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Real-space numerical renormalization group computation of transport properties
in side-coupled geometry
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A real-space formulation of the numerical renormalization group (NRG) procedure is introduced. The real-
space construction, dubbed eNRG, is more straightforward than the NRG discretization, and allows a faithful
description of the coupling between quantum dots and conduction states even if the design of the couplings is
intricate. General features of the two procedures are discussed comparatively. A more specific comparison is then
developed, based on computations of the zero-bias transport properties for an Anderson-model description of a
quantum wire side-coupled to a single quantum dot. An eNRG computation is shown to reproduce accurately the
temperature-dependent electrical conductance for the uncorrelated model in the continuum limit, while signif-
icant deviations mark the corresponding NRG computation for thermal energies comparable to the conduction
bandwidth. A combination of analytical and numerical results for the transport properties of the correlated model
then provides a more exacting check on the accuracy of the eNRG procedure. A recent NRG analysis mapping
the transport properties of a single-electron transistor onto universal functions of the temperature scaled by the
Kondo temperature is extended to the side-coupled device, on the basis of eNRG reasoning. Numerical results
for the electrical conductance, thermopower, and thermal conductance in side-coupled geometry are then shown
to agree very well with the mappings. The numerical results are also checked against the thermal dependence
of the thermopower measured by Köhler et al. [Phys. Rev. B 77, 104412 (2008)] in Lu0.9Yb0.1Rh2Si2, and the
remarkably accurate, recent conductance measurements by Xu et al. [Chin. Phys. Lett. 38, 087101 (2021)].
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I. INTRODUCTION

The numerical renormalization group method was pro-
posed five decades ago, to calculate the thermodynamic
properties of dilute magnetic alloys [1–3]. Since then, the
scope of applications has been extended to include excita-
tion and transport properties [4]. These developments and
subsequent advances have converted the method into an apt
instrument in the rapidly growing area of nanodevice devel-
opment [5]. Numerous examples constitute recent literature
[6–24].

The modifications have made the procedure more efficient,
more accurate, or more general [4,25–27]. All of them have
nonetheless preserved the core of Wilson’s construction: log-
arithmic discretization of the conduction band followed by a
Lanczos transformation, truncation, and definition of a renor-
malization group transformation.

That momentum-space construction seems less attractive
today than in the 1970’s. Approximations in real space
suit the geometry of nanofabricated devices better than
their counterparts in k-space. Granted, when the target is
an elementary device, Bloch states are quite satisfactory.
Consider, for example, the side-coupled device (SCD), a
quantum dot side-coupled to a quantum wire, or the single-
electron transistor, a quantum dot bridging two otherwise
independent two-dimensional electron gases. The tunneling
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between the quantum dots and the conduction bands in the
two devices are usually modeled by momentum-independent
couplings. The logarithmic discretization, the subsequent
Lanczos transformation, and the truncation in the standard
NRG construction then leave the couplings intact, which guar-
antees numerical results to be uniformly accurate. What is
more, it is safe to disregard any momentum dependence, given
that rigorous renormalization group arguments associate the
energy-dependent terms to irrelevant operators, which give no
contribution to the universal physical properties of those two
simple devices [3].

In more elaborate geometries, by contrast, the spatial ar-
rangement of the quantum dots typically amounts to couplings
with strong momentum dependence, which may introduce
marginal operators, or even relevant ones [28]. This raises
an issue, for the projection of the model Hamiltonian onto
the basis of the logarithmically discretized states describes
the momentum dependence only approximately. The result is
intolerable deviations. To deal with difficulties of this nature,
ingenious extensions of the logarithmic discretization have
been developed [4]—at the expense of simplicity, alas.

Simplicity is an asset, one that is especially important in
this context because it offers insight. Guided by this notion,
we tread an alternative route to avoid the aforesaid unhandi-
ness of the NRG formalism, and discretize the conduction
band in real space. The discretization is analogous to the
momentum-space formulation. Instead of lumping conduc-
tion states in logarithmically spaced intervals into discrete
levels, the alternative approach assembles sites belonging to
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real-space blocks of exponentially growing size into discrete
states. As a reminder of this exponential growth, we dub
the alternative formulation eNRG. The resulting renormaliza-
tion group transformation is practically identical to the NRG
transformation at low energies, small in comparison with
the conduction bandwidth. The virtues of the traditional ap-
proach are therefore preserved: rapid convergence of physical
properties to the continuum limit, uniform accuracy over para-
metrical spaces, access to the tools of renormalization group
theory, and relatively small computational cost. At higher
energies, the eNRG and NRG transformations are distinct,
and the former describes physical properties more accurately,
as a simple example focused on a side-coupled device with
momentum-independent coupling to a structureless conduc-
tion band will show. In more complex geometries, with more
quantum dots and one or more wires, the real-space construc-
tion in the eNRG method guarantees the description of all
couplings to be exact.

Notably, a parameter in the eNRG construction controls
the number of lattice sites that the discretization will spare,
while the other sites are lumped. Adjustment of this parameter
ensures that all sites coupled to quantum dots be spared. As a
result, physical properties numerically computed with the dis-
cretized Hamiltonian are uniformly accurate, independently
of the couplings or Coulomb interactions. The parameter war-
rants uniform accuracy even if intricate designs couple the
quantum dots to Wannier states. Likewise, adequate setting of
the same parameter describes nonuniform densities of states
accurately. Therefore simple adjustment of a parameter in the
eNRG procedure is sufficient to eliminate two sources of error
that require multiple transformations in the NRG approach.

The major thrust of this report is to describe the eNRG
procedure and bring out its simplicity. With this in mind,
we defer to subsequent work the analysis of more complex
geometries and corroborate the above-mentioned virtues with
a transparent illustration dovetailing numerical and analytical
treatments. Specifically, our illustrative study will target the
zero-bias transport properties of the side-coupled device and
derive exact analytical results to demonstrate the precision of
the new procedure. The same analytical results prove practical
to interpret experimental data, as two independent examples
will show.

The presentation is split into five sections. Section II de-
fines the system and model that will serve as test beds.
Section III describes the eNRG construction. Section IV then
compares the new method with the NRG approach, on the
basis of general arguments, numerical results, and fits to ex-
perimental data. Section V summarizes the findings and is
followed by four appendices with technical details. In partic-
ular, Appendix B supports the discussion in the first part of
Sec. IV.

II. MODEL

As Fig. 1 indicates, the SCD comprises a quantum dot
weakly coupled to a quantum wire. Small electrical or ther-
mal biases applied between the tips of the wire induce the
electrical and thermal currents that determine the transport
properties. At high temperatures, the coupling to the dot offers
little resistance to conduction across the wire, even if the gate

L

Quantum dot

Vg

FIG. 1. Side-coupled device. The quantum wire contains an odd
number L of sites. Electron tunneling is allowed between the quan-
tum dot and the site at the center of the wire. The gate potential Vg

controls the dot occupation.

potential in the illustration is adjusted to favor formation of a
magnetic moment at the quantum dot. Upon cooling, the cou-
pling between the dot and conduction-electron spins gradually
forms a Kondo cloud that screens the dot moment. The cloud
obstructs transport. The electrical and thermal conductances
are substantially reduced as the temperature falls below the
Kondo temperature TK .

The single-impurity Anderson model captures the essential
physics of the device. A state d represents the quantum dot,
and a conduction band, half-filled with noninteracting elec-
trons, represents the quantum wire. The model Hamiltonian
can be written in the form

H = Hcb + Hdot + Hdc. (1)

Here the first, second, and third terms on the right-hand side
represent the wire, the quantum dot, and the coupling between
them.

Specifically, to describe the wire, we consider a lattice with
L sites and the tight-binding Hamiltonian:

Hcb = −t
∑
�∈L

(c†
�cl+1 + H.c.), (2)

where spin sums are implicit, a notation followed throughout
the paper, and L = {0,±1, . . . ,±(L − 1)/2}.

The quantum dot is modeled by a single electronic orbital
d , described by the Hamiltonian

Hdot = Vg n̂d + Und↑nd↓, (3)

where Vg is a gate potential, which controls the dot energy,
and the term proportional to U accounts for the Coulomb
repulsion between the electrons in the doubly occupied level.

The last term on the right-hand side of Eq. (1) is the
coupling

Hdc = V (d†c0 + H.c.), (4)

which models the tunneling between the dot orbital and the
central wire site and hybridizes the dot with the conduction
band.

The hybridization broadens the dot level to the width

� = πρV2, (5)

where

ρ = 1

2πt
(6)

is the per-particle density of states at the Fermi level.

075129-2



REAL-SPACE NUMERICAL RENORMALIZATION GROUP … PHYSICAL REVIEW B 106, 075129 (2022)

A. Transformation to basis with well-defined parity

To simplify the numerical treatment of the model Hamilto-
nian, we exploit the left-right symmetry of the device in Fig. 1.
H commutes with the parity operator �, and its eigenstates
can be classified by parity. The odd eigenstates are orthogonal
to c0, the site that is directly coupled to the dot, and are hence
decoupled from the dot.

Specifically, it is convenient to define the even operators

a0 ≡ c0, (7)

a� ≡ c� + c−�√
2

(� = 1, . . . , L̄), (8)

where L̄ ≡ (L − 1)/2, and the odd operators

b� ≡ c� − c−�√
2

(� = 1, . . . , L̄). (9)

On the basis of the a� and b�, the Hamiltonian splits into
an even and an odd term: H = HA + HB , where

HA = −
√

2t (a†
0a1 + H.c.) − t

L̄∑
�=1

(a†
�a�+1 + H.c.)

+ Hdot + Hdc (10)

and

HB = −t
L̄∑

�=1

(b†
�b�+1 + H.c.). (11)

Since the quadratic form (11), which can be easily diagonal-
ized, is completely decoupled from HA , we will focus our
attention on the latter Hamiltonian, henceforth.

B. Particle-hole transformation

The conduction-band Hamiltonian and the coupling be-
tween the conduction band and the quantum dot, that is, the
sum of the first, second, and last terms on the right-hand side
of Eq. (10), remain invariant under the particle-hole transfor-
mation

d → −d†, (12a)

a� → (−1)�a†
� (� = 0, . . . , L̄). (12b)

Application of (12) to the dot Hamiltonian Hdot yields the
following expression:

H̄dot = −(U + Vg )n̂d + Und↑nd↓ + U + 2Vg . (13)

The last two terms on the right-hand side constitute
a constant, which merely redefines the energy zero. The
particle-hole transformation maps HA onto the conjugate
Hamiltonian H̄A , with the same model parameters, except for
the gate potential Vg , which undergoes the transformation

Vg → −(U + Vg ). (14)

For Vg = −U/2 the two sides of (14) become equal. This
parametric choice defines the (particle-hole) symmetric model
Hamiltonian.

Vg Vg + U

Γ
Γ

LM

FL

ΓK

FIG. 2. Spectrum of the Anderson model near the symmetric
point. With no hybridization (� = 0), the dot occupation nd is con-
served. The bold gray horizontal dashes represent the eigenvalues of
the dot Hamiltonian, for the four configurations represented by the
blue depictions at the bottom. The column with thin dashes above
each dot energy represents conduction-band energies measured from
the ground state. The tunneling amplitude broadens the dot level to
a width � and hybridizes states in different columns. The arrows
labeled LM and FL indicate fixed points of the renormalization
group transformation defined in the text. The arrows labeled �K

define the low-energy region of the spectrum, in which the dot and
conduction electrons lock into a Kondo singlet.

Figure 2 represents the � → 0 spectrum of the model
Hamiltonian in the vicinity of the symmetric point. The quan-
tum dot is then decoupled from the conduction band, and
the eigenvalues of the dot Hamiltonian (3) are E0 = 0, E1↑ =
E1↓ = Vg , and E2 = 2Vg + U . Near particle-hole symmetry,
as the dark bold boxes in the figure indicate, the lowest
eigenvalue is degenerate, Emin = E1↑ = E1↓, and the energy
differences are approximately equal:

�1 ≡ E0 − E1 = −Vg (15)

and

�2 ≡ E2 − E1 = Vg + U . (16)

With � = 0, each eigenstate of the model Hamiltonian is
a combination of a many-body eigenstate of the conduction-
band Hamiltonian with one of the four dot eigenstates, as
indicated by the four stacks in the figure.

For max (�1,�2) � � > 0, the coupling V hybridizes
states in the inner stacks with outside states. The coupling
breaks the degeneracy between the spin-1/2 states in the cen-
tral columns to form a singlet ground state separated from a
triplet state by an energy of O(�K ), where �K ≡ kBTK is the
Kondo thermal energy. The hybridization between states in
the two central stacks at energies ε � kBTK defines the Kondo
resonance. For temperatures below the Kondo temperature,
represented by the energy interval �K in the figure, the con-
duction band electrons screen the singly occupied impurity,
forming the Kondo singlet.

The eigenvalues ε of the Anderson Hamiltonian satisfy-
ing ε < �K are beyond the reach of perturbation theory. By
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contrast, the NRG describes accurately the entire spectrum of
the Hamiltonian, including this low-temperature region [1].

III. MODIFIED NUMERICAL RENORMALIZATION
GROUP METHOD

The NRG method provides an efficient nonperturbative
solution to quantum impurity systems. Even though it is his-
torically associated with the Kondo problem, its applications
are more general. It can be applied to systems where a quan-
tum mechanical impurity is coupled to a noninteracting bath
of fermions or bosons [29]. There is extensive literature on
NRG concepts [4], and numerical implementations [30]. For
this reason, this section presents an overview of the method,
focused on aspects that distinguish the two approaches.

A. NRG construction

While the odd term (11) of the model Hamiltonian can be
diagonalized analytically, the even term (10) requires numeri-
cal treatment. Brute-force diagonalization is possible for small
lattices. The dimension of the Fock space grows exponentially
with L, however, and this approach soon becomes unfeasible.

Alternatives are offered by the NRG and the eNRG ap-
proaches. The latter retains basic features of the former.
Cursorily described, the two methods rely on strictly con-
trollable approximations that project the conduction-band
Hamiltonian upon discrete bases. The resulting discrete
Hamiltonians are tight-binding forms with position-dependent
couplings and can be diagonalized iteratively with relatively
small computational cost.

Notwithstanding the similarities, the two constructions are
distinct. Brief recapitulation of the steps in Wilson’s develop-
ment seems therefore warranted, to facilitate comparison with
the subsequent description of the real-space discretization.

1. Logarithmic discretization of the conduction band

The central approximation in the NRG procedure converts
the conduction-band continuum to a logarithmic sequence of
discrete levels. Specifically, Ref. [1] considered a band with
uniform density of states ρ̄, half-filled with noninteracting
electrons. The band Hamiltonian describes a continuum of
spin-degenerate states cε in the range D � ε � −D:

H0 =
∫ D

−D
εc†

εcε dε. (17)

The coupling between the impurity and the conduction
band is given by the Hamiltonian

H1 =
√

2DV (c†
d f̄0 + H.c.), (18)

where

f̄0 ≡
√

1

2D

∫ D

−D
cε dε. (19)

The operator f̄0 defines a Wannier state with pivotal role
in the NRG construction, because it controls the coupling
between the conduction band and the impurity.

A dimensionless parameter 
 > 1 defines the discretiza-
tion of H0 . Given 
, the following expression introduces two

infinite, discrete sequences of states:

am± ≡ 1

Nm

∫ ±D
−m

±D
−m−1
cε dε (m = 0, 1, . . .), (20)

where Nm is a normalization factor.
The definition of the am± offers an exact expression for the

pivot:

f̄0 =
√

1

2D

∑
m,η=±

Nmamη. (21)

The coupling between the dot level and the conduction
states is not affected, therefore, by the discretization of the
conduction band. This makes the NRG procedure uniformly
accurate, for weak, moderate, or strong couplings.

While the coupling (18) can be faithfully described by the
discrete operators, the conduction-band Hamiltonian cannot.
The am± constitute a basis that is incomplete relative to that
of the cε . The substitution of the former basis for the latter is
justified a posteriori, by the rapid convergence of computed
physical properties to the continuum limit, as 
 → 1 [1,2].

Projection of the conduction-band Hamiltonian upon the
basis of discrete states, yields the approximate expression

H0 =
∞∑

m=0,η=±
ηEma†

mηamη, (22)

with the discrete energies

Em = D
1 + 
−1

2

−m. (23)

2. Conversion to a tridiagonal basis

A Lanczos transformation starting with the operator f̄0 in
Eq. (19) next converts the conduction-band Hamiltonian to the
tridiagonal form

H0 =
∞∑

n=0

t̄n ( f̄ †
n f̄n+1 + H.c.), (24)

where the f̄n are normalized Fermi operators, and the codiag-
onal coefficients have the expression

t̄n = D
1 + 
−1

2

1 − 
−n−1

√
1 − 
−2n−1

√
1 − 
−2n−3


−n/2. (25)

For large n the coefficients are accurately described by the
simpler form

t̄n = D
1 + 
−1

2

−n/2 (
−n 
 1). (26)

The f̄n basis is complete with respect to the basis of the am.
The only approximation in the derivation of Eq. (24) is, there-
fore, the projection of the conduction-band Hamiltonian upon
the basis of the am. The parameter 
 controls the accuracy of
this approximation.

3. Renormalization of coupling constants

To accelerate convergence to the continuum limit, it proved
necessary to renormalize the model parameters [3]. Each op-
erator f̄0 or f̄ †

0 in a model Hamiltonian must be multiplied by
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a dimensionless factor
√

A
, where

A
 = 1 + 
−1

1 − 
−1
ln

√

 (27)

converges rapidly to unity as 
 → 1.
This upscaling is necessary because the discretization

reduces the f̄0 spectral density by a factor A
. This
renormalization suffices to correct the procedure for model
Hamiltonians with energy-independent impurity-band cou-
plings, such as (18). Energy-dependent couplings, such as
those in the two-impurity Anderson Hamiltonian, call for a
modified discretization procedure [31].

B. Real-space approach

As explained in the introduction, the real-space discretiza-
tion procedure shares with traditional NRG the initial goal
of reducing the conduction band Hamiltonian to a tridiagonal
form with progressively smaller off-diagonal coefficients. The
starting point, instead of Eq. (17), is the tight-binding Hamil-
tonian on the right-hand side of Eq. (10):

Hcb = −
√

2t (a†
0a1 + H.c.) − t

L̄∑
�=1

(a†
l a�+1 + H.c.), (28)

with L̄ → ∞, which defines the continuum limit.

1. Overview

Before turning to the new procedure, it seems appropriate
to discuss general aspects of discretization in momentum and
real space comparatively. The conduction-band energies in
Eq. (17) form a continuum ranging from ε = −D to ε = D.
Numerical treatment calls for discretization, to reduce the
multiplicity of energy levels to a finite number. The simplest
form is linear discretization, which splits the band into 2N
identical intervals of width D/N each, where N is an arbitrary
positive integer. A single operator is then defined as a linear
combination of the cε within each interval. If the conduction
band is coupled to a quantum dot, the linear combinations are
designed to reproduce the coupling accurately.

The linear discretization gives rise to a potentially serious
problem. In the original conduction band, particle-hole ex-
citations are possible, across the Fermi level. If the energy
of one such excitation is E , given a dimensionless constant

 > 1, one can always find other excitations with the smaller
energies E/
, E/
2, . . . The region of the conduction band
centered at the Fermi level and close to it remains invariant
under the scaling transformation E → 
E , a property whose
significance was highlighted by Wilson [1].

The linear discretization breaks the invariance, because the
mininum excitation energy in the spectrum of the discrete
Hamiltonian is δE = D/N . If the energy scale of interest is
comparable to, or smaller than δE , calculations of physical
properties on the basis of linear discretizations will yield unre-
liable results. In an attempt to reduce δE , one might argue that
the high-energy degrees of freedom in the conduction band lie
outside the range of interest and substitute a smaller energy,
say D′ = D/100, for the original half bandwidth.

This crude ultraviolet truncation is a very poor approxi-
mation, however, since the quantum dot effectively couples

the high-energy degrees of freedom to the ones with low en-
ergy. Under such conditions, perturbation theory recommends
treating the high-energy scales accurately before turning
to the low-energy spectrum. In line with this prescription,
Anderson’s poor man’s scaling defines a refined ultravio-
let truncation [32]; unfortunately, that perturbative treatment
breaks down before the bandwidth can be sufficiently reduced.
Wilson therefore introduced the breakthrough summarized in
Sec. III A: instead of a linear mesh, Ref. [1] employed the log-
arithmic mesh in Eq. (20), which preserves invariance under
energy-scaling by powers of 
.

