed to be equal to S(Tmax, Jx = −0.2) and
for positive Jx, S(Tmax, Jx ) is determined by S(Tmax, Jx = 1.0).

For Jx = −1/11, when cooling the system from high tem-
peratures, entropy decreases from ln 2 gradually and forms
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FIG. 12. Energy E , heat capacity C, and entropy S per site as a
function of temperature T for fixed Jz = 1 and several different spin
X and Y coupling strengths Jx = 0, 0.1, 0.3, 1.0. Different lattice
sizes N = 64 (square point) and N = 96 (solid lines) are shown in
all the panels. NLC data [19] for the Heisenberg antiferromagnet
(Jx = 1.0) for the 3D pyrochlore lattice are shown by green triangles.

a plateau near the Pauling entropy Sp = 1
2 ln 3

2 in the region
10−2 < T < 10−1. A comparison with previous QMC data on
the 3D pyrochlore lattice (green triangle curve) is shown. At
high T, there is good agreement, which is consistent with the
general expectation that only local coordination dictates the
high-temperature behavior. However, the low-temperature be-
havior is quite different, and the drop in entropy to zero and a
second heat capacity peak occur at a much higher temperature,
around T ≈ 0.02 in the quasi-1D system. By Jx = −0.2, there
are no signs of an entropy plateau in the data and the entropy
rapidly drops to zero at an even higher temperature.

In Fig. 12, the results are shown for the case of Jx posi-
tive. Again, we have studied a range of Jx values. We show
results for Jx = 0, 0.1, 0.3, and 1.0. We can compare with the
numerical linked cluster expansion (NLC) data [19] for the
3D pyrochlore lattice in the literature at Jx = 1.0. Once again
there is very good agreement at high temperatures. However,

they deviate below the peak in the NLC data at T ≈ 0.5. In
the quasi-1D system, the high-temperature peak in the heat
capacity merges with and becomes a shoulder for the low-
temperature peak at T ≈ 0.2J . However, well before Jx = 1.0
the entropy plateau is washed out. By Jx = 0.3, there is only a
very slight hint of a shoulder in the entropy.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have studied the spin-half XXZ model on
a pyrochlore tube. It is a model of corner-sharing tetrahedra
formed by joining FCC cubic cells of a pyrochlore lattice
along one direction. Locally, the model has the geometry of
the pyrochlore lattice and indeed high-temperature thermody-
namic properties are found to be in agreement with studies
of the latter [8,19,32]. The low-temperature properties are
affected by the quasi-one-dimensionality of the model. Our
main findings are the following: (i) With antiferromagnetic
Ising and ferromagnetic XY coupling, there is a transition
from the spin ice phase to an XY ferromagnetic phase, where
the latter has power-law spin correlations as expected from
the dimensionality of the system. (ii) When both couplings
are antiferromagnetic, there is a unique ground state with
an energy gap in the system. (iii) As the parameters change
from the Ising to the Heisenberg limit, short-range nematic
correlations develop. These correlations are nearly unchanged
from the XY to the Heisenberg limit. No evidence for any
long-range order of any type including nematic order is found.
(iv) The low-energy spectrum evolves smoothly from the
predominantly Ising to the predominantly XY couplings and
the ground state of the Heisenberg model is essentially fea-
tureless. (v) For ferromagnetic Ising and antiferromagnetic
XY couplings, the transition away from the fully polarized
ground state is preceded by spin-two excitations becoming
lower in energy than spin-one. This is further support for
development of local nematic correlations in the system [8].
(vi) The disordered spin ice phases for both signs of the XY
coupling are gapped and there is no gapless photon mode in
the quasi-1D system. (vii) Monopole-antimonopole pairs are
confined with a confinement length which is short, especially
for antiferromagnetic transverse coupling. (viii) The plateau
in entropy that exists in the purely Ising model is rounded
with the addition of transverse terms. Comparison with a
previous quantum Monte Carlo study of a three-dimensional
system shows that the rounding is more abrupt in the quasi-1D
system, where the entropy is released at a relatively higher
temperature.