Consider now the tight-binding Hamiltonian (28). Even
though the lattice comprises discrete sites, the spectrum of the
L̄ → ∞ Hamiltonian constitutes a continuum ranging from
ε = −2t to ε = 2t . To discuss the scaling properties of the
continuum, it is convenient to examine the wave vectors k,
instead of the energies εk . Let a denote the lattice spac-
ing. The allowed wave vectors then form a Brillouin Zone
continuum ranging from −π/a to π/a. Given an excitation
of wave vector k in the spectrum of the conduction-band
Hamiltonian, there will also be excitations with momenta
k/λ, k/λ2, . . ., where λ > 1 is an arbitrary constant. The
Hamiltonian is invariant under wave-vector transformations
k → k/λ.

Numerical treatment of the conduction-band Hamiltonian
demands reduction of the number of sites to a manageable
integer. The simplest expedient is to truncate the chain, from
size L̄ → ∞ to a small size L. This reduction is equivalent
to linear discretization in energy space, and incurs the same
limitation. Namely, the shortening from L̄ to L is a rudi-
mentary infrared truncation, which introduces the artificial
wave-vector scale kmin = π/L and eliminates the small wave
vectors, with |k| < kmin, from the spectrum of the Hamil-
tonian. The inevitable result is poor description of physical
properties at low energies.

An alternative procedure, one that deals well with small
momenta while reducing the computational cost of diag-
onalizing the Hamiltonian is readily available. Instead of
truncating the lattice size L̄, one could keep L̄ fixed and
split the lattice into cells of size Na, containing a large,
fixed number N of lattice points. All the degrees of free-
dom within each cell would then be lumped into a single
Fermi operator, defined as a linear combination of the N
operators c� associated with the cell sites. With the size of
the lattice unchanged, the smallest k would be preserved
in the resulting coarse-grained conduction-band Hamilto-
nian. In the opposite extreme, however, the largest allowed
momentum would be kmax = 1/(Na), and the largest con-
duction energy would be ε

kmax
≈ 4t/N . Coarse graining is

hence akin to the above-described rough ultraviolet trun-
cation and inherits the shortcomings of that simple-minded
approximation.

Clearly, to ensure accuracy, numerical treatment of the
tight-binding Hamiltonian demands a special construction
to overcome the difficulties facing the crude ultraviolet and
infrared truncations. The construction must preserve (i) the
scale of the largest wave vectors in the Brillouin Zone,
and (ii) wave-vector-scaling invariance, while thinning out
the conduction-band degrees of freedom. To achieve this,
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Sec. III B chooses a natural number λ and defines an infinite
sequence of cell sizes. To preserve the largest wave vectors,
the sequence starts out with the size of the primitive cell.
To preserve scale invariance, it grows geometrically. Accord-
ingly, if a cell of size � belongs to the sequence, for which
the minimum wave vector is kmin = π/�, so do the cells with
sizes λ�, λ2�, . . ., for which the minimum wave vectors are
π/(λ�), π/(λ2�), . . .. Wave-vector invariance is hence saved,
even though it is preserved in a restricted sense, just as the
invariance of energies in the logarithmic sequence (23) is
restricted to powers of 
.

2. Discretization

The eigenvalues of the tight-binding Hamiltonian span the
interval −2t � ε � 2t . The discretization of this spectrum is
parametrized by two natural numbers: the offset ζ � 0, and
the common ratio λ. The offset is a site index that divides
the lattice into two complementary regions: the first one com-
prises all sites to the left of site ζ ; the second comprises the
remaining sites. The discretization leaves intact those terms in
the Hamiltonian associated with the first set, but affects those
associated with the second set.

More specifically, the offset splits the right-hand side of
Eq. (28) into two tight-binding Hamiltonians:

Hcb = Ha + Hf , (29)

where Ha comprises the first ζ sites plus the coupling to site
ζ :

Ha ≡ −t

(√
2a†

0a1 +
ζ−1∑
�=1

a†
�a�+1 + H.c.

)
(30)

and Hf comprises the remaining sites

Hf ≡ −t
L̄∑

�=ζ

(a†
�a�+1 + H.c.). (31)

The common ratio λ defines a new basis comprising an infi-
nite set of Fermi operators fn (n = 0, 1, 2, . . .), to replace the
operators a� (� = ζ , . . . , L̄). As Fig. 3 indicates, the definition
starts out with an infinite sequence of cells Cn (n = 0, 1, . . .).
The first cell contains only one lattice site: j = ζ . The second
comprises λ sites, from � = ζ + 1 to � = ζ + λ.

The nth cell covers λn sites and extends from � = ζ + Gn
to � = ζ + Gn + λn, where

Gn ≡ λn − 1

λ − 1
(32)

is the geometric series with common ratio λ.
With λ = 1, each cell reduces to a single site, and we

recover the continuum limit. With λ > 1, the number of sites
in cell Cn grows exponentially with n. It is then convenient to
let an, j denote the Fermi operator associated with the jth site
in cell Cn ( j = 1, . . . , λn; n = 0, 1, . . .), to avoid the cumber-
some indexing a

ζ+Gn + j−1
.

(a)

(b)

f1 f2 f3f0d

f0 f1 f2 f3a0d

FIG. 3. Real-space geometry guiding the discretization of the
conduction band, for common ratio λ = 2. The darker spheres at the
top of each panel represent the dot and the wire lattice. The lattice
sites are grouped into cells of exponentially increasing size. For each
cell, Eq. (33) defines a linear combination fn (n = 0, 1, . . .) of the
wire states. The linear combinations form a basis { fn } upon which
the conduction-band Hamiltonian is projected. The offset ζ specifies
the position of the first cell. To illustrate, panels (a) and (b) depict the
constructions for ζ = 0 and ζ = 1, respectively.

A normalized linear combination fn of the operators an,�

in cell Cn can now be defined:

fn ≡
λn∑
j=1

αn, jan, j (n = 0, 1, . . .), (33)

with complex coefficients

αn, j = |αn, j | exp(iφn, j ), (34)

which must satisfy the normalization condition:

λn∑
j=1

|αn, j |2 = 1. (35)

The definition (33) makes the operators fn (n = 0, 1, . . .)
mutually orthogonal. The fn form a basis that is incom-
plete with respect to the space spanned by the an, j (n =
0, 1, . . .; j = 1, 2, . . . , λn). The incompleteness notwithstand-
ing, following traditional NRG reasoning we will project the
conduction-band Hamiltonian onto the basis of the operators
d, a0, . . . , aζ−1, f0 , . . . , fN−1. This approximation is justified
a posteriori, by the rapid convergence of physical properties
to those of the λ = 1 Hamiltonian.

Explicitly, the approximation amounts to treating Eq. (33)
as an orthonormal transformation, the inversion of which
yields the expression

an, j = α∗
n, j fn (n = 0, 1, . . . ; j = 1, 2, . . . , λn). (36)

Substitution of the right-hand side of Eq. (36) for the a�

expresses the Hamiltonian (31) on the basis of the operators
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fn (n = 0, 1, . . .):

Hf λ ≡ − t
∞∑

n=1

λn−1∑
j=1

(αn, jα
∗
n, j+1 + c.c.) f †

n fn

− t
∞∑

n=0

(αn,λn α∗
n+1,1 f †

n fn+1 + H.c.). (37)

The first term on the right-hand side in Eq. (37) is at odds
with Eq. (31), which contains no diagonal terms. Judicious
choice of the phases φn, j is necessary and sufficient to elimi-
nate this discrepancy. Appendix A shows that the definition

φn, j = π

2
(Gn + n + j) (38)

reduces Eq. (37) to the equality

Hf λ = t
∞∑

n=0

(|αn,λn | |αn+1,1| f †
n fn+1 + H.c.). (39)

The absolute values |αn, j=λn | and |αn+1,1| (n = 0, 1, . . .)
must be specified before the sum on the right-hand side of
Eq. (39) can be computed. More generally, absolute values
|αn, j | (n = 0, 1, . . .; j = 1, . . . , λn) satisfying the normaliza-
tion condition (35) must be specified. Out of the infinite set
of alternatives—Appendix B 1 discusses a few—we pick the
one that is physically most satisfactory: given the equivalence
among lattice sites in the tight-binding lattice, we attribute
equal weights to the sites in each cell. Explicitly, within cell
Cn let

|αn, j | = αn ( j = 1, . . . , λn), (40)

where αn is a positive constant, independent of j.
It then follows from the normalization condition that

|αn, j | = λ− n
2 , (41)

an equality that turns Eq. (39) into an expression similar to
Eq. (24):

Hf λ =
∞∑

n=0

(tn f †
n fn+1 + H.c.), (42)

where

tn = tλ−n− 1
2 (n > 0). (43)

The proviso n > 0 in Eq. (43) is necessary because t0 takes
a special value if ζ = 0. In that case, the operator f0 coincides
with a0, and the coupling between aζ and aζ+1 on the right-

hand side of Eq. (30) is −√
2t , not −t . Hence

t0 =
{√

2tλ− 1
2 (ζ = 0)

tλ− 1
2 (ζ > 0)

. (44)

Comparison between Eqs. (26) and (43) shows that, for n
such that 
−n 
 1, the identification 
 = λ2 brings the NRG
codiagonal coefficients t̄n and the eNRG coefficients tn into
agreement, except for the constant prefactors (1 + 
−1)/2
and λ−1/2. Although distinct, the two factors are approxi-
mately equal: they approach unity as 
,λ → 1 and differ

by less than 15% for discretization parameters as large as

 = λ2 = 25.

Substitution of Hf λ for Hf yields a discretized approxima-

tion to the Hamiltonian HA . Equation (10) becomes

HAλ = − t

(√
2a†

0a1 +
ζ−1∑
�=1

a†
�a�+1 + a†

ζ f0 + H.c.

)

+ Hf λ + Hdot + Hdc. (45)

The real-space construction can be regarded as a decima-
tion procedure that spares sites closest to the quantum dot but
becomes rapaciously more inclusive as the distance from the
dot grows. The offset controls the size of the region in which
all sites are spared and hence controls the eNRG resolution in
the vicinity of the quantum dot. Larger ζ offer more detailed
description of the couplings.

Consider, for example, a quantum dot that is coupled to the
central lattice site and to its nearest neighbors. The couplings
are then described by the Hamiltonian

H ′
dc = (Vd†a0 + V1 d†a1 + H.c.), (46)

instead of Hdc.
If ζ = 0, the nearest neighbor will be one of two sites

in cell C1 . The term V1 (d†a1 + H.c.) will therefore be only
approximately represented by the { fn } basis, and the accuracy
of the computation will depend on V1 .

The offset should instead be set to ζ = 1 or larger. With
ζ = 1, the operator a1 will coincide with f0 and the Hamilto-
nian H ′

dc will be exactly described on the basis of the fn .
Another aspect of this example deserves brief discussion.

The addition of a coupling (V1 d†a1 + H.c.) to the Hamil-
tonian (1) introduces only irrelevant operators, which affect
such nonuniversal features of the single-impurity Anderson
model as the Kondo temperature or the ground-state phase
shift, but not its universal properties [2]. This addition may
break particle-hole symmetry, however, as one can check by
applying transformation (12) to Eq. (46). Given that the phys-
ical properties of more complex Hamiltonians may depend
critically on its symmetry [33], we can see that accurate
description of the couplings to the wire may be necessary.
Under these circumstances, the spatial resolution of the eNRG
approach will be a valuable asset.

3. Truncation

Equation (42) is closely analogous to the equality defining
the logarithmically discretized conduction-band Hamiltonian
in the standard NRG method. This allows us to follow the
truncation and iterative diagonalization procedure described
in Ref. [2].

The exponential decay on the right-hand side of Eq. (26)
allows definition of a renormalization group transformation
[1]. To this end, consider an energy E , representative of an en-
ergy scale of interest, and a dimensionless infrared-truncation
parameter γ 
 1. One can then identify the smallest integer
N satisfying the inequality

tλ−N < γ E . (47)
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Substitution of N − 1 for the upper limit of the sum then
reduces the right-hand side of Eq. (42) to a finite series:

Hf λ =
N−1∑
n=0

tn ( f †
n fn+1 + H.c.). (48)

The inequality (47) controls the accuracy of this approxi-
mation. In the limit γ → 0, Eq. (48) becomes equivalent to
Eq. (42).

The right-hand side of Eq. (48) can now be substituted for
Hf λ on the right-hand side of Eq. (45). Next, the resulting

finite series is scaled up by the factor 1/tN−1 ≡ λN−1/2/t ,
which yields the dimensionless, truncated Hamiltonian HN :

tN−1HN = Hdot + Hdc +
N−1∑
n=0

tn ( f †
n fn+1 + H.c.)

− t

(√
2a†

0a1 +
ζ−1∑
�=1

a†
�a�+1 + a†

ζ−1 f0 + H.c.

)
.

(49)

4. Renormalization group transformation and
iterative diagonalization

The truncation of the infinite series in the model Hamil-
tonian has practical and conceptual implications. From the
practical perspective, the truncation is valuable because it
allows iterative diagonalization of the Hamiltonian, a proce-
dure detailed in Ref. [30]. At iteration N (n = 0, 1, . . .), the
diagonalization determines all the eigenvalues of HN below
the ultraviolet cutoff Euv, a dimensionless parameter that con-
trols the cost and the scope of the diagonalization procedure.
In addition, it gives access to the matrix elements of the
Fermi operators a� (� = 0, . . . , ζ − 1) and fn (n = 0, . . . ,N )
between pairs of eigenvectors associated with the computed
eigenvalues; the effort necessary to determine such matrix
elements is small in comparison with the computational cost
of diagonalizing the Hamiltonian.

Conceptually, Eq. (49) is important because it defines the
mapping τ [HN ] = HN+1, which adds a smaller energy scale
to HN and rescales the result so that the resulting smallest
eigenvalue be of O(1). The mapping is, therefore, a renormal-
ization group transformation. From Eq. (49), it follows that

τ [HN ] = λHN + ( f †
N fN+1 + H.c.). (50)

With the substitution λ → 
1/2, Eq. (50) reproduces the
large-N limit of the NRG transformation [2].

5. Fixed points

As first discussed in Ref. [2], for special combinations of
the model parameters the Hamiltonian HN is a fixed point
of the renormalization group transformation τ 2. Consider, for
example, the symmetric model. Given an energy E , Eq. (47)
determines the corresponding truncation number N . At mod-
erately high energies E , such that t � E � U , the eigenvalues
of the truncated Hamiltonian (49) are approximately equal
to the eigenvalues of the free-orbital fixed-point H∗

FO which
is the U = Vg = � = 0 limit of the model Hamiltonian, that

is, the sum of the last two terms on the right-hand side of
Eq. (49).

Likewise, for energies in the range U � E � kBTK , the
eigenvalues of HN are approximately equal to the eigenvalues
of the symmetric local-moment fixed-point Hamiltonian. The
local-moment Hamiltonian is the −Vg /2 = U → ∞, � = 0
limit of the truncated Hamiltonian.

Finally, for energies E well below the Kondo energy kBTK ,
the eigenvalues of HN approach those of the symmetric
frozen-level fixed-point Hamiltonian. The latter is the −Vg =
U = 0, � → ∞ limit of HN .

The scope of the eNRG method is by no means restricted
to particle-hole symmetric models. Below, we will consider,
Hamiltonians with −Vg /2 � U � �. At high energies, with
E > −Vg /2, the asymmetry is unimportant, and the trun-
cated Hamiltonian again approaches the free-orbital fixed
point H∗

FO. At lower energies, however, instead of the sym-
metric local-moment fixed point, the truncated Hamiltonian
approaches a fixed point on the local-moment line of fixed
points H∗

LM,δ̄
. At still lower energies, such that kBTK � E the

truncated Hamiltonian approaches a stable fixed point on the
frozen-level line of fixed points H∗

FL,δ .
The vertical arrows labeled FO, LM, and FL at the extreme

right in Fig. 2 indicate the energy ranges in which the spec-
trum of the model Hamiltonian is close to the free-orbital (FO)
fixed point, a point on the local-moment (LM) line or a point
on the frozen-level (FL) line. Near the FO, since thermal or
excitation energies are higher than the dot energies, the dot
orbital is equivalent to a zero-energy level decoupled from
the conduction band. Near the LM, as Fig. 2 indicates, the
relatively small excitation energies freeze-out the vacant and
the doubly occupied dot-orbital configurations, and the dot
acquires a local moment. Since excitation energies are larger
than the energy scale kBTK , at the LM fixed point the dot
moment is free from screening.

As the energy is reduced, the spectrum of the Hamiltonian
moves away from the LM structure, towards the FL structure.
For energies much smaller than the Kondo thermal energy,
the dot moment is completely screened, and the spectrum
approaches the FL.

Each local-moment fixed point is equivalent to a phase-
shifted conduction band decoupled from a spin-1/2 variable �S
and is described by the truncated Hamiltonian

H∗
LM,δ̄

= 1

tN−1

(N−1∑
n=0

tn ( f †
n fn+1 + H.c.) + W̄ f †

0 f0

)
, (51)

where the scattering potential W̄ depends on the model
parameters U , Vg , and V ; for Vg = −U/2, in particular,
particle-hole symmetry allows only two potentials: W̄ = 0 or
W̄ = ∞.

The quadratic form on the right-hand side of Eq. (51) can
be diagonalized analytically [3]. For definiteness, let N be
odd. Then, there are M ≡ (N + 1)/2 positive eigenvalues ε̄�+
and M negative eigenvalues ε̄�−, approximately given by the
expressions

ε̄�± = ±λ2(�∓ δ̄
π

)

(
� = 0, 1, . . . ,

N + 1

2

)
, (52)
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with phase shifts δ̄ determined by the scattering potential W̄
on the right-hand side of Eq. (51):

δ̄ = − arctan(πρW̄ ). (53)

The phase shifts are defined mod π , in the interval −π/2 <

δ̄ � π/2.
Projected onto the basis of its eigenvectors g�, the fixed-

point Hamiltonian reads

H∗
LM,δ̄

=
∑

�,α=±
ε̄�αg†

�αg�α. (54)

The FL fixed points are equivalent to phase-shifted conduc-
tion bands, described by a Hamiltonian analogous to Eq. (51):

H∗
FL,δ = 1

tN−1

(N−1∑
n=0

tn ( f †
n fn+1 + H.c.) + W f †

0 f0

)
. (55)

The right-hand sides of Eq. (55) and (51) have the same
form. The eigenvalues of H∗

FL,δ are therefore described by an
approximate equality analogous to Eq. (52):

ε�± = ±λ2(�∓ δ
π

)

(
� = 0, 1, . . . ,

N + 1

2

)
, (56)

where

δ = − arctan(πρW ). (57)

Given that the spin of one electron is required to screen
the dot moment, the Friedel sum rule ties the two phase shifts
[34]:

δ = δ̄ − π

2
. (58)

A scattering potential W̄ �= 0 breaks particle-hole sym-
metry. For the symmetric model, therefore, δ̄ = 0 and the
frozen-level phase shift is δ = π/2.

IV. COMPARISON BETWEEN THE ENRG
AND NRG PROCEDURES

As the similarity between Eqs. (24) and (42) suggests, the
concepts and mathematical expressions in Secs. III B 3–III B 5
are equivalent to the notions and equations underlying the
NRG formalism. As illustrated by the analysis and compu-
tations in Secs. IV B 3 and IV B 4, respectively, application
of the two methods to simple Hamiltonians yields essentially
the same physical properties at low temperatures, such that
kBT be small compared to the bandwidth. At higher temper-
atures, as the data in Sec. IV B 1 show, eNRG yields more
accurate results, even when applied to an elementary device.
Section IV A 2 discusses a slightly more elaborate geometry,
with two quantum dots, to show that the real-space treat-
ment ensures exact mathematical description of the dot-wire
couplings onto the discretized basis, while standard NRG
projection offers an approximate description that renders the
accuracy of the procedure model-parameter dependent.

The NRG discretization can be tailored to the requirements
of the geometry. As an example, Sec. IV A 4 details a general-
ization allowing for offsets equivalent to those defined by the
eNRG parameter ζ . While the introduction of an offset in the

eNRG procedure is straightforward—a natural extension—,
the modification of the NRG discretization calls for a number
of transformations. Analogous considerations apply to the
two-dot system or other, more complex configurations. The
eNRG constructions are simpler because devices are designed
in real space, a point the following subsections substantiate.

A. General aspects

We first present general arguments pondering the advan-
tages and shortcomings of the eNRG method against the NRG
procedure.

1. Operational aspects

From the operational viewpoint, the eNRG and the NRG
algorithms runs on parallel tracks. The codiagonal coefficients
in the NRG Hamiltonian obey Eq. (25), while the eNRG
Hamiltonian follows Eq. (43), but the iterative diagonaliza-
tions are otherwise identical. The parameters 
, in the former
equality, λ and ζ , in the latter, and the ultraviolet cutoff Euv
primarily determine the computational cost and accuracy of
the diagonalizations. The computational costs of diagonal-
izing the eNRG and the NRG Hamiltonians are practically
identical. For the symmetric model with Coulomb repulsion
U = t and dot-level width � = 0.4 t , for instance, a standard
laptop computer running code written in C + + executes full
runs of the NRG procedure with 
 = 4 and Euv = 40 t , and
of the eNRG procedure with λ = 2, Euv = 40 t , and ζ =
1, yielding all three energy moments L j ( j = 0, 1, 2) with
less than 1% deviation at any temperature in CPU times of
approximately 140 s. Our PYTHON code executes the same
computation in roughly 500 s. With regard to computational
cost, the eNRG and NRG procedures are equivalent.

As discussed in Sec. IV A 5, below, an extension of the
NRG method has introduced a second discretization param-
eter z, an arbitrary real number in the interval 0.5 < z �
1.5, so that the z-dependent eigenvalues of the discretized
conduction-band Hamiltonian scan the entire conduction band
as z runs from the lower to the upper limit of the interval
[35,36]. Averaging over z eliminates the conspicuous artificial
oscillations resulting from the computation of thermodynam-
ical or transport properties as functions of the temperature for

 > 2, and gives access to equilibrium excitation properties
[37].

To a certain extent, the eNRG offset parameter ζ mimics
the NRG parameter z. As Appendix B 5 shows, ζ = 0 cor-
responds to z = 1, while ζ = 1 corresponds to z = 0.5. The
correspondence is not complete, however, because the defini-
tion of the offset restrains ζ to the set of integer numbers. This
is a serious limitation, because differentiation with respect to
z plays an important role in the computation of excitation
properties [37]. Appendix B 5 therefore introduces a third
discretization parameter w, which is in closer correspondence
to the NRG parameter z since (i) averaging of the eNRG data
over w eliminates artificial oscillations, much like averaging
of NRG data over z eliminates the equivalent oscillations in
NRG computations, and (ii) the definition of the w can be
extended to the set of real numbers.
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Another apparent limitation of the eNRG procedure is the
definition of the discretization parameter λ, which is also
restrained to the set of natural numbers. Even though it consti-
tutes no serious shortcoming, since the choice λ = 2 offers an
adequate compromise between accuracy and computational
cost, this limitation may be removed. A mathematical proof
appears in Appendix B 6, which shows that the domain can be
extended to λ ∈ R.

The formal constraints binding the eNRG parameters to
the set of natural numbers and appearing to make the new
construction narrower than the NRG formalism are therefore
easily removed. On the other hand, more general consid-
erations favor the eNRG approach. The combination of
logarithmic discretization with Lanczos transformation at the
foundation of the NRG method is more involved than the
discretization in Sec. III B 2, even when one disconsiders
the amendment delineated in Sec. III A 3. More importantly,
the simplicity of the eNRG approach eases treatment of more
demanding models, as the following discussion shows.

2. Two-dot problem

Consider, for example, a straighforward generalization of
the device in Fig. 1, with two quantum dots coupled to the
quantum wire at sites separated by a distance 2�. The physics
of this system is equivalent to that of the three-dimensional
two-impurity Kondo problem, which has been brought to light
by a combination of analytical, Monte Carlo, and NRG studies
[28,38–44]. In brief, the RKKY interaction I between the
impurities competes with Kondo thermal energy kBTK . The
ratio I/kBTK parametrizes the physical properties and defines
a ferromagnetic RKKY regime, an antiferromagnetic RKKY
regime, and a Kondo regime. The NRG approach yields ac-
curate Kondo temperatures. The computed I are less reliable,
nonetheless. The innacuracy can be traced to the irrelevant
operators that the logarithmic discretization of the conduc-
tion band introduces. Those operators make contributions of
O(ε/D). Since a substantial part of the RKKY interaction
comes from conduction states with energies comparable to
the bandwidth, the operators artificially introduced by the
discretization limit the accuracy of the ratios I/kBTK in NRG
computations.

3. Control over high-energy artifacts of discretization

The eNRG discretization is likewise the source of ir-
relevant operators. Nevertheless, one can easily control the
resulting inaccuracies. Speficially, the irrelevant operators
shrink as the offset ζ grows. To exhibit concrete evi-
dence, Sec. IV B 1 will compare two computations of the
temperature-dependent conductance through the device in
Fig. 1, a standard NRG calculation compared with the equiv-
alent eNRG calculation with ζ = 3. At low temperatures, for
thermal energies that are much smaller than the bandwidth,
the results are virtually identical. At higher temperatures,
however, the NRG conductances show deviations from the
continuum limit, while the eNRG results are accurate. Equally
precise estimates of the RKKY interaction can be expected
from eNRG computations.

The cost of computation grows rapidly with ζ . The growth
is by no means unmanageable, however, given that ζ = 3

TABLE I. Comparison between computational times required by
a standard laptop computer running Python code with common ratio
λ = 2 to yield equally accurate thermal dependencies of the electrical
conductance with various offsets ζ .

ζ CPU time (s) Euv/D 〈�〉 (%)

0 432 14. 0.42
1 280 20. 0.44
2 500 41. 0.43
3 1 942 86. 0.42

is sufficient to describe physical properties accurately at en-
ergies comparable to the bandwidth. Table I displays the
computational times needed to calculate the thermal depen-
dence of the conductance, with the Python code, for the model
parameters U = 10 D, Vg = −U/2, and � = 0.04U , and the

indicated offsets. In each run, the ultraviolet cutoff Euv was
chosen to yield an average relative deviation 〈�〉 close to
0.4%. Here, the deviation � is defined as the difference be-
tween the conductances at the same temperature calculated at
two successive iterations N and N + 1 of the diagonalization
procedure. Since the average deviation tends to rise with ζ ,
the ultraviolet cutoff had to be increased as the offset grew,
which raised the computational time. The first tabulated CPU
time lies outside this trend because the leading codiagonal
coefficient t0 is reduced from

√
2/λt for ζ = 0 to t/

√
λ for

ζ > 0.
Both the NRG and the eNRG procedures are based on

controlable approximations. At low energies, ones that are
small in comparison with the bandwidth, the deviations due
to the discretization are controled by the parameter 
 and z in
the NRG procedure. Likewise, the parameters λ and w control
the deviations introduced by the eNRG discretization. The an-
alytical computation of the temperature-dependent electrical
conductance at a fixed point, in Appendix C, shows that the
latter deviations grow in proportion to exp[−π2/(2 ln λ)], and
hence shrink as λ → 1. Moreover, averaging of the conduc-
tances over w eliminates the deviations. In both procedures,
the ultraviolet cutoff Euv controls the deviations generated by
the truncation of the discrete Hamiltonian.

As already discussed, at higher energies the offset controls
the deviations due to the discretization. The parameter ζ guar-
antees that the largest energy scales in the conduction band,
associated with the terms with index n < ζ in the infinite sum
on the right-hand side of Eq. (10), be faithfully reproduced
in the discretized Hamiltonian. The illustrative computation
in Sec. IV B 1 will dwell on this point. Before that, however,
Sec. IV A 4 describes a modification of the NRG procedure
that would incorporate shifts analogous to the eNRG parame-
ter ζ .

4. Extension of the NRG method to accommodate offsets

This section discusses a generalization of the momentum-
space discretization allowing for offsets analogous to the
eNRG parameter ζ in Fig. 3. The extension calls for a se-
quence of transformations. First, a Lanczos transformation, to
convert the continuum of the conduction band into a tight-
binding Hamiltonian. The second step is conceptual. It splits
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the tight-binding chain into two disjoint sets A and B. The for-
mer comprises the operators a0, a1, . . . , aζ−1, and the latter,

the operators aζ , aζ+1, . . . , a
L̄
. The quantum dot and set A are

regarded as separate entities, to be coupled to B later. This
ensures the states in the subspace spanned by the B operators
to be orthogonal to those spanned by the A orbitals. The two
sets are described by tight-binding Hamiltonians HA and HB .

The diagonalization of HB yields L̄ − ζ + 1 eigenvectors
that are orthogonal to the operators in A and a band of eigen-
values that can be logarithmically discretized. Projection of
HB upon the resulting discrete states followed by a Lanczos
transformation analogous to the one in Sec. III A 2 then re-
duces the discretized HB to a tridiagonal form H̄B coupled to
the operator aζ−1. At this point, the sum of the dot Hamilto-

nian, HA , H̄B , and the couplings between the dot and between
HA and H̄B constitute an infinite series that can be truncated
and iteratively diagonalized. Clearly, this concatenation of
operations is mathematically equivalent to the construction
depicted in Fig. 3. By contrast, the eNRG procedure goes
straight to the equivalent result.

As this example shows, the NRG and eNRG procedures
are both flexible. Nonetheless, while a chain of operations are
needed to bring out the flexibility of the former, the malleabil-
ity of the latter is conspicuous. Section B 4 presents another
example, focused on the two-dot problem. Two real-space
discretizations are proposed. One of them, more accurate,
is convenient if the dots lie close to each other. The other
covers larger separations. Both might be used as blueprints
to extend the NRG approach, much as Fig. 3 provided a road
map leading to the above definition of a ζ -dependent NRG
procedure. In those cases, too, the NRG constructions would
be considerably more complex than their eNRG counterparts.

5. eNRG analog of the z trick

Comparison between the two procedures draws attention
to two important constraints affecting the eNRG method only.
Both limitations become evident when one examines the
eigenvalues of the discretized conduction-band Hamiltonian.
For odd truncation number N and ζ = 0, for instance, the
eigenvalues of the truncated eNRG Hamiltonian Hf λ can be

divided into symmetric pairs ±ε j [ j = 0, 1, . . . , (N + 1)/2].
Those whose absolute values are small compared to the
tight-binding coupling t are approximately described by the
equality

ε j = tN−1λ
2 j ( j = 0, 1, . . .). (59)

The analogous NRG expression, approximately describing
eigenvalues that are small compared in comparison with the
half-bandwidth D, reads

ε j = t̄N−1

j ( j = 0, 1, . . .), (60)

but the z trick generalizes it to the form [35]

ε j,z = t̄N−1

j+1−z ( j = 0, 1, . . .), (61)

where z is an arbitrary real number in the interval 0.5 � z �
1.5.

While Eq. (59) defines a single energy in each interval
[λ2 j−1, λ2 j+1], Eq. (61) spans the continuum of energies in the

interval [
 j− 1
2 ,
 j+1/2], which proves practical to compute

physical properties [4].
Appendix B 5 describes the analogous generalization for

the eNRG approach. The extension introduces a third dis-
cretization parameter, the natural number w and modifies
the real-space discretization so that cell Cn holds wλn (n =
0, 1, . . .) sites, instead of λn. This w trick modifies the codiag-
onal coefficients (43), and substitutes the following expression
for Eq. (59):

ε j,w = tN−1λ
2 j/w ( j = 0, 1, . . . ; tN−1λ

2 j 
 t ). (62)

With w restricted to the natural numbers, this amounts
to a capped extension of Eq. (59). As the rigorous analysis
in Sec. B 5 shows, however, the restriction can be removed.
That Appendix extends expression (B35), from which Eq. (62)
follows, to the domain {w ∈ R | w � 1}. In particular, this
extension maps the interval λ � w � λ−1 onto the range
0.5 � z � 1.5 covered by the NRG parameter.

Alternatively one can start out with the more general form
of Eq. (59), valid for ζ = 0, 1, . . .:

ε j = tN−1λ
2 j+ζ ( j = 0, 1, . . . ; tN−1λ

2 j 
 t ). (63)

Reasoning analogous to the mathematical analysis in Ap-
pendix B 5 can then be followed to extend the domain of the
offsets from ζ ∈ N to {ζ ∈ R | ζ � 0}.

Comparison with Eq. (61) now relates the eNRG offset
ζ to the NRG parameter z. Since 
 is equivalent to λ2, the
comparison yields

ζ = 2(1 − z). (64)

We might call this simple result the ζ trick. However, given
that the offset is important on its own right, as the discussion
in Sec. IV A 2 has shown, it seems more productive to confine
ζ in the realm of the natural numbers and emulate the z trick
with the w trick.

This concludes the first part of our comparison, which has
appraised general aspects of the eNRG procedure. To sharpen
the focus, we now turn to a specific problem.

B. Transport properties for the side-coupled device

Accurate NRG computations of the electrical and thermal
conductances, and thermopower for the Anderson model were
first reported by Costi and collaborators [45]. Their results
for the thermal dependence of the electrical conductance have
supported the interpretation of experimental data since the
dawn of nanostructure fabrication [46–48]. More thorough
studies of the other two transport properties emerged in the
next decade and discussed the dependence of the thermopower
on particle-hole asymmetry [49–51].

At the same time, NRG analysis centered on the series
geometry showed that, while the transport properties for the
symmetric model are universal functions of the temperature
scaled by the Kondo temperature, particle-hole asymme-
try breaks universality [52]. More recent work has shown
that the transport properties for the asymmetric Hamiltonian
can nonetheless be computed from temperature-dependent
energy moments of the dot-orbital spectral density, which
map linearly onto the universal thermal dependences for the
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symmetric Hamiltonian [53]. In all cases, the linear coeffi-
cients are trigonometric functions of the ground-state phase
shift.

This record of NRG computations suffices to recommend
the temperature-dependent transport properties as a means of
comparison with the eNRG procedure. Clearly, either the se-
ries or the parallel geometries would serve that purpose; to sail
unchartered waters, we prefer the latter. The comparison starts
out in Sec. IV B 1 with the uncorrelated model. With U =
0, the physical properties for the tight-binding Hamiltonian
can be calculated essentially exactly, and the iterative diago-
nalization procedures can bypass ultraviolet truncation. The
exclusion of this significant source of deviation in the NRG
and eNRG computations and the highly accurate conduc-
tances resulting from the diagonalization of the tight-binding
Hamiltonian allow comparison between the two renormaliza-
tion group procedures with nonpareil precision.

With U �= 0, one must settle for less. The cost of diago-
nalizing the tight-bind Hamiltonian becomes prohibitive for
L > 30, a limitation that blocks direct access to the ther-
mal properties in the continuum limit. In the Kondo regime,
nonetheless, universality offers an alternative. The thermal de-
pendence of the electrical conductance through an SCD in the
Kondo regime has already been shown to map linearly onto
a universal function of the temperature scaled by the Kondo
temperature [54,55]. Here, in Secs. IV B 2 and IV B 3, we
show that the other transport properties, the Seebeck or Peltier
coefficients, and the thermal conductance, conform to no such
simple mapping. Like the properties for the single-electron
transistor [53], however, they can be computed from three
energy moments that map linearly onto universal functions.
The deviations from linearity gauge the precision of numerical
results. Such checks are reliable, even though less exact than
the comparison between results for the U = 0 model.

1. Electrical conductances for the uncorrelated Hamiltonian

For U = 0, the model Hamiltonian is quadratic. The tight-
binding Hamiltonian (1) can therefore be diagonalized for
long chains, with very large L′. From the resulting eigenval-
ues and eigenvectors, physical properties can be accurately
computed for energies E much larger than the energy splitting
�E between successive single-particle levels in the vicinity of
the Fermi level. Comparison with the same properties for the
truncated Hamiltonian affords checks on the accuracy of the
approximations leading to Eq. (49).

As an illustration, consider the thermal dependence of the
electrical conductance G. A simple expression for the con-
ductance of the device in Fig. 1 is available [55]; for U = 0,
straightforward algebra reduces that expression to a sum in-
volving the single-particle eigenvalues and eigenvectors:

G(T ) = G0

ρ

∑
n

{a†
0, gn}2

(
− ∂ fβ (ε)

∂ε

)
ε=En

, (65)

where G0 ≡ 2e2/h is the conductance quantum, gn and En
denote the nth single-particle eigenoperator and the cor-
responding eigenvalue of the truncated Hamiltonian (49),

10−5 10−4 10−3 10−2 10−1 100

0

0.5

1

kBT
t

G
/G

0

eNRG

Tight Binding

10 10 10 10 10

0

0.5

1

G
/G

FIG. 4. Thermal dependence of the conductance for the U =
Vg = 0 model, with level width � = 1 × 10−2t . The main plot shows
the electrical conductance as a function of temperature. The circles
were computed by the eNRG procedure, as the text describes. Each
circle represents the average of two computations with λ = 2, for
offsets ζ = 3 and 4. The solid line resulted from numerically di-
agonalizing the (λ = 1) tight-binding Hamiltonian for L = 20 001.
The inset displays the analogous comparison for the NRG procedure.
Each square is the average over z of two computations with 
 = 4,
for z = 0.5 and z = 1.

respectively, β ≡ 1/(kBT ), and fβ (ε) is the Fermi function

fβ (ε) = 1

1 + exp(βε)
. (66)

Figure 4 shows conductances numerically computed from
Eq. (65) for the U = Vg = 0 model with � = 0.01t . The
circles resulted from the diagonalization of the Hamiltonian
HN in Eq. (49) with λ = 2 for two offsets: ζ = 3 and 4.
Each point is the arithmetic average between G(ζ = 3, T ) and
G(ζ = 4, T ).

The solid line in the figure represents conductances com-
puted with λ = 1, that is, for the Hamiltonian (10), with
L′ = 10 000. The resultant level spacing near the Fermi level,
�E = 2π/L′, allows accurate computation of the condutance
for temperatures above kBT = 1 × 10−3t .

The inset displays conductances obtained from Eq. (65)
with eigenvalues and eigenvectors resulting from NRG diag-
onalizations of the model Hamiltonian, with the same model
parameters. The circles result from diagonalization with 
 =
4 and N = 40, while the solid line represents conductances
computed with 
 = 1.0001 and N = 10 000. The solid lines
in the main plot and inset are pratically identical, even thoug
the latter is based on the NRG expression (17), which de-
scribes a conduction band with linear dispersion relation,
while the former corresponds to a conduction band described
by the tight-binding Hamiltonian in Eq. (28).

The rapid decay of the conductance has simple physical
interpretation. At high temperatures, with kBT � �, the im-
purity is effectively decoupled from the conduction band and
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allows ballistic transport through the chain. At low tempera-
tures, with kBT 
 �, the strong coupling to the impurity bars
transport across the site a0 and reduces G to zero.

As the plots show, at low temperatures both the NRG and
eNRG procedures yield essentially exact results. At higher
temperatures, the agreement between the circles and the solid
line in the main plot is also excellent, while the inset displays
significant deviations for kBT > 0.1t . These discrepancies, of
O(kBT/D), are due to irrelevant operators introduced by the
logarithmic discretization of the conduction band. By con-
trast, the eNRG procedure with offset ζ � 3 describes the
higher-energy degrees of freedom very well and hence allows
accurate computation of physical properties over the entire
temperature axis.

2. Energy moments

Consider, now the transport properties for the correlated
model, and give attention to the Kondo regime, defined by the
inequality

|Vg + U

2
| <

U

2
− �. (67)

In the Kondo regime, as the temperature is lowered past
min(|Vg |,Vg + U ), a local moment is formed at the quantum
dot. Upon further cooling, a Kondo cloud gradually screens
the magnetic moment. Well below the characteristic Kondo
temperature TK , the physical properties associated with the
quantum dot show that the effective magnetic moment has
been reduced to zero.

In the same way that the strong coupling between the
quantum dot and the a0 orbital blocks electrical conductance
at low temperatures in Fig. 4, the formation of the Kondo
cloud affects the transport properties of the side-coupled
device. This section discusses the computation of three
temperature-dependent energy moments, from which the elec-
trical and thermal conductances, and the thermopower can be
obtained.

Specifically, the following three moments have to be com-
puted:

L j ≡ 2

ρh

∫ (
−∂ fβ

∂ε

)
(βε) jρ0 (ε, T )dε ( j = 0, 1, 2),

(68)
where ρ0 (ε, T ) is the spectral density of the a0 orbital:

ρ0 (ε, T ) = 1

Z fβ (ε)

∑
m,n

e−βEm |〈m|a†
0|n〉|2δ(ε − Emn).

(69)
Here |p〉 and Ep (p = m, n) denote the pth eigenvector
and the corresponding eigenvalue of the model Hamilto-
nian, respectively, Emn ≡ Em − En , and Z (T ) is the partition
function.