Computational studies of highly frustrated three-
dimensional spin system remain a major challenge, especially
when the system has a sign problem within quantum Monte
Carlo simulations. Here we studied a simplified model,
making it finite in extent along two directions and much
longer in the third. The DMRG technique can treat very long
systems in one direction but only a small extent in the other
two. This has allowed us to perform an unbiased study of
the ground state and thermodynamic properties with high
accuracy for tube geometries. One expects the short-range
order found in this study, such as nematic correlations, to
reflect the behavior of the full three-dimensional pyrochlore
system as well. Our results are consistent with a local
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quantum spin liquid for the Heisenberg antiferromagnet,
with only very short-range correlations and entanglement.
However, the extent to which this may relate to long-range
correlations and/or entanglement in the 3D pyrochlore
lattice remains an open question that deserves further
attention.
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APPENDIX

In the Appendix, we provide details concerning (a) log-
arithmic growth of entanglement entropy in the power-law
XY ferromagnet, (b) quasi-1D pyrochlore lattice structure,
(c) truncation error from DMRG cutoff, and (d) expo-
nential decay of spin-spin and bond-bond correlations for
Jz = 1, Jx > 0.

1. Logarithmic growth of entanglement entropy
in the power-law XY ferromagnet

We plot the bipartite entanglement entropy SA|B, when the
system is divided into two equal halves, as a function of the
logarithm of lattice size ln(N ) for power-law ferromagnetic
phase Jx = −0.5, Jz = 1 in Fig. 13. The slope of the fitting
curve is c/6 ≈ 0.153, consistent with a conformally invariant
behavior with central charge c = 1.

2. Quasi-1D pyrochlore lattice structure

We use periodic boundary condition (PBC) in the trans-
verse direction (y, z coordinates of the sites). In the DMRG

FIG. 13. Bipartite entanglement entropy SA|B as a function of the
logarithm of lattice size ln(N ) for XY ferromagnetic phase Jx =
−0.5, Jz = 1. The slope of the fitting curve indicates central charge
c ≈ 1.

FIG. 14. We use sites (0,0,0) and (2,0,0) in a pyrochlore tube
lattice with length L = 4 (cubic unit cells) in the long direction as
examples and list the six nearest neighbors in the 3D pyrochlore
lattice and their equivalent sites in the tube geometry studied. The
last column shows whether the nearest neighbor is present in the
tube geometry with periodic boundary conditions in the transverse
direction but open boundary conditions in the long direction.

and METTS studies, mostly the open boundary condition
(OBC) in the long direction (x coordinates of the sites) is
used to simplify the calculations. Specifically, in the tube
geometry, a site with coordinates (x, y, z) is equivalent to the
site (x + n, y + m, z), where n and m are integers. We use
sites (0,0,0) and (2,0,0) as examples in the table of Fig. 14.
The six nearest neighbors of both the sites are listed in the
3D pyrochlore lattice and in the tube geometry we study. Due
to the open boundary condition we use in the x coordinates,
two of the nearest neighbors of site (0,0,0) (at the boundary)
are not included in the tube geometry, while all the six nearest

FIG. 15. The logarithm of spin-spin correlation ln(SxSx (r)) vs
the logarithm of sites distance ln(r) on a 96-site pyrochlore lattice.
Jz = 1 and the value of Jx is shown in the legend. Different trunca-
tion error cutoff ε curves are on top of each other, indicating that
ε = 10−6 as we use in the main text is small enough to capture the
physics.
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FIG. 16. Exponential decay of spin-spin and bond-bond correla-
tions on a 96-site pyrochlore lattice with Jz = 1, Jx > 0. α is the spin
index. Spin x and z are symbolized by circles and triangles respec-
tively. Jx = 0.2, 1.0, 10.0 data are represented by different colors.

neighbors of site (2,0,0) (in the bulk) are represented in the
geometry.

3. Truncation error from DMRG cutoff

In this section, we explore the effects of truncation error
cutoff and use a 96-site pyrochlore lattice with Jz = 1, Jx =
−0.1,−0.2,−0.5 as examples in Fig. 15. The logarithm of
spin-spin correlation ln(SxSx(r)) is plotted as a function of the
logarithm of sites distance r using several different truncation
error cutoff values, ε = 10−6, 5 × 10−7, 10−7. The overlap
of different ε curves imply the cutoff we use in the main
text ε = 10−6 is small enough to capture the physics of the
system.

4. Exponential decay of spin-spin and bond-bond correlations
for Jz = 1, Jx > 0

Here we use a 96-site pyrochlore lattice as an example and
plot the logarithm of spin-spin Sα

i Sα
j and bond-bond Bα

〈i j〉B
α
〈i′ j′〉

correlations as a function of distance r between the sites (or
bonds) in Fig. 16. 〈〉 denotes the nearest neighbors. Bα

〈i j〉 =
Sα

i Sα
j is defined as the spin-spin correlation on bond 〈i j〉. Spins

x and z are presented by circles and triangles respectively,
while different colors correspond to different Jx values. Jz is
fixed to be 1. Straight lines in both panels indicate that both
spin-spin and bond-bond correlations decay exponentially,
which is a feature of the spin-liquid phase.
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