Substitution of the right-hand side of Eq. (69) for the spec-
tral density on the right-hand side of Eq. (68) yields a simpler
expression:

L j = 2

h

β

ρZ

∑
m,n

|〈m|a0|n〉|2
eβEm + eβEn

(βEmn) j ( j = 0, 1, 2). (70)

Once the energy moments are computed, the following
equalities yield the electrical conductance G, thermopower S,
and thermal conductance κ [49,56]:

G(T ) = e2L0(T ), (71)

S(T ) = − L1(T )

eL0(T )
, (72)

and

βκ (T ) = L2(T ) − L2
1(T )

L0(T )
. (73)

In practice, to determine the transport properties we only
have to compute the three moments L j ( j = 0, 1, 2). This is
a relatively simple task, since the iterative diagonalization of
the truncated Hamiltonian (49) determines the eigenvalues,
and the recursive procedure introduced in Ref. [30] gives
immediate access to the matrix elements on the right-hand
side of Eq. (70).

3. Universality

In the Kondo model, a spin-1/2 variable represents the
impurity, and the renormalization group space comprises only
the symmetric LM and the FL fixed points. In his ground-
breaking study of the Kondo Hamiltonian, Wilson offered a
renormalization group analysis proving the crossover from the
LM to the FL fixed point to be universal [1].

The analysis was subsequently extended to the Anderson
Hamiltonian, and additional fixed points emerged: the free-
orbital and the valence-fluctuation (VF) fixed points [2,3]. At
high temperatures, the model Hamiltonian may be close to
the FO fixed point, already discussed in Sec. III B 5. At lower
temperatures it may or may not come close to a VF fixed point
before approaching the LM fixed point. While the higher-
temperature transitions are nonuniversal, the crossover from
any LM fixed point to the FL line of fixed points is universal.
The thermodynamical properties for the Kondo model and
Kondo regime of the Anderson model are therefore universal
functions of the temperature scaled by the Kondo temperature
[1,2]. Zero-temperature excitation properties are, likewise,
universal functions of the energy scaled by the Kondo thermal
energy [35].

Universality provides insight and simplifies theoretical
analyses, on the one hand, and aids the interpetation of ex-
perimental results, on the other. Fits to laboratory data offer
prima-facie evidence of Kondo physics [46], for instance.

In contrast with the temperature dependence of thermo-
dynamical properties and with the frequency dependence
of excitation properties, the temperature-dependent transport
properties cannot be universal functions of T/TK , however.
Straightforward scattering theory analysis shows that, at the
LM fixed point with phase shift δ̄, the probability for trans-
mission across the side-coupled device is cos2 δ̄. The three
energy moments must therefore depend on δ̄, which is model-
parameter dependent.

For the symmetric model, early renormalization group
analysis showed that the Kondo-regime electrical conduc-
tance of the side-coupled device is a universal function
Guni(T/TK ), of the temperature scaled by the Kondo
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temperature [45]. For asymmetric models, the conductance
was later shown to map linearly onto Guni, with coefficients
dependent on the phase shift δ only [54,55]. Recent work has
extended the approach to the three energy moments that deter-
mine the transport properties for the single-electron transistor
[53]. It resulted that, for the symmetric model, each moment
is a universal function fn (T/TK ) and that, for asymmetric
models, the nth moment maps linearly onto fn (T/TK ), with
n-dependent coefficients fixed by the FL.

Here, with a view to benchmarking the accuracy of the
eNRG procedure on the basis of new analytical results,
we extend the findings of Refs. [54,55] to the energy mo-
ments in Eq. (68). To gauge the precision of the procedure,
we can then compute the thermal dependence of each en-
ergy moment numerically and compare the result with the
temperature dependence predicted by the mapping to the per-
tinent universal function. Our derivation moreover maps the
temperature-dependent electrical and thermal conductances
and thermopower calculated in parallel geometry to universal
functions, a development of practical interest, since it simpli-
fies the interpretation of experimental results in bulk systems.
Section IV B 6 presents two illustrative examples.

Whether one is interested in laboratory data or in theoreti-
cal results, the mappings cover the relatively low temperatures
associated with the Kondo crossover, from the LM to the FL
fixed point. The higher temperature transitions are nonuniver-
sal and cannot be mapped onto unique functions. They cannot
be described by the Kondo model, either. They nonetheless
lie within the scope of the Anderson model, and the physical
properties in the pertinent temperature range can therefore be
accurately computed by the eNRG procedure, as the numeri-
cal results in Secs. IV B 1 and IV B 4 a will show.

a. Universal matrix elements. In the Kondo regime, well
above the Kondo temperature, the model Hamiltonian lies
close to the LM. The deviations are described by the Kondo
Hamiltonian HJW:

HJW =
∑

k

εka†
kak + W̄ a†

0a0 + J
∑
μν

a†
0μσμνa0ν · S, (74)

where the potential scattering W̄ and the exchange J depend
on the model parameters.

Where guidelines are needed before numerical diagonal-
ization, estimates can be obtained from the Schrieffer-Wolff
expressions [57]

ρJ = 2�U

π |Vg |(Vg + U )
(75)

and

ρW̄ =
�(Vg + U

2
)

π |Vg |(Vg + U )
, (76)

which become accurate near the symmetric point Vg = −U/2
[3,58,59].

In practice, however, both J and W are extracted from
the numerical results. In particular, the eigenvalues of the
Hamiltonian in the vicinity of the LM fixed point determines
the scattering potential. Equation (53) then yields the LM

phase shift δ̄ and, through Eq. (58), the FL phase shift δ.
Alternatively, the latter can be extracted from the low-energy
eigenvalues, a simpler expedient that yields more accurate
results, and Eq. (58) determines the LM phase shift. The
following analysis shows that this is sufficient to determine
the transport properties as functions of the temperature scaled
by the Kondo temperature.

Given the FL phase shift, we must eliminate the scatter-
ing potential from Eq. (74). To this end, it is sufficient to
project HJW onto the basis of the H∗

LM,δ̄
eigenvectors g�. The

projection generates irrelevant operators, which can be safely
dropped. The remaining terms yield the expression [52]

HJW =
∑

�

ε�g†
�g� + J

W̄

∑
μν

φ
†
0μ �σμνφ0ν · �S, (77)

where

J
W̄

= J cos2(δ̄) (78)

and

φ0 ≡ 1√
N

∑
�

g�. (79)

At high energies, comparable to the conduction band-
width 4t , the contribution from the irrelevant operators makes
the spectra of the Hamiltonians on the right-hand sides of
Eqs. (74) and (77) somewhat different. As the energy E de-
creases, however, the deviations shrink and become negligible
for E 
 t .

Equation (77) describes the physical properties of the
model Hamiltonian in the vicinity of the LM. As the en-
ergy scale is reduced, the eigenstates and eigenvalues of the
model Hamiltonian progressively deviate from the spectrum
of H∗

LM,δ̄
. It is then convenient to switch to another basis, in

which the basis vectors are linear combinations of the opera-
tors g� with the Legendre polynomials Pk (ε) (k = 0, 1, . . .) as
coefficients:

φk ≡ Nk

∑
�

Pk (ε� )g� (k = 0, 1, . . .), (80)

and appropriate normalization factors Nk .
The leading basis vector is φ0 , defined by Eq. (79). Next

comes the operator

φ1 ≡
√

λ2 − 1

2λ

∑
�

P1 (ε� )g�, (81)

which plays an important role in the following analysis.
The second term on the right-hand side of Eq. (77) is a

marginally relevant operator, which brings the Hamiltonian
from the LM to the FL. The trajectory in renormalization
group space is universal, since a single operator drives the
flow. The coupling J

W̄
defines the Kondo temperature TK .

Scaling by kBTK brings the spectra of Hamiltonians of the
form (77) with different couplings to congruence.

In other words, the same eigenvalues and eigenstates con-
tribute to physical properties computed for Hamiltonians with
different couplings at temperatures such that the ratio T/TK is
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the same. Matrix elements of the operators φ0 and φ1 between
eigenstates of the Kondo Hamiltonian are likewise universal.

To determine the energy moments (70), the matrix ele-
ments 〈m|a0|n〉 must be computed, where |m〉 and |n〉 are
eigenstates of the truncated Hamiltonian (49). The matrix ele-
ments are linear combinations of the matrix elements 〈m|φ0 |n〉
and 〈m|φ1 |n〉 [52]:

〈m|a0|n〉 = α0〈m|φ0 |n〉 + α1〈m|φ1 |n〉, (82)

with model-parameter dependent coefficients α0 and α1.
Given that all coefficients tn in the truncated Hamiltonian

are real, the αn (n = 0, 1) and matrix elements in Eq. (82)
can be asssumed real, with no loss of generality. The squared
matrix element in the summand on the right-hand side of
Eq. (70) are therefore given by the equality

|〈m|a0|n〉|2 = α2
0〈m|φ0 |n〉2 + α2

1〈m|φ1 |n〉2

+ 2α0α1〈m|φ0 |n〉〈m|φ1 |n〉. (83)

Substitution of the right-hand side for |〈m|a0|n〉|2 in
Eq. (70) splits each energy moment into three terms:

L j = α2
0L

( j)
00 + 2α0α1L

( j)
01 + α2

1L
( j)
11 ( j = 0, 1, 2), (84)

where

L( j)
00 ≡ 2

ρh

β

Z

∑
m,n

〈m|φ0 |n〉2

eβEm + eβEn
(βEmn) j, (85)

L( j)
01 ≡ 2

ρh

β

Z

∑
m,n

〈m|φ0 |n〉〈m|φ1 |n〉
eβEm + eβEn

(βEmn) j, (86)

and

L( j)
11 ≡ 2

ρh

β

Z

∑
m,n

〈m|φ1 |n〉2

eβEm + eβEn
(βEmn) j . (87)

The summand on the right-hand side of Eq. (80), which
defines φk (k = 0, 1, . . .), is proportional to the Legendre
Polynomial Pk (ε), a function of the energy with the parity of
k. The matrix elements 〈m|φk |n〉 and 〈n|φk |m〉 hence have the
same sign for k = 0 and opposite signs for k = 1. For even j,
therefore, the summands on the right-hand sides of Eqs. (85)
and (87) remain invariant under exchange of the summation
indices (m ↔ n), while the summand in Eq. (86) changes sign.
Conversely, for odd j the summands in Eqs. (85) and (87)
change sign under index exchange, while the summand on the
right-hand side of Eq. (86) remains invariant. It follows that

L(0)
01 = L(2)

01 = L(1)
00 = L(1)

11 = 0. (88)

Moreover, as Appendix D shows, the moments defined in
Eq. (87) are related to the ones in Eq. (85):

π2

2
L(0)

11 (T ) = 2

h
− L(0)

00 (T ) (89)

and

π2

2
L(2)

11 (T ) = 2π2

3h
− L(2)

00 (T ). (90)

Only the moments L(0)
00 (T ), L(1)

01 (T ), and L(2)
00 (T ) need

be computed, therefore, to determine the right-hand side of

TABLE II. Gate potential, phase shifts and Kondo temperatures
for the six eNRG runs that yielded the data in Fig. 5 (runs a − c), and
Figs. 6, 8–12 (runs A − C).

Run Symbol U Vg /U δ/π kBTK /t ρJ

a 0.01 −0.5 0.500 6.4 ×10−5 0.65
b 0.01 −0.65 −0.491 1.5 ×10−4 0.71
c 0.01 −0.80 −0.470 2.0 ×10−3 1.01
A 10 −0.5 0.500 6.4 ×10−5 0.65
B 10 −0.65 −0.491 1.5 ×10−4 0.71
C 10 −0.80 −0.470 2.0 ×10−3 1.01

Eq. (84). For j = 0, given that L(0)
01 = 0, the equality is equiv-

alent to the expression

L0(T ) = (
α2

0 − α̃2
1

)
L(0)

00 (T ) + 2

h
α̃2

1, (91)

with the shorthand α̃1 ≡ √
2α1/π .

For j = 1, Eq. (84) amounts to

L1(T ) = 2α0α1L
(1)
01 (T ), (92)

and for j = 2, to

L2(T ) = (
α2

0 − α̃2
1

)
L(2)

00 (T ) + 2π2

3h
α̃2

1 . (93)

As already explained, the matrix elements 〈m|φk |n〉 (k =
0, 1) and the eigenvalues Em and En on the right-hand sides of
Eqs. (85), (86), and (87) are universal functions of the energy
scaled by kBTK . The three moments L(0)

00 , L(1)
01 , and L(2)

00 are
universal functions of the ratio T/TK . Equations (91)–(93)
map the energy moments L0, L1, and L2 onto L(0)

00 , L(1)
01 , and

L(2)
00 , respectively. The following analysis shows the linear

coefficients α0 and α̃1 to be trigonometric functions of the
fixed-point phase shifts.

b. Linear coefficients. At the LM and FL, the spectral
densities for the operator f0 are [54]

ρ0 = ρ cos2 δ̄ (LM), (94)

ρ0 = ρ cos2 δ (FL). (95)

Equation (58) relates the LM phase shift δ̄ to the FL phase
shift δ. Substitution of Eq. (94) for the spectral density on the
right-hand side of Eq. (68) followed by integration yields the
following limits for the lowest-order moment:

L0 =

⎧⎪⎨
⎪⎩

2

h
sin2 δ (LM)

2

h
cos2 δ (FL)

. (96)

The right-hand sides of Eq. (96) can now be combined with
Eq. (91) to relate the high- and low-temperature limits of the
universal moment L(0)

00 to the phase shift:

2

h
sin2 δ = (

α2
0 − α̃2

1

)
L(0)

00 (LM ) + 2

h
α̃2

1 (LM) (97)

and
2

h
cos2 δ = (

α2
0 − α̃2

1

)
L(0)

00 (FL) + 2

h
α̃2

1 (FL). (98)
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FIG. 5. Temperature dependence of the conductance (top),
thermopower (central), and thermal conductance divided by the tem-
perature (bottom panel), computed from Eqs. (71), (72), and (73),
respectively. In each panel, the solid cyan, dotted magenta, and
dashed olive lines represent runs a, b, and c, respectively, defined
by the parameters in Table II. Each panel depicts two crossovers.
The nonuniversal crossover from the free-orbital to the local moment
occurs above T = 10 TK , while the universal transition from the local
moment to the strong-coupling fixed point takes place in the vicinity
of T = TK .

The universal moment L(0)
00 (T/TK ) is proportional to the

SCD conductance for the symmetric model [54] and hence
drops from L(0)

00 (LM ) = 2/h at the LM to L(0)
00 (FL) = 0 at the

FL. Equations (97) and (98) therefore reduce to the equalities
α2

0 = sin2 δ and α̃2
1 = cos2 δ, respectively, which determine

the absolute values of α0 and α̃1 .
To determine the signs, we set J = 0 on the right-hand side

of Eq. (74). The resulting Hamiltonian is quadratic and can
be diagonalized analytically [52]. It is then a simple matter to
evaluate the matrix elements on both sides of Eq. (82), from
which it follows that that α0 = cos δ̄ and α̃1 = − sin δ̄. Equa-
tion (58) then expresses the two coefficients as trigonometric
functions of the FL phase shift:

α0 = − sin δ (99)

and

α̃1 = − cos δ. (100)

Substitution on the right-hand side of Eq. (92) yields the
mapping between the energy moment L1 and the universal
moment L(1)

01 :

L1(T/TK ) = π√
2

sin(2δ)L(1)
01 (T/TK ). (101)

Likewise, substitution of Eqs. (99) and (100) on the right-
hand sides of Eqs. (91) and (93) determines the coefficients
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FIG. 6. Temperature dependence of the conductance (top),
thermopower (middle), and thermal conductance divided by the
temperature (bottom), computed from Eqs. (71), (72), and (73), re-
spectively. In each panel, the solid cyan, dotted magenta, and dashed
olive lines represent runs A, B, and C, respectively

mapping L0 and L2 onto the universal moments L(0)
00 and L(2)

00 ,

L0(T/TK ) = − cos(2δ)L(0)
00 (T/TK ) + 1

h
(1 + cos 2δ) (102)

and

L2(T/TK ) = − cos(2δ)L(2)
00 (T/TK ) + π2

3h
(1 + cos 2δ),

(103)

respectively.
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FIG. 7. Universal energy moments L(0)
00 , L(1)

01 , and L(2)
00 as func-

tions of the temperature scaled by TK . The hairlines mark the
definition L(0)

00 (T/TK = 1) = 1/h of the Kondo temperature.
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FIG. 8. First energy moment as a function of the temperature
scaled by TK . The filled circles, squares, and triangles, fitted by
the solid cyan, dotted magenta, and dashed olive lines depict the
numerical data resulting from eNRG runs A, B, and C, respectively.
The lines represent Eq. (102) for the tabulated phase shifts in the
three runs. The inset shows the energetic moment as a function of the
universal curve L(0)

00 (T/TK ) for the three runs. The excellent agree-
ment between the circles and the straight line fitting them witnesses
the linearity of the mapping.

The phase shift for the symmetric Hamiltonian is δ = π/2.
Equations (101)–(103) then reduce to L1(T/TK ) = 0 and
L j (T/TK ) = L( j)

00 (T/TK ) ( j = 0, 2), as expected.
The three expressions map the three energy moments onto

universal functions. They reduce all temperature dependence
to universal functions, which we need to compute only once.
At the symmetric point, L1 vanishes, while L0 and L2 reduce
to the universal functions. Particle-hole asymmetry makes L1
nonzero and flattens the temperature dependence of the other
two moments. In all cases, the mapping is linear, with slopes
and intercepts that depend on the ground-state phase shift
only. The following section exhibits eNRG data confirming
these findings.

4. Numerical results

Table II lists the gate potentials defining six eNRG runs.
The Coulomb repulsion is U = 0.01 t in runs a − c and U =
10 t in runs A − C. In all cases, the dot-level width is a fixed
fraction of the Coulomb repulsion, � = 0.040U . The ratio
�/ min(|Vg |,U + Vg ) is 0.08, 0.11, and 0.2 in runs a and A,
b and B, and c and C, respectively. At sufficiently low temper-
atures, runs a, b, A, and B lie well within the Kondo regime,
a condition that warrants the mappings to the universal func-
tions and enhances the departures from the Wiedemann-Franz
law, as discussed in Sec. IV B 4 c. By contrast, the proximity
of runs c and C to the charge-degeneracy point Vg = −U
gives rise to significant deviations from universality. In runs
a and b, with U 
 t , the model Hamiltonian only enters the
Kondo regime at relatively low temperatures, kBT 
 U . In
runs A and B, by contrast, a local moment is formed around
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FIG. 9. Temperature dependence of the second energy moment.
The plots follow the symbol convention in Fig. 8. The inset shows
L1(T/TK ) as a function of the universal moment L(1)

01 (T/TK ), to
probe Eq. (101) visually. Both the main plot and inset display distinct
deviations from universal behavior at high temperatures, an indica-
tion that the relatively large |Vg + U/2| has pushed run C too close
to the charge degeneracy point Vg = −U .

kBT = 0.1 t , which marks the inception of Kondo screening.
Universality therefore prevails at relatively high temperatures
in runs A and B.

a. Thermoelectric properties. Along with the Coulomb
energy U , and gate potential Vg , Table II presents the ground-

state phase shift δ, the Kondo thermal energy kBTK , the Kondo
coupling J computed from Eq. (75), and the style of the
line representing each run in Figs. 5, 6, and 8–11. Figure 5
displays the conductance, thermopower, and thermal conduc-
tance computed in runs a − c as functions of the temperature
scaled by the Kondo temperature. In each panel, for T >

10TK , the three curves resulting from the three runs display
clear distinctions. The broad minima in the top and bottom
panels, and the maxima in the middle panel mark the nonuni-
versal crossovers from the free-dot-orbital fixed point (region
above Vg + U in Fig. 2) to the local-moment fixed points

(region between Vg + U and �K in that figure). As T drops

below 10TK , the nearly coincident plots in Figs. 5(a) and 5(b)
signal ascent into the Kondo regime, and consequent mapping
of the energy moments L j (T/TK ) onto universal functions.

Since G is proportional to L0, and βκ is approximately equal
to L2, the two conductance curves are weakly dependent on
the model parameters. The thermopower is the ratio between
two energy moments; moreover, Eq. (101) shows that L1 is
proportional to a trigonometric function that vanishes under
particle-hole symmetry. Even in the Kondo regime, S(T/TK )
is therefore sensitive to changes in the model parameters.

Comparison between the plots in Fig. 5 (U = 0.01 t) and
the corresponding plots in Fig. 6 (U = 10 t) corroborates
this interpretation. Even though the model parameters are
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FIG. 10. Temperature dependence of the third energy moment.
The plots follow the symbol convention in Figs. 8 and 9. The inset
shows L2(T/TK ) as a function of the universal moment L(2)

00 (T/TK )
to corroborate Eq. (103).

thousandfold larger than in runs a − c, the representations
of G(T/TK ), S(T/TK ), and βκ (T/TK ) in Fig. 6 are virtually
identical to those in the Kondo-regime temperature range
of Fig. 5. The crossover from the free-orbital to the local-
moment fixed point for the parameters in runs A − C lies
above the highest computed temperatures. Only the Kondo
crossover is encompassed in the figure. The displayed phys-
ical properties are therefore in the interval within the scope of
universality.
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FIG. 11. Wiedemann-Franz ratio as a function of the temperature
scaled by TK for runs B and C. The symbol convention follows Fig. 6.
At high and low temperatures, the plots approach the Lorenz number
L0 = (π 2/3)(kB/e)2. The inset shows the results from run A, which
are markedly different for T < TK because both G and βκ vanish as
T → 0 at the symmetric point.

In Fig. 6, and in the Kondo-regime range of Fig. 5, the
electrical-conductance G(T/TK ) and the thermal-conductance
βκ (T/TK ) curves are similar. As the temperature drops,
both functions decay monotonically to zero, from the high-
temperature plateaus of G(T � TK ) = G0 and βκ (T/TK ) =
(2π2/3)kB/h. Physically, at high temperatures, the conduc-
tion electrons flow ballistically across the quantum wire; the
antiferromagnetic interaction with the dot magnetic moment
offers little resistance to transport. Upon cooling, the Kondo
cloud is gradually formed, and the progressively stronger cou-
pling between conduction states and the dot orbital obstructs
conduction through the central region of the wire.

The three conductance curves in each top panel are nearly
undistinguishable, a coincidence that turns our attention to
the phase shifts in Table II. The tabulated phase shifts are
close to π/2 because the three runs are in the Kondo regime:
on the scale of �, runs A and B are far from the charge-
degeneracy point Vg = −U , while run C is moderately distant
from it. How does that affect the conductance? Equation (102)
shows that the moment L0(T ) and, hence, the conductance
G(T ) are parametrized by cos 2δ. In the Kondo regime, this
trigonometric function lies close to its minimum and is, hence,
nearly independent of δ. The three curves in the top panel are,
therefore, practically congruent.

For the same reason, the three curves in each bottom
panel are virtually identical. In the middle panel, however,
the distinctions are patent. The Seebeck coefficient monitors
the difference between electron and hole conduction. Un-
like the conductances, the thermopower changes sign under
the particle-hole transformation. S(T ) vanishes in run A, for
the symmetric model, with Vg + U/2 = 0, depicted by the
solid cyan line in the figure. For Vg + U/2 < 0, as in runs B
and C, the thermopower is negative. For Vg + U/2 > 0 (not
shown), it is positive.

Physically, the thermoelectric effect stems from transport
across the quantum wire assisted by virtual excitations to
the quantum dot. In the Kondo regime, the dot occupation
is close to nd = 1, as Fig. 2 indicates. With Vg + U/2 < 0
(Vg + U/2 > 0) the dominant excitation is a transition from
one of the central columns to the rightmost (leftmost) one,
which transfers an electron (a hole) to the quantum dot; the
resulting Seebeck coefficient is negative (positive).

At high temperatures, independently of the sign of Vg +
U/2, electrons flow freely across the wire. Nonetheless, the
weak coupling to the dot reduces S(T � TK ) to zero. At
low temperatures, the dot is strongly coupled to the wire,
but the Kondo cloud blocks transport. Only at intermediate
temperatures can the Seebeck coefficient differ significantly
from zero.

The thermopower is the ratio on the right-hand side of
Eq. (72), between the moments L1(T ) and L0(T ). If the ratio
were proportional to a universal function, only the amplitude
of the plot would depend on Vg . The numerator L1(T ) is, in

fact, proportional to the universal moment L(1)
01 (T/TK ), but the

denominator L0(T ) is neither universal nor proportional to a
universal function, as Eq. (102) shows. The weak dependence
of the denominator on the phase shift δ is sufficient to shift the
symmetric maximum from 0.01TK to approximately 0.04TK
as the phase shift grows from δ = −0.49π to δ = −0.47π .
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b. Universal moments. Figure 7 shows the thermal depen-
dence of the universal energy moments L(0)

00 , L(1)
01 , and L(2)

00
onto which the temperature dependencies of the transport
moments L0, L1, and L2 are linearly mapped, respectively.
The solid line depicts L(0)

00 (T/TK ), which is proportional to
the conductance at the symmetric point. As the temperature
drops, L(0)

00 diminishes monotonically to zero, from the bal-
listic limit L(0)

00 (T � TK ) = 2/h. The hairlines identify the
halfway point L(0)

00 (T = TK ) ≡ 1/h, which defines the Kondo
temperature.

The dashed line depicts the analogous decline of the uni-
versal moment L(2)

00 (T/TK ). The curve decays to zero from
the high-temperature plateau L(2)

00 = 2π2/(3h), and crosses its
half-maximum π2/(3h) at T ≈ TK /2.

The temperature dependence of the universal moment
L(1)

01 (T/TK ) is conspicuously distinct. The moment vanishes at
high and low temperatures, and becomes negative throughout
the crossover from the LM to the FL. The dotted line in
Fig. 7 displays a broad, nearly symmetric minimum centered
at T ≈ 0.4TK .

Figure 8 compares numerically computed moments with
the mapping (102). The moments L0(T ) computed in the three
runs in Table II are represented by circles, plotted as func-
tions of the ratio T/kBTK in the range 1 × 10−5 < T/TK <

1 × 102. The solid lines show the right-hand side of Eq. (102),
parametrized by the tabulated δ. The phase shifts being close
to each other, the three curves are nearly coincident. Even the
small differences between moments correspondent to phase
shifts only a few percent apart are accurately reproduced by
the universal mappings, however.

For better comparison, the inset of Fig. 8 plots the com-
puted moments as functions of the universal moment L(0)

00 .
The excellent agreement with the straight lines representing
Eq. (102) for the pertinent phase shifts attests the accuracy of
the data. The same procedure can be applied to experimental
results, as illustrated by analyses focused on data collected in
side-coupled devices [54] or single-electron transistors [60].
More on that in Sec. IV B 6 a.

Figure 9 shows the analogous plots for the L1(T ) mo-
ment. The results from run A are shown for completeness
only, because L1(T ) vanishes at all temperatures. The mo-
ments from runs B and C are positive because Vg + U/2 <

0, which makes the Schrieffer-Wolff scattering potential W̄
negative. The LM phase shift δ̄ is hence positive, the FL
phase shift δ is negative, and so is the factor multiplying
L(1)

01 on the right-hand side of Eq. (101). For Vg + U/2 > 0
(not shown), the moment is negative at all temperatures, a re-
minder that the thermopower is very sensitive to particle-hole
asymmetry.

The dotted magenta lines in the main plot and inset show
good agreement with the filled magenta squares. The small
deviations at the highest temperatures are contributions from
the O(ρkBT ) terms neglected in the derivation of Eq. (101),
which become significant for kBT � 5 × 10−3, that is,
for T � 5TK in run B. Manifest deviations with the same
origin separate the olive triangles representing the moments
computed in run C from the olive dashed line. Since run C
is relatively close to the charge-degeneracy point Vg = −U ,
the Kondo temperature kBTK = 2 × 10−3t is fairly high,

and the discrepancies become visible even below the Kondo
temperature.

The filled circles, squares, and triangles in the main plot
of Fig. 10 show the L2 computed in runs A, B, and C as
functions of the temperature scaled by the Kondo temperature,
respectively. The solid, dotted, and dashed lines represent the
right-hand side of Eq. (102) with j = 2 and the phase shifts
listed in Table II for runs A, B, and C, respectively. The inset
shows the same moments and universal mappings as functions
of the universal moment L(2)

00 (T/TK ). All curves, including
those in the inset, are in close analogy with the plots in Fig. 8.
In particular, in contrast with the main plot in Fig. 9, the
three curves are close to congruence, because the right-hand
side of Eq. (102) is insensitive to changes in the phase shift
near δ = π/2. Another contrast with Fig. 9 is the excellent
agreement between each line and the corresponding set of
circles, squares, or triangles, which indicates that the terms
of O(ρε) dropped in the derivation of Eq. (102) make smaller
contributions to L0 and L2 than to L1.

c. Wiedemann-Franz law. The Wiedemann-Franz law states
that the ratio between the thermal and electrical conductances
is proportional to the temperature:

κ (T )

G(T )
= L0T, (104)

where L0 ≡ (π2/3)(kB/e)2 denotes the Lorenz ratio [61].
This expression of the equivalence between energy and

charge transport results from rigorous expressions for the
electrical and thermal conductances of free electrons. It is,
therefore, reliable at Fermi-liquid fixed points. Here, the law
is valid at the fixed points of the renormalization group trans-
formation τ 2. At the LM and FL, Eq. (104) follows from
Eqs. (102) and (103), which read

L0 = 2

h
sin2 δ,

(LM ) (105)

L2 = 2π2

3h
sin2 δ

and

L0 = 2

h
cos2 δ,

(FL) (106)

L2 = 2π2

3h
cos2 δ.

As one might expect, Fig. 11 shows that the proportionality
between G(T ) and βκ (T ) breaks down in the intermediate
temperature range. The ratio βκ/G peaks below the Kondo
temperature, an indication that, as the temperature is reduced
past TK , the Kondo cloud starts to block charge transport more
efficiently than to obstruct energy transport; at lower temper-
atures, the two forms of obstruction become comparable.

The peak is less pronounced for Vg = −8U than for Vg =
−6.5U . This is expected from Eqs. (102) and (103), which
show that, as functions of the phase shift, the differences �G
and �κ , between the high- and low-temperature electrical
and thermal conductances are maximized at the symmetric
point, with δ = π/2. As |Vg + U/2| grows and |δ| is reduced,
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the differences shrink, and the thermal dependencies of the
conductances become flatter. If the phase shift were δ = π/4,
both conductances would be independent of T , and Eq. (104)
would be valid at all temperatures.

At the symmetric point Vg = −U/2, particle-hole symme-
try forces the phase shift to be π/2. In the Kondo regime, as
the numbers in Table II show, the phase shift stays close to
π/2. Values closer to π/4 can only be found in the vicinity of
the charge-degeneracy condition Vg = −U , where Eqs. (102)
and (103) are invalid, because universality breaks down.

Nonetheless, the trend to thermal independence, of which
δ = π/4 is the extreme, emerges in the Kondo regime as
the gate potential grows away from particle-hole symmetry.
As a result, the deviations from Wiedemann-Franz behavior
become less pronounced, and the peak drawn by the olive
triangles and dashed line in Fig. 11 is substantially smaller
than the one drawn by the magenta squares and dotted line,
even though the phase shifts are by no means close to π/4.

The inset of Fig. 11 shows the Wiedemann-Franz ratio as a
function of temperature for run A. With δ = π/2, both G and
βκ vanish at T = 0. The ratio between the two conductances
is hence determined by their low-temperature expansions and
deviates from the Lorenz number. The oscillations in the plot
are artifacts of the discretization that have been only partially
eliminated by the averaging procedure.

d. Efficiency of the thermopower generator. To configure
the device in Fig. 1 as a thermopower generator, one opens the
circuit and keeps the left- and right-hand ends of the quantum
wire at different temperatures TL and TR , respectively, with
TL > TR . The efficiency of the generator is governed by the
competition between the energy generated by the Seebeck
voltage and the losses due to Joule heating and heat con-
duction across the wire. Large efficiencies result from the
combination of large thermopowers S with large electrical
conductances G, to reduce Joule heating, and small thermal
conductances, to reduce heat transfer across the wire.

The competition is quantified by the dimensionless fig-
ure of merit

zT ≡ kBT
S2(T )G(T )

κ (T )
. (107)

Specifically, zT (T ) provides an estimate for the efficiency
η of the generator. If zT (T ) is approximately constant in the
temperature range TL � T � TR , η is a function of the effi-
ciency ηC of the Carnot cycle between TL and TR , the product
zTL , and the external load [62]. For fixed ηC , the efficiency
η grows monotonically with zT . It is small for zT � 1 and
approaches ηC for zT � 1 [62].

One can now relate the figure of merit to the energy
moments. To this end, substitute the right-hand sides of
Eqs. (71)–(73) for the transport properties in Eq. (107). It
results that

zT = L2
1

L0L2 − L2
1

. (108)

Figure 12 show the temperature dependence of the product
zT , calculated from Eq. (108). The circles, triangles, and
squares show data computed in runs A, B, and C, respectively.
The solid, dashed, and dotted lines resulted from substitution
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FIG. 12. Dimensionless figure of merit for thermoelectric effi-
ciency as a function of temperature. The symbols and lines follow
the convention in Fig. 6.

of Eqs. (101), (102), and (103) for L1(T ), L0(T ), and L2(T ),
respectively. In the symmetric case, as expected since solid-
state devices depend on particle-hole asymmetry to generate
thermopower [62], the figure of merit equals zero at all tem-
peratures. This result can also be understood from Eq. (107),
given that L1(T ) vanishes under particle-hole symmetry.

For each of the asymmetric runs B and C, zT peaks sharply,
well below the Kondo temperature. Only for relatively small
temperature differences around each peak does the figure of
merit offer a reliable, significant estimate of η, and even
then, with zT < 0.25, the effectiveness is very small. The
side-coupled device is far from promising as a thermopower
generator.

5. Comparison with mappings to universal functions
for the serial geometry

As already mentioned, the mathematical analysis in
Sec. IV B 3 is similar to the discussion of the serial geometry
in Ref. [53], which derived mappings between the energy mo-
ments for the single-electron transistor to universal functions
analogous to Eqs. (101)–(103). The following expressions
were obtained [53]

L̄0 = − cos(2δ)
π2

2
L(0)

11 + 2

h
cos2 δ, (109)

analogous to Eq. (102),

L̄1 = π√
2

sin(2δ)L(1)
01 , (110)

analogous to Eq. (101), and

L̄2 = − cos(2δ)
π2

2
L(2)

11 + 2π2

3h
cos2 δ, (111)

analogous to Eq. (103).
The right-hand sides of Eqs. (101) and (110) are identical,

and the complementarity relations (89) and (90) bring the
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TABLE III. Comparison between mappings for the side-coupled
and serial geometries.

Side-coupled Serial

L0 = − cos(2δ)L(0)
00 + 2

h cos2(δ) L̄0 = cos(2δ)L(0)
00 + 2

h sin2(δ)
L1 = π√

2
sin(2δ)L(1)

01 L̄1 = π√
2

sin(2δ)L(1)
01

L2 = − cos(2δ)L(2)
00 + 2π2

3h cos2(δ) L̄2 = cos(2δ)L(2)
00 + 2π2

3h sin2(δ)

equations for the first and third moments into closer similar-
ity: substitution of Eq. (89) for (π2/2)L(0)

11 , and of Eq. (90)
for (π2/2)L(2)

11 simplifies Eqs. (109) and (111), respectively.
Table III collects the results and shows that the transformation
δ → π/2 − δ interchanges the mappings for the side-coupled
device and the single-electron transistor. Physically, the trans-
port properties of the latter device are controlled by the
screening charge around the quantum dot, while the screening
charge surrounding the Wannier orbital f0 governs the trans-
port properties of the side-coupled device.

6. Comparison with experiments

The central results in Sec. IV B 3, Eqs. (101)–(103),
simplify the interpretation of measurements. The scope of
applications goes beyond devices like the one discussed in
Sec. II, for transport in the parallel geometry of Fig. 1 is akin
to conduction in bulk materials. This contrasts with the serial
geometry of such devices as the single-electron transistor
[46], in which the quantum dot allows conduction between
two otherwise decoupled electron gases. The side-coupled
dot obstructs transport, instead of assisting conduction. The
obstruction is feeble at high temperatures, but its strength
grows to the unitary limit as the temperature drops below
TK . The growth is tantamount to the low-temperature rise
in the resistance of dilute magnetic alloys that motivated
Kondo’s classical paper [63]. To emphasize the equivalence,
the following comparison with experimental data will focus
on measurements of two bulk properties.

The comparison requires tabulation of the universal mo-
ments L(0)

00 (T/TK ), L(1)
01 (T/TK ), and L(2)

00 (T/TK ), an initial
step requiring small computational effort. Once the three uni-
versal functions have been calculated, it becomes possible to
fit the temperature dependence of transport properties mea-
sured in the Kondo regime. Since this second step involves
two adjustable parameters, the Kondo temperature and phase
shift, the linearity of the mappings (101)–(103) acquires spe-
cial significance, because it supports algorithms that expedite
the fitting, such as the ones described below.

a. Conductance. Since the conductance is proportional
to L0, it follows from Eq. (102) that plots of G(T/TK ) as
functions of L(0)

00 (T/TK ) are straight lines. In practice, TK is
unknown. However, given that the curvature of the plot re-
verses as trial values for the Kondo temperature grow past TK ,
a bisection algorithm readily yields the Kondo temperature.
The slope or the intersection of the straight line then deter-
mines the phase shift. A number of examples dealing with
conductance data from SET or side-coupled devices have been
presented [53,54,60]. The algorithm yields excellent fits and
allows accurate determination of the Kondo temperature, even
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FIG. 13. (a) Fitting procedure, applied to the Ce-ion contribu-
tion to the temperature-dependent resistivity of Ce0.7La0.3Rh6Ge2

reported in Ref. [64]. The small crosses are the experimental
conductivities at the scaled temperatures T/TK , divided by the
adjustable factor G0 and plotted as functions of the universal func-
tion GK (T/TK ). The straight line is the linear mapping (102). The
crosshairs mark the fiducial point G(T = TK ) = G0/2. (b) Temper-
ature dependence of the Ce-ion contribution to the resistivity of
Ce1−xLaxRh6Ge2 for the indicated dopant concentrations. The sym-
bols show the excess resistivity defined by Eq. (112), and the solid
lines, fits of the mapping (102) with the parameters in Table IV.

though background currents of unknown origin increment the
SCD conductances, while contact asymmetries restrict the
SET conductances to maxima substantially below the conduc-
tance quantum.

Bulk measurements offer an alternative that proves instruc-
tive. Figure 13 shows data recently reported by Xu et al. [64],
who measured the resistivity of Ce1−xLaxRh6Ge4 for various
dopant concentrations. At high dopant concentration, x → 1,
the Ce ions become impurities. At moderately low tempera-
tures, of the order of 100 K, crystal field splittings freeze out
all but the lowest, spin-degenerate ionic level, which becomes
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TABLE IV. Parameters yielding the optimized fits in Fig. 13.

x G0 (kS/cm) TK (K) δ/π

0.87 31.60 31.8 0.280
0.66 31.59 30.0 0.275
0.52 31.46 30.0 0.2504
0.30 31.50 60.5 0.111

equivalent to a spin-1/2 variable coupled to the conduction
band. To identify the contribution of the associated magnetic
moments to the resistivity ρ(T ), the authors have computed
the excess resistivity

ρmag(T ) ≡ ρx (T ) − ρx=1(T )

1 − x
. (112)

The resulting experimental points for x =
0.30, 0.52, 0.66, and 0.87 are represented by the symbols
in Fig. 13. The solid lines represent the right-hand side of
Eq. (104) multiplied by the adjustable factor G0 , equal to
twice the conductivity at the Kondo temperature. Table IV
lists the parameters resultant from the fits.

As an illustration of the fitting procedure, Fig. 13(a) plots
the experimental conductance for the smallest dopant con-
centration, x = 0.30, at the scaled temperature T/TK as a
function of the universal moment L(0)

00 (T/TK ). The procedure
starts with plots of this kind for various trial Kondo tem-
peratures. The optimal choice, (TK = 60.5 K for x = 0.30)
maximizes the range of temperatures over which the data form
a straight line. The ordinate of the straight line at the point
T = TK , equal to G0/2, yields the multiplicative parameter
(G0 = 31.50 kS/cm for x = 0.30). The slope of the line, equal
to −G0 cos(2δ), then determines the phase shift (δ = 0.111 π

for x = 0.30).
Analogous plots for x = 0.52, 0.66, and 0.87, which show

superior agreement with straight lines, yield the data in Ta-
ble IV. For the lower concentrations in Ref. [64] (x = 0–0.25),
the fitting procedure yields poor agreement with straight lines
and, worse, slopes that are smaller than −G0 , which cor-
respond to cos(δ) > 1. This inconsistency with Eq. (102)
indicates breakdown of Kondo-impurity physics, in harmony
with the conclusions of Ref. [64].

For x = 0.30, in the temperature range 3 K < T < TK , the
data in Fig. 13(a) practically coincide with the straight line.
The disagreement above 60 K is due to broad maximum of
the resistivity, as the fit to the +’s in Fig. 13(b) shows. All
solid curves in Fig. 13(b) show similar incongruence with the
experimental data, an indication that higher levels of the Ce
ion, well above the ground-state doublet, make progressively
larger contributions to the resistivity as T rises above 50 K.

At lower temperatures, all solid curves in Fig. 13(b) show
excellent agreement with the experimental data over a wide
range of temperatures. At the highest dopant concentrations,
x = 0.87, 0.66, and 0.52, the congruence extends to the
lowest temperature in the measurement, T = 0.5 K. At still
lower concentration, as already discussed, there is significant
deviation below 3 K for x = 0.30.

Equation (102) shows that the curvature of the resistivity
is controlled by the phase shift. Below TK , the curvature has

the sign of cos(2δ) and is hence positive for δ < π/4. The
different curvatures in Fig. 13(a) are associated with the phase
shifts in Table IV, which decay from near π/2 in the La-rich
sample to near 0 for x = 0.30.

This behavior is consistent with competition between the
Kondo effect and the Ce-Ce RKKY interactions [28,41]. For
samples with high La concentration concentration, the mag-
netic moments of the Ce ions are individually screened by
the Kondo cloud, and the phase shift approaches π/2. As x
diminishes, the RKKY interaction I between Ce ions grows.
Under these conditions, the Kondo cloud first burgeons as
the temperature drops from the vicinity of the local moment
fixed point, but the RKKY interaction checks the expansion at
kBT ≈ I. The amount of screening is therefore limited, and
the Friedel sum rule brings the phase shift down.

b. Thermopower. In contrast with the conductance, the ther-
mopower maps nonlinearly onto the universal moments L(0)

00

and L(1)
01 . A linear relation can, nevertheless, be established

[53]. To this end, we substitute the right-hand side of Eq. (101)
for L1 and the right-hand side of Eq. (102) for L0 on the
right-hand side of Eq. (72). Straightforward manipulations
then show that

hL(1)
01 (T/TK )

eS(T/TK )
=

√
2

π
(h cot(2δ)L(0)

00 (T/TK ) − cot(δ)). (113)

The universal functions L(0)
00 (T/TK ) and L(1)

01 (T/TK ) are
easily computed. Thus, given (i) a tabulation of thermopowers
measured in a range of temperatures and (ii) a trial Kondo
temperature TK , the left hand-side of Eq. (113) can be com-
puted and plotted as a function of the right-hand side. As in
Sec. IV B 6 a, bisection indexed by the curvature of the plot
then determines the Kondo temperature and, subsequently, the
phase shift.

An example to demonstrate the effectiveness of this proce-
dure seems warranted. No measurements of the thermopower
in side-coupled geometry have been reported, however. While
numerous studies focused on the conductance of nanostruc-
tured devices are found in the literature from the last two
decades, the other transport properties have received virtu-
ally no attention, and the two recent exceptions preferred the
bridge geometry [6,65].

Substitutional alloys with low concentration of a magnetic
species offer an attractive alternative, since Eqs. (71)–(73)
describe their transport properties in the dilute limit, up to a
system dependent proportionality factor. Here, the discussion
is centered on the rare-earth compound Lu0.9Yb0.1Rh2Si2 and
the thermal dependence of its thermopower at moderately low
temperatures [66]. The crystal field of the lattice splits the
ground-state multiplet of the free Yb ion into four doublets.
The lowest doublet lies 210 K below the first excited one.
To reduce the contribution from the excited doublets, the
following analysis will be restricted to temperatures below
75 K. Under these conditions, the Yb becomes approximately
equivalent to a spin-1/2 impurity coupled to the conduction
electrons, a Kondo system, that is.

Figure 14 depicts the thermal dependence of the ther-
mopower. The circles represent the laboratory data [66], and
the solid line is an optimized fit rooted in the mappings (101)
and (102). To account for the distinction between the one-

075129-22



REAL-SPACE NUMERICAL RENORMALIZATION GROUP … PHYSICAL REVIEW B 106, 075129 (2022)

(a)

(b)

10−2 10−1 100

−20

−15

−10

−5

T/TK

S
(μ

V
K

−
1
)

Lu0.9Yb0.1Rh2Si2
TK = 125K, δ = −0.41π, α = 0.26

0 0.1 0.2

−2

−1.5

−1

−0.5

hL(0)
00

h
L(1

)
0
1

/e
S

e
x
p

Lu0.9Yb0.1Rh2Si2
TK = 125K

FIG. 14. Thermopower of the Kondo system Lu0.9Yb0.1Rh2Si2.
The filled circles are measurements reported in Ref. [66], and the
solid lines are optimized fits resulting from Eq. (114) with the con-
stants in the legend of (b). (a) plots the left-hand side of Eq. (114) as a
function of L(0)

00 (T/TK ) to display the linear regression from which δ

and α were obtained. (b) shows the Seebeck coefficient as a function
of temperature.

dimensional side-coupled device and the lattice system, the
left-hand side of Eq. (114) was multiplied by an adjustable
dimensionless parameter α. This led to the expression

S(T ) = α
2h

e

L(1)
01 (T )

h cot(2δ)L(0)
00 − cot(δ)

(bulk). (114)

The solid line in the figure represents Eq. (114) with TK =
125 K, δ = 0.41, and α = 0.26. The Kondo temperature was
determined by the aforementioned bisection procedure, which
converged to the straight line fitting Eq. (114) in Fig. 14(a).
The slope m = −α cot(2δ) and the intersection c = α cot(δ)
of that line then determined the phase shift δ and coefficient
α, and yielded the fit in panel (b). The systematic deviations
separating the rightmost circles from the solid lines in both

panels reflect the contributions from the excited doublets of
the Yb ions, which are frozen out as the temperature is re-
duced below 40 K. The agreement in both panels confirms
Köhler’s interpretation [66], which associated the relatively
high thermopower in the substitutional compound with the
Kondo effect.

The order-of-magnitude difference between the Kondo
temperatures in Ref. [66] and in Fig. 14 calls for a brief
discussion. Köhler identified the Kondo temperature with the
temperature Tmin at which the thermopower is minimum.

By contrast, we define TK as the temperature T1/2 at which
the conductance is half the conductance quantum, that is,
G(TK ) = e2/h. As Figs. 5 and 6 show, the ratio between T1/2

and Tmax depends on particle-hole asymmetry. For runs A,
B, and C, the ratios are approximately 3 × 10−1, 2 × 101, and
8 × 101, respectively. On the bottom panel in Fig. 14 the last
two values bracket the ratio TK /Tmin ≈ 10. The ratio between
the Kondo temperature (125 K) calculated from Eq. (113) and
the value (12 K) identified in the experimental report [66] is
therefore in line with the numerical results.

c. Thermal conductance. The first term on the right-hand
side of Eq. (73) is the energy moment L2(T ), which maps
linearly onto the universal moment L(2)

00 . Even though the
second term breaks the linearity, it is a simple matter to restore
it. The right-hand sides of Eqs. (101), (102), and (103) can
be substituted for L1, L0, and L2 to convert Eq. (73) into a
mapping that is approximately linear:

βκ (T/TK ) + π2

2

(
L(1)

01 (T/TK )
)2

sin(2δ)
1
h cot(δ) − cot(2δ)L(0)

00 (T )

= 2π2

3h
cos2(δ) − cos(2δ)L(2)

00 (T ). (115)

Equation (115) is less convenient than Eq. (113), or (114),
because its left-hand side depends on the phase shift. An
iterative procedure is now required to determine TK and δ. The
second term on the left-hand side vanishes for δ = π/2, and
is small in the Kondo regime. In the first iteration, that term is
neglected, the left-hand side becomes analogous to Eq. (114),
and the bisection procedure described in Secs. IV B 6 a and
IVB6b yields a first estimate: TK = T 1

K and δ = δ1. This con-
cludes the first iteration.

In the nth iteration, substitution of T n−1
K and δn−1 for TK

and δ turns the second term on the right-hand side of Eq. (115)
into a known function f (T/T n−1

K ). Given a trial TK , the sum
βκexp(T/TK ) + f (T/T n−1

K ) can then be depicted as a func-

tion of L(2)
00 (T/TK ). This defines a bisection procedure indexed

by the curvature of the plot, which determines the improved
estimates T n

K and δn, and closes iteration n.
Unfortunately, lack of pertinent experimental data pre-

cludes presentation of an example. Measurements of κ (T )
in lattice systems have been reported, but the contribution of
the Kondo cloud cannot be extricated from the phonon and
electron-phonon contributions to κ (T ) [67]. Measurements
in side-coupled devices seem therefore necessary before
Eq. (115) can be put to the test.
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V. SUMMARY

This paper presents an alternative formulation of the NRG
procedure, abbreviated eNRG because it is based on an expo-
nentially growing sequence of blocks in real space, instead
of on a logarithmic sequence of intervals in momentum
space. Projection of the conduction-band Hamiltonian upon
the resulting basis yields the discretized form (48), analogous
to the codiagonal Hamiltonian generated by the logarith-
mic discretization [2]. The codiagonal coefficients tn and t̄n
in the two series decay exponentially as n grows, and the
identification λ2 ≡ 
 makes the sequence tn (n = 0, 1, . . .)
asymptotically proportional to the sequence t̄n (n = 0, 1, . . .).
The proportionality breaks down for small n because the
two discretizations are applied to distinct dispersion relations:
εk = −2t cos(k) and εk = D(k − kF ) in the eNRG and NRG
approaches, respectively.

Another distinction is the flexibility afforded by the second
parameter in the eNRG discretization. The offset ζ controls
the phase of the oscillations artificially added to the computed
thermal dependence of physical properties. Averaging over
two subsequent offsets eliminates such oscillations and yield
accurate approximations to the continuum limit. In addition,
larger offsets describe the conduction energies near the band
edges more reliably. The high-temperature congruence be-
tween the eNRG-computed conductances and the exact results
for the noninteracting model in Fig. 4 offers an illustration.

The numerically computed thermal properties for the in-
teracting model, in Sec. IV B 4, survey the accuracy of the
eNRG procedure. The eigenvalues and eigenvectors resultant
from the iterative diagonalization of the model Hamiltonian
yield the energy moments L j ( j = 0, 1, 2) from which the
electrical conductance G(T ), the Seebeck coefficient S(T ),
and the thermal conductance κ (T ) are computed. As Figs. 8–
10 show, the numerical results for the three energy moments
agree very well with Eqs. (101), (102), and (103) in the Kondo
regime, which map the thermal dependence of the moments
onto the three universal functions L(1)

01 (T/TK ), L(0)
00 (T/TK ),

and L(2)
00 (T/TK ), respectively.

The mappings onto the universal functions provide insight.
To dwell on this point, Sec. IV B 4 c explains why the devi-
ations from the Wiedemann-Franz law shrink as the model
parameters move away from particle-hole symmetry. The final
section, discusses the algorithms exploiting the linearity of the
mappings to the universal functions to extract the Kondo tem-
perature and phase shift from experimental data. Examples
targeting electrical conductance data having been presented in
previous publications, and the absence of experimental data
in side-coupled geometry barring application to the thermal
conductance, the illustration in Fig. 14 is focused on a mea-
surement of the thermopower.

With exception of Fig. 4, the above-described results of the
eNRG method are linked to universality and could have been
obtained via NRG treatment. The eNRG is, however, more
than a simple derivation of the NRG Hamiltonian. A real-
space formulation is fitter to describe nanostructures than one
in momentum space, especially when both involve projections
upon incomplete bases. The eNRG construction is expected
to describe the RKKY interaction between the magnetic mo-
ments of two impurities or quantum dots better than the NRG

approach [28], for instance. Additional work is planned to
unravel the full potential of the method.
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APPENDIX A: DERIVATION OF Eq. (38)

The first term on the right-hand side of Eq. (37) reads

H
diag
f λ ≡ −t

∞∑
n=1

λn∑
j=1

(αn, jα
∗
n, j+1 + c. c.) f †

n fn . (A1)

The superscript is a reminder that H
diag
f λ only comprises the

diagonal terms of Hf λ.

Since H
diag
f λ has no counterpart in the original Hamilto-

nian, Eq. (28), we wish to choose the coefficients αn, j so
that the factor within parentheses in the summand on the
right-hand side be equal to zero, for n = 1, 2, . . . and j =
1, 2, . . . , λn. In other words, the αn, j must satisfy the condi-
tion

Re(αn, jα
∗
n, j+1) = 0, (A2)

from which it follows that the phases αn, j and αn, j+1 differ by
an odd multiple of π/2:

φn, j+1 = φn, j + (2p + 1)
π

2
, (A3)

where p is an arbitrary integer.
The simplest expression satisfying Eq. (A3) is

φn, j = φn + j
π

2
, (A4)

where φn denotes a phase that is uniform within each cell Cn
(n = 1, 2, . . .).

The φn remain to be fixed. To this end, let us consider the
second term on the right-hand side of Eq. (37):

Hoff
f λ = −t

∞∑
n=0

(α∗
n,λnαn+1,1 f †

n fn+1 + H.c.), (A5)

where the superscript is a reminder that Hoff
f λ only comprises

the off-diagonal terms of Hf λ.

The phase of the factor multiplying f †
n fn+1 in the summand

on the right-hand side of Eq. (A5) is

φn+1,1 − φn,λn = φn+1 − φn + π

2
(1 − λn), (A6)

which, in view of Eq. (32), can be written in the form

φn+1,1 − φn,λn = φn+1 − φn + π

2
(1 − Gn+1 + Gn ). (A7)
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We want to make the coefficient of f †
n fn+1 on the right-

hand side of Eq. (A5) real positive. The phase difference
(A7) must therefore be an odd multiple of π . To satisfy this
requirement, we let

φn = π

2
(Gn + n), (A8)

a specification that makes the right-hand side of Eq. (A7)
equal to π .

Equation (A8) turns the product of coefficients in the sum-
mand on the right-hand side of Eq. (A5) into a negative real
number

α∗
n,λnαn+1,1 = −|αn,λn ||αn+1,1|, (A9)

so that Eq. (A5) reads

Hoff
f λ = t

∞∑
n=0

(|αn,λn ||αn+1,1| f †
n fn+1 + H.c.). (A10)

The absolute values |αn, j | are subject to the normalization
condition (35), which constrains the dependence on n, but not
the dependence on j. The uniform-weight choice |αn, j | = αn
yields off-diagonal coefficients that decay exponentially with
n, as a straightforward calculation shows. Specifically, the
normalization condition yields

|αn | = λ−n/2, (A11)

so that Eq. (A10) becomes

Hoff
f λ = t

∞∑
n=0

(λ−(n+ 1
2 ) f †

n fn+1 + H.c.), (A12)

which is equivalent to Eq. (42).

APPENDIX B: EXTENSIONS OF THE eNRG PROCEDURE

1. Alternative definitions of the absolute values |αn, j|
Equation (40) specifies the absolute values of the coeffi-

cients αn, j ≡ { fn , an, j} (n = 0, 1, . . .; j = 1, . . . , λn). While
the specification of identical weights to all sites belonging to
the same cell is appealing from the physical viewpoint, other
choices are acceptable from the algebraic perspective. Simple
examples merit discussion, for the sake of comparison. To
facilitate normalization, it is convenient to let the |αn, j | be
proportional to a j-independent factor.

a. Arithmetic progression

As the first illustration, consider absolute values that grow
linearly within each cell:

|αn, j | = ᾱn j (n = 0, 1, . . . ; j = 1, . . . , λn). (B1)

The normalization condition now reads

ᾱ2
n

λn∑
j=1

j2 = 1, (B2)

from which it follows that

ᾱn =
√

6

(1 + λ−n)(2 + λ−n)
λ− 3n

2 . (B3)

The product of absolute values on the right-hand side of
Eq. (39) then becomes

|αn,λn ||αn+1,1|

= 6λ− 3
2√

(1 + λ−n)(1 + λ−n−1)(2 + λ−n)(2 + λ−n−1)
λ−2n.

(B4)

In conclusion, the specification (B1) leads to codiagonal
coefficients t̄n that become proportional to λ−2n at large n.
This choice would identify the common ratio λ with 
1/4,
instead of 
1/2. A common ratio λ = 2, for instance, would
correspond to 
 = 16, and the discretization would introduce
errors of O(exp(−π2/ ln 
) ≈ 3%). Even purely practical
considerations argue against Eq. (B1).

b. Hyperbolic dependence

The following specification merits more attention, for it
may prove valuable for the study of nonequilibrium phenom-
ena, as explained below:

|αn, j |2 = α̃2
n cosh

(
r

(
j − λn + 1

2

))

× (n = 0, 1, . . . ; j = 1, . . . , λn), (B5)

where the parameter r is a very small, positive real number,
and the normalization condition (35) determines the prefactor
α̃n:

α̃2
n

λn∑
j=1

cosh

(
r

(
j − λn + 1

2

))
= 1. (B6)

The sum on the left-hand side of Eq. (B6) can be split into
two geometrical series, evaluation of which shows that

α̃2
n = sinh(r/2)

sinh(rλn/2)
. (B7)

This expression for the prefactor can now be combined
with Eq. (B5) to determine the absolute values |αn,λn | and

|αn+1,1| (n = 0, 1, . . .) in the summand on the right-hand side
of Eq. (A10), and the following equality results:

Hoff
f λ =

∞∑
n=0

(tn f †
n fn+1 + H.c.), (B8)

where

tn = t sinh
( r

2

)√√√√cosh
( r(λn−1)

2

)
cosh

( r(λn+1−1)
2

)
sinh

(
rλn

2

)
sinh

(
rλn+1

2

)
× (n = 0, 1, . . .). (B9)

The parameter r, by assumption, is very small. For small
n, such that rλn 
 1, the arguments of the hyperbolic func-
tions are small, and Eq. (B9) takes an approximate form that
coincides with Eq. (A12):

tn = tλ−(n+ 1
2 ) (rλn 
 1). (B10)

At the opposite extreme, with n so large that rλn � 1, the
square root on the right-hand side of Eq. (B9) approaches
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unity, and the codiagonal coefficients become approximately
independent of n:

tn = t sinh(
r

2
) (rλn � 1). (B11)

We can see that, under the condition (B5), the codiagonal
coefficients decay exponentially with n for small n and ap-
proach a constant at large n. The latter asymptotic form frees
the resulting eNRG Hamiltonian from the limitation identified
by Rosch [68], which precludes applications of the NRG
procedure to nonequilibrium problems. In recent work, to sur-
mount that limitation, Schwarz et al. [69] have brought forth
a tight-binding Hamiltonian combining NRG-like codiagonal
coefficients at high energies with a constant codiagonal coef-
ficient at small energies. Equation (B9) interpolates smoothly
between the two extremes and hence offers an alternative in
the study of nonequilibrium phenomena.

2. Arbitrary filling of conduction band

The discretization of the model Hamiltonian is designed
to reduce the number of levels in the spectrum. As a con-
sequence, the number of electrons in the eigenstates of the
discretized Hamiltonian is much smaller than in the model
Hamiltonian. For this reason, both the NRG and eNRG ap-
proaches operate implicitly in the grand-canonical ensemble.

Usually, the chemical potential μ is set to zero. If the model
Hamiltonian displays particle-hole symmetry, this adjustment
becomes necessary to make the grand-canonical Hamilto-
nian symmetric, since μ changes sign under particle-hole
transformations. The derivation of the Hamiltonian (42) from
Eq. (37) took special care to preserve the particle-hole sym-
metry of the conduction band Hamiltonian: the phases of the
coefficients αn, j were chosen to eliminate the factors of the
particle-hole asymmetric operators f †

n fn (n = 0, 1,∞; j =
1, . . . , λn). This guaranteed the conduction band to be half-
filled, and the chemical potential to be μ = 0.

One might be interested, however, in other fillings of the
conduction band, equivalent to μ �= 0. The grand-canonical
form corresponding to Eq. (37) is, then,

Hμ ≡ − t
∞∑

n=1

λn−1∑
j=1

(αn, jα
∗
n, j+1 + c. c.) f †

n fn

− t
∞∑

n=0

(αn,λn α∗
n+1,1 f †

n fn+1 + H.c.) − μN. (B12)

In contrast with our treatment of Eq. (37) in Sec. III B 2,
there is no reason here to force the summand in the first sum
on the right-hand side to be zero. Thus, instead of Eq. (38), an
alternative expression must be allowed for the coefficients in
the summand:

αn, j = |αn |eiϕn, j (n = 0, 1, . . . ; j = 1, 2, . . . , λn), (B13)

with the same absolute values (40), but a more general expres-
sion for the phases:

ϕn, j = γ (Gn − n + j) + nπ, (B14)

where γ is a constant that depends on μ. If μ = 0, γ must be
π/2 to make Eq. (B14) into congruence with Eq. (38).

We next substitute the right-hand side of Eq. (B14) for
the phases of the coefficients αn, j on the right-hand side of
Eq. (B12) to show that

Hμ = − 2t cos(γ )
∞∑

n=1

|αn |2
λn−1∑
j=1

f †
n fn

+ t
∞∑

n=0

(|αn ||αn+1| f †
n fn+1 + H.c.) − μN. (B15)

The normalization condition again yields Eq. (41) for |αn |
(n = 0, 1, . . .), which reduces Eq. (B15) to the simpler, more
explicit form

Hμ = − 2t cos(γ )
∞∑

n=1

(1 − λ−n) f †
n fn

+
∞∑

n=0

tn ( f †
n fn+1 + H.c.) − μN. (B16)

The constant γ must now be related to the chemical po-
tential μ. To this end, it is convenient to write a more formal
expression for Eq. (B16):

Hμ = lim
M→∞

(
− 2t cos(γ )

M∑
n=0

(1 − λ−n) f †
n fn

+
M∑
n=0

tn ( f †
n fn+1 + H.c.) − μN

)
. (B17)

Given that the trace of the grand-canonical Hamiltonian
must remain finite as N → ∞, the following expression re-
sults

− 2t cos(γ )(M + 1) + 2t cos(γ )
1 − λ−M−1

1 − λ−1
− μ(M + 1)

= EM (M → ∞), (B18)

where EM approaches a finite constant in the infinite limit.
The first and second terms on the left-hand side of

Eq. (B18) have absolute values that grow without limit as
M → ∞. They must therefore cancel each other, which re-
quires that

−2t cos(γ ) = μ, (B19)

and hence determines γ .
Substitution of the right-hand side of Eq. (B19) for the first

term within parentheses on the right-hand side of Eq. (B17)
then yields the desired expression for the discretized Hamilto-
nian:

Hμ =
∞∑

n=0

tn ( f †
n fn+1 + H.c.) −

∞∑
n=0

μn f †
n fn , (B20)

where

μn ≡ μλ−n. (B21)

If μ = 0, Eq. (B19) yields γ = π/2, and Eq. (B14) reduces
to Eq. (A4), with the φn given by Eq. (A8).
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3. Next-neighbor couplings

To discuss the flexibility of the eNRG construction in yet
another context, this section considers a tight-binding Hamil-
tonian with near- and next-near-neighbor couplings:

Hnn = −
√

2(ta†
0a1 + ra†

0a2 + H.c.)

−
∞∑

�=1

(ta†
�a�+1 + ra†

�a�+2 + H.c.). (B22)

Unlike the Hamiltonian (2), Hnn is particle-hole asym-
metric, a circumstance calling for brief digression. The
particle-hole transformation (12b) reverses the sign of the
chemical potential. For particle-hole symmetric model Hamil-
tonians, any discretization procedure preserving the symmetry
will therefore ensure that μ = 0 after the discretization.

For particle-hole asymmetric Hamiltonians, by contrast,
the approximation in Eq. (36) tends to shift μ. The chemi-
cal potential must then be adjusted so that the trace of the
discretized grand-canonical Hamiltonian be equal to that of
the model Hamiltonian. In the interest of briefness, the fol-
lowing analysis will start out with the discretization of the
Hamiltonian H and turn to the grand-canonical Hamiltonian
at the end. For definiteness, we will fix the offset ζ = 1 and
focus our attention on the second term on the right-hand side
of Eq. (B22):

Hnn
f = −

∞∑
�=1

(ta†
�a�+1 + ra†

�a�+2 + H.c.), (B23)

The derivation follows the procedure in Sec. III B 2. Sub-
stitution of the right-hand side of Eq. (36) for the operators a�

in Eq. (B22) yields the equivalent equality

Hnn
f λ = − t

∞∑
n=1

λn−1∑
j=1

(αn, jα
∗
n, j+1 + c. c.) f †

n fn

− r
∞∑

n=1

λn−2∑
j=1

(αn, jα
∗
n, j+2 + c. c.) f †

n fn

− t
∞∑

n=0

(αn,λn α∗
n+1,1 f †

n fn+1 + H.c.)

− r
∞∑

n=0

((αn,λn α∗
n+1,2+αn,λn−1 α∗

n+1,1) f †
n fn+1+H.c.).

(B24)

Since the particle-hole symmetry of the Hamiltonian (B22)
is broken by the terms proportional to r, the summand in the
first term on the right-hand side must vanish. As explained
in Sec. III B 2, Eq. (34), with the phases and absolute values
given by Eqs. (38) and (40), respectively, satisfies this condi-
tion. Substitution of the same expression for the coefficients
αn, j (n = 0, 1, . . .; j = 1, . . . , λn) on the right-hand side of
Eq. (B24) eliminates the first term on the right-hand side and
reduces the coefficient of the summand in the third term to
the product of the absolute values. The coefficients in the
summands of the terms proportional to r are also determined
by Eqs. (38) and (40). In the second term, the coefficients are
real, given by the product of the absolute values: αn, jα

∗
n, j+2 =

−|αn |2. In the fourth term, they are imaginary, (αn,λn α∗
n+1,2 +

αn,λn−1 α∗
n+1,1) = 2i|αn ||αn+1|. Given that |αn | = λ−n/2 (n =

0, 1, . . .), Eq. (B24) reduces to the equality

Hnn
f λ =

∞∑
n=0

((tn + 2irn ) f †
n fn+1 + H.c.)

+
∞∑

n=1

(2r(1 − 2λ−n) − μ) f †
n fn − μ f †

0 f0 , (B25)

where the tn are given by Eq. (43), and the rn , by an analogous
equation:

rn = rλ−n− 1
2 (n = 1, 2, . . .). (B26)

The infinite sums on the right-hand side of Eq. (B25) can
then be truncated at n = N , which yields the grand-canonical
Hamiltonian

Hnn
f λ =

N−1∑
n=0

((tn + 2irn ) f †
n fn+1 + H.c.)

+ 2r
N∑

n=1

(1 − 2λ−n) f †
n fn − μ

N∑
n=0

f †
n fn . (B27)

As in Appendix B 2, we must now set μ = 2r to ensure
that the trace of the right-hand side remains finite as N →
∞. Substitution in the last term on the right-hand side of
Eq. (B27) then yields the desired expression for the truncated
grand-canonical Hamiltonian:

Hnn
f λ =

N−1∑
n=0

((tn + 2irn ) f †
n fn+1 + H.c.)

− 4r
N∑

n=1

λ−n f †
n fn − 2r f †

0 f0 . (B28)

4. Two dots coupled to quantum wire

Figure 15 displays the geometry of discretization for quan-
tum wires coupled to two dots dL and dR at sites � = ±r. The
model Hamiltonian now reads

H2 =
∑

α=L,R

Hd,α
+ V (d†

Rc� + d†
Lc−� + H.c.)

− t
L̄∑

�=−L̄

(c†
�c�+1 + H.c.), (B29)

where the Hd,α
are defined as in Eq. (3), with dot-dependent

gate voltages Vgα and the Coulomb repulsions Uα (α = L, R).
The separations 2r between the dots may be narrow, as in

Fig. 15(a), or wide, as in Fig. 15(b). As the drawings show,
it is convenient to define two symmetric cell sequences in
the former case, and two symmetric pairs of sequences in the
latter. For easier comparison, the same common ratio λ = 2
and offset ζ = 1 defines all sequences in the two panels.

With ζ = 1 the procedure in panel (a) bypasses the site
� = r, which is coupled to the dot orbital dR, and follows the
construction in Fig. 3(b) to define the infinite cell sequence on
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(a)

(b)

f0Lf1Lf2Lf3L f0R f1R f2R f3R

2r

dL dR

c−r cr

2r

f̃1R f0R f1R f2Rf̃0Rf̃1Rf0Lf1Lf2L f̃0L f̃1L f̃M

dL dR

c−r cr

FIG. 15. eNRG discretization of the model Hamiltonian describing two quantum dots side-coupled to a quantum wire. The dots may be
close to each other or widely separated, as (a) and (b) indicate, respectively. In each panel, the periodic sequence of spheres at the intermediate
row represents the quantum wire. The two quantum dots, represented by the spheres at the top row, are coupled to lattice sites 2r apart.
(a) shows two infinite sequences of cells defined as in Fig. 3(b), with common ratio λ = 2 and offset ζ = 1. (b) defines two sequences, again
with λ = 2 and ζ = 1, starting from the site coupled to each dot. As in (a), the two outgrowing sequences are infinite. The ingrowing sequences
merge to form the cell with lighter shading, centered at the midpoint between the dot sites.

the right-hand side of dot dR. A symmetric sequence encloses
the sites to the left of dot dL . From the operators c� in Cn

(n = 0, 1, . . .), a single Fermi operator fn ≡ λ−n/2 ∑
� c� is

defined, as in Sec. III B 2. Similarly, from the c−� in C̄n , a

single operator f̃n ≡ λ−n/2 ∑
� c−� is defined. Equation (B29)

then takes the form

H (a)
2 =

∑
α=L,R

Hd,α
+ V (d†

Rcr + d†
Lc−r + H.c.)

− t
r−1∑

�=−r

(c†
�c�+1 + H.c.)

+
∞∑

n=0

tn ( f †
n fn+1 + f̃ †

n f̃n+1 + H.c.), (B30)

with coefficients tn given by Eq. (43).
The infinite sums on the right-hand side of Eq. (B30) are

analogous to Eq. (42). The procedure in Sec. III B 3 truncates,
defines a renormalization group transformation, and allows
iterative diagonalization of H2 .

For large r, larger than r = 5, say, the sum proportional
to −t on the right-hand side of Eq. (B30) may make the cost
of diagonalizing the truncated Hamiltonian excessive. Under
these circumstances, the feasible alternative is the discretiza-
tion scheme in Fig. 15(b).

Four sequences of cells are then constructed, around the
dot sites, two growing away from the central region, and two
growing towards the midpoint. The outgrowing sequences are
infinite and follow the construction in panel (a). The first
cells C̄n (n = 0R, 1R, . . . , NR and n = 0L, 1L, . . . , NL) of
the ingrowing sequences mirror the outgrowing cells, but the
progressions run towards each other and must be interrupted at
finite N to avoid overlap. As the example in Fig. 15(b) shows,
the two sequences merge to form a cell CM . The cutoff N is the

largest integer ensuring that CM contains more than λN sites,
that is, ensuring that the central cell is wider than the two
neighboring cells. In the example, λN = 2, while the central
cell contains 11 sites; if λN = 4, the central cell would contain
only three sites.

Again, an operator fαn (n = 0, 1, . . . ; α = L, R) is asso-
ciated with each cell in the outgrowing progressions, an
operator f̄αn (n = 0, 1, . . . , N ; α = L, R) with each cell in the
ingrowing sequence, and the operator f̃M with the central cell.
Projection of H2 onto the resulting basis yields the expression

H (b)
2 =

∑
α=L,R

Hd,α
+ V (d†

Rcr + d†
Lc−r + H.c.)

− t (c†
� ( f0R + f̃0R) + c†

−�( f0L + f̃0L ) + H.c.)

+
∑

α=L,R

( ∞∑
n=0

tn f †
nα fn+1α +

N−1∑
n=0

tn f̃ †
nα f̃n+1α

+ t√
λN nM

f̃ †
Nα f̃M + H.c.

)
, (B31)

where nM is the number of sites in cell CM . Like H (a)
2 , the

Hamiltonian (B31) can be truncated and diagonalized itera-
tively, which gives access to its physical properties.

5. Analogue of the z trick

In the original formulation of the NRG, the infinite se-
quence L
 = {D, D
−1, D
−2, . . .} defines the discretized
states am± (m = 0, 1, . . .), as Eq. (20). The z trick chooses
a second parameter z, a real number in the interval
[0.5, 1.5] and generalizes the log sequence to L
,z =
{D, D
−z, D
−1−z, D
−2−z, . . .}. This leads to a tridiagonal
form like Eq. (24) with codiagonal coefficients t̄ z

n that must be
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determined numerically. At large n, the following expression
replaces Eq. (26):

t̄ z
n = D

1 + 
−1

2

1−z− n

2 (
−n 
 1). (B32)

The computed physical properties are now parametrized by

 and z. Averaging of the results over z in the interval of def-
inition virtually eliminates deviations artificially introduced
by the discretization. A mathematical derivation analogous
to the analysis in Appendix C, below, shows the amplitude
of the deviations in equilibrium transport properties to be
proportional to [37]

f̄
,z = cos(θ1 + 2π (z − 1)) exp

(
− π2

ln(
)

)
. (B33)

where θ1 is the phase of the oscillation for z = 1.
With z = 0.5 the phase of the trigonometric function on

the right-hand side of Eq. (B33) is θ1 − π . This shows that
f

,z=0.5 and f
,z=1 have opposite signs. The average of the

transport property over z = 0.5 and z = 1 eliminates the un-
physical oscillations (B33).

The eNRG construction admits an analogous extension.
The generalization modifies the number of sites defining the
cells in Fig. 3. For simplicity, let the offset be ζ = 0. As in
Fig. 3, the first cell, C0 , which is coupled to the impurity,
contains a single site, in all cases. The neighboring cell C1 is
called the seed. Let it contain w sites—w is the seed width.
The subsequent cells Cn (n = 2, 3, . . .) are broadened by a
factor w, that is, Cn contains wλn−1 sites.

The seed width w = 1 recovers the construction in
Fig. 3(b). The width w = λ recovers Fig. 3(a), but other
choices, such as w = 3 with λ = 2 yield distinct sequences.
The broadening affects the coefficients αn, j . From the specifi-
cation (40) and the normalization condition (35) we now find
the absolute values

|αn, j | =
{

1 (n = 0)
(wλn−1)−1/2 (n � 1)

. (B34)

Equation (39) then yields the codiagonal coefficients. No-
tice taken that the coupling between a0 and a1 in Eq. (30) is
t
√

2, we find that

tw
n =

{
t ( w

2 )−1/2 (n = 0)
t (wλn− 1

2 )−1 (n � 1)
. (B35)

To relate the NRG parameter z to the eNRG parameter
w, one must compare the right-hand sides of Eqs. (B32)
and (B35). More specifically, one divides the former by the
prefactor D(1 + 
−1)/2 (that is, the codiagonal coefficient for
n = 0 and z = 1) and the latter by the corresponding prefactor
t
√

λ and equates the two quotients to obtain the mapping

z ≡ 1 + ln(w)

2 ln(λ)
. (B36)

For w = λ and w = 1, which correspond to Figs. 3(a)
(ζ = 0) and Figs. 3(b) (ζ = 1), Eq. (B36) yields z = 1.5 and
z = 1, respectively. For this reason, the amplitudes fλ,ζ of the
oscillations in physical properties computed with ζ = 0 and
with ζ = 1 have opposite signs.

To reach the other limit of the 0.5 � z � 1.5 interval,
one must let the seed width be fractionary: Eq. (B36) maps
w = 1/λ to z = 0.5. The nonintegral value w = 1/λ cannot
be dismissed as atypical, given that the z interval comprises
a continuum. The eNRG construction must therefore be fur-
ther extended, to accommodate fractional and even irrational
widths w. This recommends analytical continuation of the
sequences in Eq. (B35).

Carlson’s theorem proves instrumental in this context [70].
Even though the theorem admits a less restrictive statement,
for our purposes it suffices to consider functions f (ζ ) that are
(i) analytic in the domain D : {z ∈ C | R(z) � 0} and have
upper bounds, so that | f (z)| � C for some real constant C.
Under these conditions, the Theorem states that if f (n) = 0
for n = 0, 1, 2, . . ., then f (z) = 0 for all z ∈ D.

With the theorem in mind, we start out with the sequence
tw
0 (w = 1, 2, . . .). Given λ, we seek an analytical function
f t
0 (z) (z ∈ D) such that (i) f t

0 (m) = t/
√

λ−1 + m for m =
0, 1, . . ., and (ii) | f t

0 (z)| � C, for some real constant C.
Conditional to the existence of this function, we define the
auxiliary function

f(z) ≡ f t
0 (z) − t (λ−1 + z)−1/2, (B37)

which must vanish identically for z ∈ D, because it satisfies
the requirements of Carlson’s theorem.

Consequently,

f t
0 (z) = t (λ−1 + z)−1/2, (B38)

which satisfies the assumed conditions and, with w substituted
for z+ λ−1 is the desired extension of the sequence t0 (w) to
nonintegral widths w � λ−1.

The same reasoning applies to each of the other t s
n (n =

1, 2, . . .) and shows that the function

f t
n (z) ≡ tλ−n− 1

2 (λ−1 + z)−1 (n = 1, 2, . . .) (B39)

is the extension of tn (w) to nonintegral widths w � λ−1.
In practice, Eqs. (B38) and (B39) validate Eq. (B35) for

all real widths w � λ−1. Equation (B36) maps this inequality
onto the inequality z � 0.5. In particular, the standard NRG
interval 0.5 � z < 1.5 corresponds to the interval λ−1 � w �
λ, and the amplitudes of the oscillations in the eNRG proce-
dure are proportional to [37]

fλ,w = cos(φw ) exp

(
− π2

2 ln(λ)

)
, (B40)

where

φw = φ1 + π
ln(w)

ln λ
, (B41)

and φ1 is the phase for w = 1.
To confirm Eq. (B41), Fig. 16 shows the conductance for

the side-coupled device with U = 0, computed for widths
w = λ−1/2, 1, λ1/2, and λ, to which Eq. (B36) associates z =
0.75, 1, 1.25, and 1.5, respectively. Each curve displays the
expected sinusoidal oscillations around the continuum limit,
due to the discretization of the conduction band levels. The
phase of the oscillations grows uniformly from φ1 − π/2 for
w = λ−1/2 to φ1 + π for w = λ. For w = λ3/2 (not shown),
the plot coincides with the solid light olive curve.
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10−8 10−6 10−4 10−2

0

0.5

1

kBT/t

G
/G

0

z = 0.75
z = 1.00
z = 1.25
z = 1.50

FIG. 16. Thermal dependence of the electrical conductance for
the U = 0 side-coupled device calculated for four seed widths w.
The solid light olive, dashed blue, dotted green, and dark magenta
lines were computed with w = 1/

√
λ, 1,

√
λ, and λ, respectively,

which Eq. (B36) maps onto the four indicated zs.

In computations of excitation properties the extension of
Eq. (B35) to nonintegral w becomes especially important, be-
cause it allows numerical differentiation of excitation energies
with respect to w. The resulting derivatives enter the z-trick
algorithm allowing conversion of the discrete golden-rule
transition lines into smooth spectra [35]. When thermodynam-
ical or transport properties are wanted, the extension is of no
importance, since averaging over two integer widths (w = 1
and w = 0, which correspond to offsets ζ = 1 and ζ = 0,
respectively) is sufficient, as Eq. (B41) indicates, and the plots
in Figs. 5–12 show. In fact, as illustrated by the computation
in Sec. IV B 1, it is sufficient to average over two successive
offsets (ζ = 3 and 4, in the example), even though offsets
ζ > 1 find no equivalent in the w-construction.

6. Extension to nonintegral λ.

The common ratios λ defining the eNRG discretization are
natural numbers, λ = 1, 2, . . .. This should be sufficient for
most applications. Nonetheless, given that the NRG procedure
can be defined for arbitrary real 
 > 1, one may want to
include real numbers in the set of allowed common ratios.

The extension poses no algebraic challenge. For n > 0, for
instance, in analogy with the reasoning leading to Eq. (B37),
we seek an analytic, bounded function gt

n(z) (z ∈ D) such
that gt

n(m) = t (1 + m)−(n+1/2) (m = 0, 1, . . .) and define the
auxiliary function

g(z) ≡ gt
n(z) − t (1 + m)−(n+1/2), (B42)

which satisfies the requirements of Carlson’s theorem and
hence vanishes identically in D.

It follows that

gt
n(z) = t (1 + m)−n+1/2. (B43)

With 1 + m → λ, Eq. (B43) extends Eq. (43) to real λ � 1.
Similar analysis extends Eq. (44).

Under certain physical conditions, such as application of
a position-dependent potential to the lattice sites, it may be
necessary to preserve the concept of a cell as a unit enclosing
a natural number of sites. In such cases, the sequence of real
numbers 1, λ, λ2, . . . becomes a mere guideline, and the near-
est integer �λn� defines the number of sites in cell Cn . Let λ =√

2, for instance. To one decimal place, the sequence of real
numbers reads 1, 1.4, 2.0, 2.8, 4, 5.7, 8, 11.3, 16.0, 22.6, . . .,
and the cell sizes are 1, 1, 2, 3, 4, 6, 8, 11, 16, 23, . . .

The rounding of nonintegral numbers to the nearest inte-
gers tends to shift the number of sites in each cell, but the
absolute value of the shift in each cell size is capped by 1/2.
Since cell Cn (n = 1, 2, . . .) contains approximately λn sites,
the rounding of nonintegral numbers to the nearest integer in-
troduces relative deviations O(0.5λ−n) in the normalizations
in Eq. (41), which determine the codiagonal coefficients tn
(n = 0, 1, . . .). Since the products tn f †

n fn+1 (n = 0, 1, . . .) are
irrelevant operators [2], the significance of such shifts decays
rapidly as the energies of interest become much smaller than
t .

APPENDIX C: ANALYTICAL COMPUTATION OF THE
ELECTRICAL CONDUCTANCE AT A FIXED POINT

To offer insight into the dependence of physical properties
on the eNRG discretization parameters, this Appendix com-
putes the temperature-dependent electrical conductance at a
fixed point of the renormalization group transformation. As
explained in Sec. III B 5, the fixed-point Hamiltonian has
quadratic form with eigenvectors g�± [� = 0, 1, . . . , (N +
1)/2] corresponding to eigenvalues

ε�± = ±λ2(�∓ δ
π

). (C1)

To compute the conductance, we will need to express the
eNRG operator f0 on the basis of the eigenoperators g�±.
From analogy with the pertinent NRG expression one expects
{ f †

0 , g�±}2 to be proportional to ε�±. This is confirmed by nu-
merical diagonalization of the fixed-point Hamiltonian (54).
More specifically, fits to plots of { f †

0 , g�±}2/ε�± as function of
1/λ2, for various �, yields the following expression:

{ f †
0 , g�±}2 = α2

0 λ2� cos2 δ� , (C2)

where the coefficient is accurately described by the expression

α2
0 = 1

2
√

λ

1 − λ−2

1 + λ−2

(
1 + λ−4

(1 + λ−2)2

)
, (C3)

with deviations that are insignificant [O(10−5)] for λ = 2 and
shrink as λ grows.

The conductance is given by Eq. (65). At a fixed point,
Eqs. (C1)–(C3) bring that equality to the form

G(T ) = G0α
2
0

4ρ

∑
�±

β̄λ2� cos2 δ

cosh2(β̄ε�±/2)
, (C4)

with the shorthand

β̄ = tN−1β. (C5)
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Our choice of N makes β̄ 
 1. For small �, such that
β̄ε�/2 
 1, the denominator of the fraction in the summand
on the right-hand side of Eq. (C4) is approximately unitary,
while the numerator is small. In the opposite extreme, for large
�, such that β̄ε�/2 � 1, the denominator becomes very large,
while the numerator is comparatively small. It follows that
the sums over � can be extended to ±∞, and the equality,
rewritten as

G(T ) = G0α
2
0 cos2 δ

4ρ

( ∞∑
�=−∞

β̄λ2�

cosh2(β̄ε�+/2)

+
∞∑

�=−∞

β̄λ2�

cosh2(β̄ε�−/2)

)
. (C6)

Given the similarity between the two sums on the right-
hand side of Eq. (C6), it is sufficient to evaluate the first one.
To this end, we define the function

�(z) ≡ (β̄/w)λ2z

cosh2
(

β̄

2w
λ2(z− δ

π
)
) cos2 δ, (C7)

which is real and analytic on the real axis.
A Sommerfeld-Watson transformation [71] then shows that

∞∑
�=−∞

�(�) =
∫ ∞

−∞
�(x)dx + 4π Im

( ∑
k

R(k)
)
, (C8)

where R(k) is the residue of the function

φ(z) = �(z)

1 − exp(−2π iz)
(C9)

at its kth pole in the upper half-plane Im(z) > 0.
The factor 1/[1 − exp(−2π iz)] on the right-hand side in

Eq. (C9) has poles on the real axis, but it is analytic in the
upper half-plane. The numerator �(z) has poles at the zeros
of the hyperbolic cosine on the right-hand side of Eq. (C7),
that is, for z = zk satisfying

β̄

w
λ2zk−

δk
π = ±(2k + 1)π i (k = 0, 1, 2, . . .). (C10)

If the sign is positive, the phase of the right-hand side is
(4m + 1)π/2 (m = 0,±1,±2, . . .). If it is negative, the phase
is (4m + 3)π/2. The poles in the upper half plane therefore
lie at

z(k) = δ

π
+ ln

(
(w/β̄ )π (2k + 1)

)
2 ln λ

+ (2m + 1)π i

4 ln λ
(m = 0, 1, . . .). (C11)

This shows that the imaginary part of zk grows with m.
In all cases, substitution of zk for z in the denominator on
the right-hand side of Eq. (C9) makes the exponential very
large, even with m = 0. It is therefore a good approximation
to substitute the product −�(z) exp(2π iz) for the fraction and
to consider only the residues of the poles with m = 0 and
k = 0,±1, . . . in Eq. (C11).

Since the poles are of second order, the residue at the kth
pole is

R(k) = cos2 δ d
dz

(
e2π iz β̄

w
λ2z

)
sinh2( β̄

2w
λ2(z− δ

π
) )
(

d
dz

(
β̄

2w
λ2(z− δ

π
)
))2

∣∣∣∣
z=zk

, (C12)

where zk denotes the right-hand side of Eq. (C11) with m = 0.
The squared hyberbolic sine in the denominator on the

right-hand side of Eq. (C12) is unitary. The derivatives in the
numerator and denominator are readily computed and yield
the expression

R(zk ) = 2λ
2δ
π e2π izk

β̄

w
λ2(zk− δ

π
)

π i + ln λ

ln2 λ
cos2 δ. (C13)

With m = 0, Eq. (C11) implies that (β̄/w)λ2(zk−δ/π ) =
π (2k + 1)i. It follows that

∑
k

R(zk ) = 2
λ2 δ

π cos2 δ

π ln2 λ
(π − i ln λ) exp

( −π2

2 ln λ

)

×
∞∑

k=0

exp
{
i
[
2δ + π

ln
(
π w

β̄
(2k + 1)

)
ln λ

]}
2k + 1

.

(C14)

The term within the first parentheses on the right-hand side
can be converted to polar form:

π − i ln λ =
√

π2 + ln2 λ exp(iϕ), (C15)

where

tan ϕ ≡ − ln λ

π
. (C16)

This conversion brings Eq. (C14) to the form

∑
k

R(zk ) = 2λ2 δ
π cos2 δ

π ln2 λ

√
π2 + ln2 λ ei

(
ϕ+2δ+π

ln(π w
β̄

)

ln λ

)

× e− π2

2 ln λ lim
kM→∞

kM∑
k=0

eiπ ln(2k+1)
ln λ

2k + 1
. (C17)

Regarded as functions of ln(kM ), the real and imaginary
parts of the sum oscillate sinusoidally, with small amplitude
and period ln λ. Numerical averaging of sum on the right-hand
side of Eq. (C17) over kM yields

〈 kM∑
k=0

eiπ ln(2k+1)
ln λ

2k + 1

〉
= � eiκ , (C18)

where the modulus � and phase κ are computed numerically.
For λ = 2, for instance, � = 1.1, and κ = 0.18 rad.
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Substitution of Eq. (C18) on the right-hand side of Eq. (C8)
finally yields the equality

∞∑
�=−∞

β̄

w
λ2�

cosh2
( β̄ε�+

2w

) cos2 δ =
∫ ∞

−∞
�(x) dx

+8�λ2 δ
π

√
π2 + ln2 λ

ln2 λ
e− π2

2 ln λ

×sin

(
ϕ + 2δ + κ + π

ln
(
π w

β̄

)
ln λ

)

×cos2 δ. (C19)

Similar analysis shows that, with the substitution δ → −δ,
the right-hand side of Eq. (C19) yields the second term within
parentheses on the right-hand side of Eq. (C6).

These results provide insight into the numerical results
in Secs. IV and VII. The first term on the right-hand side
of Eq. (C19) is the continuum limit, the result that would
be obtained if the calculations could be carried out with
λ = 1. The second term describes the deviations introduced
by the discretization. As in NRG computations, the devia-
tions are periodic functions of ln(kBT/t ) with amplitude that
grows with the discretization parameter. Roughly, the pref-
actor exp(−π2/2 ln λ) controls the amplitude and makes the
deviations small, even with λ = 4.

Equation (C19) shows that, at fixed temperature, the de-
viation from the continuum limit is a periodic function of
the logarithmic width ln w. Averaging over w eliminates the
deviatios. In particular, since the offsets ζ = 0 and ζ = 1 are
equivalent to w = λ and w = 1, respectively, the deviations
in the conductances computed with ζ = 0 and ζ = 1 have the
same absolute value and opposite signs. To eliminate the artifi-
cial oscillations and unveil the continuum limit, it is therefore
sufficient to average the conductances computed with these
two offsets.

APPENDIX D: DERIVATION OF Eqs. (89) AND (90)

Equations (89) and (90) are immediate consequences of
a linear relation between the spectral densities of the oper-
ators φ0 and φ1 . To establish this relation, we consider the
symmetric Anderson Hamiltonian and write down the Dyson
equation for the retarded conduction-electron Green’s func-
tion:

GS
kk′ (ε) = G0

k (ε)δkk′ + V 2

N
G0

k (ε)GS
d (ε)G0

k′ (ε), (D1)

where the superindex S indicates association with the symmet-
ric model, GS

d (ε) is the retarded dot-level Green’s function,
and G0

k is the free conduction-electron Green’s function:

G0
k = 1

ε − εk + iη
. (D2)

We want to determine the spectral densities of the op-
erators φ0 and φ1 , which are linear combinations of the
LM eigenoperators g�. The following equations relate the
conduction-electron Green’s function to the desired spectral

densities:

ρS
0 (ε, T ) = − 1

πN
Im

∑
kk′

GS
kk′ (D3)

and

ρS
1 (ε, T ) = −2ρ2

πN
Im

∑
kk′

εkεk′GS
kk′ . (D4)

To determine ρS
0 , we must sum both sides of Eq. (D1) over

the momenta k and k′:

∑
k,k′

GS
kk′ (ε) =

∑
k

G0
k + V 2

N

( ∑
k

G0
k

)2

GS
d (ε). (D5)

Given Eq. (D2), it is straightforward to compute the sums
over momenta on the right-hand side of Eq. (D5). It results
that

∑
k

G0
k = −πρNi + O(ρε). (D6)

At the low temperatures of interest, terms of O(ρε) can
be safely neglected. Substitution of the right-hand side of
Eq. (D6) for the sums on the right-hand side of Eq. (D5)
reduces the latter to the expression

∑
k,k′

GS
kk′ (ε, T ) = −πρN

(
i + πρV 2GS

d (ε, T )
)
. (D7)

Comparison with Eq. (D3) then yields the following ex-
pression for the φ0 spectral function:

ρS
0 (ε, T ) = ρ − πρ�ρS

d (ε, T ), (D8)

where

ρS
d (ε, T ) = − 1

π
Im GS

d (ε, T ) (D9)

is the dot-level spectral density.
Analogous algebra relates ρ1 to ρS

d . Multiplication of both
sides of Eq. (D1) by εk εk′ followed by summation over both
momenta yields the equality

∑
k,k′

εk εk′GS
kk′ (ε) =

∑
k

ε2
kG

0
k + V 2

N

(∑
k

εkG
0
k

)2

GS
d (ε).

(D10)

The first term on the right-hand side of Eq. (D10) is of
O(ρε). The sum within parentheses in the second factor is
given by an equality analogous to Eq. (D6):

∑
k

εkG
0
k = N + O(ρε). (D11)

Comparison with Eq. (D4), now yields the following ex-
pression for the φ1 spectral density:

π

2
ρS

1 (ε, T ) = ρ�ρS
d (ε, T ). (D12)
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The left-hand side of Eq. (D12) can now substituted for
ρ�ρS

d (ε, T ) in the last term on the right-hand side of Eq. (D8),
with the result

ρS
0 (ε, T ) = ρ − π2

2
ρS

1 (ε, T ). (D13)

The universal moments L( j)
00 (T/TK ) ( j = 0, 2) are the en-

ergy moments L j (T/TK ) for the particle-hole symmetric
model. In other words, they can be obtained from by Eq. (68)
with ρS

0 substituted for ρ0 , in the integrand on the right-hand
side:

L( j)
00 ≡ 2

ρh

∫ (
−∂ fβ

∂ε

)
ρS

0 (ε, T )(βε) j dε ( j = 0, 2).

(D14)

Likewise, the moments L( j)
11 ( j = 0, 2) are related to the φ1

spectral density:

L( j)
11 ≡ 2

ρh

∫ (
−∂ fβ

∂ε

)
ρS

1 (ε, T )(βε) j dε ( j = 0, 2).

(D15)

Substitution of the right-hand side of Eq. (D13) for ρS
0

on the right-hand side of Eq. (D14) and comparison with
Eq. (D15) then leads to the expression

L( j)
00 (T/TK ) = 2

h

∫ (
−∂ fβ

∂ε

)
(βε) j dε − π2

2
L( j)

11 (T/TK )

× ( j = 0, 2). (D16)

The integral on the right-hand side of Eq. (D15) is dimen-
sionless. For j = 0, it is unitary, and Eq. (89) follows. For
j = 2, the integral equals π2/3, and Eq. (90) follows.

[1] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[2] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 (1980).
[3] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1044 (1980).
[4] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
[5] R. Patel, Y. Agrawal, and R. Parekh, Microsystem Technologies

27, 1863 (2021).
[6] B. Dutta, D. Majidi, A. García Corral, P. A. Erdman, S. Florens,

T. A. Costi, H. Courtois, and C. B. Winkelmann, Nano Lett. 19,
506 (2019).

[7] T. A. Costi, Phys. Rev. B 100, 161106(R) (2019).
[8] T. A. Costi, Phys. Rev. B 100, 155126 (2019).
[9] Y.-C. Xiong, N. Nan, Y.-Z. Dong, Z.-D. He, Z.-W. Zhu, and

Y.-P. Wu, Results Phys. 15, 102601 (2019).
[10] G. Barcza, K. Bauerbach, F. Eickhoff, F. B. Anders, F. Gebhard,

and Ö. Legeza, Phys. Rev. B 101, 075132 (2020).
[11] J. Böeker and F. B. Anders, Phys. Rev. B 102, 075149 (2020).
[12] G.-Y. Yi, C. Jiang, L.-L. Zhang, S.-R. Zhong, H. Chu, and W.-J.

Gong, Phys. Rev. B 102, 085418 (2020).
[13] H. T. M. Nghiem, H. T. Dang, and T. A. Costi, Phys. Rev. B

101, 115117 (2020).
[14] J. B. Rigo and A. K. Mitchell, Phys. Rev. B 101, 241105(R)

(2020).
[15] C. A. Philipps, P. G. B. Shiota, F. M. Zimmer, and J. V. B.

Ferreira, J. Magn. Magn. Mater. 499, 166259 (2020).
[16] Y. Teratani, R. Sakano, T. Hata, T. Arakawa, M. Ferrier, K.

Kobayashi, and A. Oguri, Phys. Rev. B 102, 165106 (2020).
[17] G. Diniz, G. S. Diniz, G. B. Martins, and E. Vernek, Phys. Rev.

B 101, 125115 (2020).
[18] F. Eickhoff, E. Kolodzeiski, T. Esat, N. Fournier, C. Wagner,

T. Deilmann, R. Temirov, M. Rohlfing, F. S. Tautz, and F. B.
Anders, Phys. Rev. B 101, 125405 (2020).

[19] B. M. de Souza Melo, L. G. G. V. D. da Silva, A. R. Rocha, and
C. Lewenkopf, J. Phys.: Condens. Matter 32, 095602 (2020).

[20] N. Nan, W. Li, P.-C. Wang, Y.-J. Hu, G.-L. Tan, and Y.-C.
Xiong, Phys. Chem. Chem. Phys. 23, 5878 (2021).

[21] M. Debertolis, S. Florens, and I. Snyman, Phys. Rev. B 103,
235166 (2021).

[22] G. T. D. Pedrosa, J. F. Silva, and E. Vernek, Phys. Rev. B 103,
045137 (2021).

[23] M. Žonda, O. Stetsovych, R. Korytar, M. Ternes, R. Temirov,
A. Raccanelli, F. S. Tautz, P. Jelínek, T. Novotny, and M. Svec,
J. Phys. Chem. Lett. 12, 6320 (2021).

[24] P. Zalom and T. Novotny, Phys. Rev. B 104, 035437 (2021).
[25] A. K. Mitchell, M. R. Galpin, S. Wilson-Fletcher, D. E. Logan,

and R. Bulla, Phys. Rev. B 89, 121105 (2014).
[26] K. M. Stadler, A. K. Mitchell, J. von Delft, and A.

Weichselbaum, Phys. Rev. B 93, 235101 (2016).
[27] B. Bruognolo, N.-O. Linden, F. Schwarz, S.-S. B. Lee, K.

Stadler, A. Weichselbaum, M. Vojta, F. B. Anders, and J. von
Delft, Phys. Rev. B 95, 121115(R) (2017).

[28] J. B. Silva, W. L. C. Lima, W. C. Oliveira, J. L. N. Mello, L. N.
Oliveira, and J. W. Wilkins, Phys. Rev. Lett. 76, 275 (1996).

[29] R. Bulla, H.-J. Lee, N.-H. Tong, and M. Vojta, Phys. Rev. B 71,
045122 (2005).

[30] J. W. M. Pinto and L. N. Oliveira, Comput. Phys. Commun.
185, 1299 (2014).

[31] V. L. Campo and L. N. Oliveira, Phys. Rev. B 72, 104432
(2005).

[32] P. W. Anderson, J. Phys. C 3, 2436 (1970).
[33] B. Jones, Phys. B: Condens. Matter 171, 53 (1991).
[34] D. C. Langreth, Phys. Rev. 150, 516 (1966).
[35] H. O. Frota and L. N. Oliveira, Phys. Rev. B 33, 7871 (1986).
[36] M. Yoshida, M. A. Whitaker, and L. N. Oliveira, Phys. Rev. B

41, 9403 (1990).
[37] W. C. Oliveira and L. N. Oliveira, Phys. Rev. B 49, 11986

(1994).
[38] K. Chen, C. Jayaprakash, and H. R. Krishnamurthy, Phys. Rev.

Lett. 58, 929 (1987).
[39] R. M. Fye, J. E. Hirsch, and D. J. Scalapino, Phys. Rev. B 35,

4901 (1987).
[40] B. A. Jones and C. M. Varma, Phys. Rev. Lett. 58, 843 (1987).
[41] B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett.

61, 125 (1988).

075129-33

https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1103/PhysRevB.21.1044
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1007/s00542-020-05002-5
https://doi.org/10.1021/acs.nanolett.8b04398
https://doi.org/10.1103/PhysRevB.100.161106
https://doi.org/10.1103/PhysRevB.100.155126
https://doi.org/10.1016/j.rinp.2019.102601
https://doi.org/10.1103/PhysRevB.101.075132
https://doi.org/10.1103/PhysRevB.102.075149
https://doi.org/10.1103/PhysRevB.102.085418
https://doi.org/10.1103/PhysRevB.101.115117
https://doi.org/10.1103/PhysRevB.101.241105
https://doi.org/10.1016/j.jmmm.2019.166259
https://doi.org/10.1103/PhysRevB.102.165106
https://doi.org/10.1103/PhysRevB.101.125115
https://doi.org/10.1103/PhysRevB.101.125405
https://doi.org/10.1088/1361-648X/ab5773
https://doi.org/10.1039/D0CP05915C
https://doi.org/10.1103/PhysRevB.103.235166
https://doi.org/10.1103/PhysRevB.103.045137
https://doi.org/10.1021/acs.jpclett.1c01544
https://doi.org/10.1103/PhysRevB.104.035437
https://doi.org/10.1103/PhysRevB.89.121105
https://doi.org/10.1103/PhysRevB.93.235101
https://doi.org/10.1103/PhysRevB.95.121115
https://doi.org/10.1103/PhysRevLett.76.275
https://doi.org/10.1103/PhysRevB.71.045122
https://doi.org/10.1016/j.cpc.2014.01.004
https://doi.org/10.1103/PhysRevB.72.104432
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1016/0921-4526(91)90490-6
https://doi.org/10.1103/PhysRev.150.516
https://doi.org/10.1103/PhysRevB.33.7871
https://doi.org/10.1103/PhysRevB.41.9403
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1103/PhysRevLett.58.929
https://doi.org/10.1103/PhysRevB.35.4901
https://doi.org/10.1103/PhysRevLett.58.843
https://doi.org/10.1103/PhysRevLett.61.125


FERRARI AND DE OLIVEIRA PHYSICAL REVIEW B 106, 075129 (2022)

[42] B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett.
61, 2819 (1988).

[43] R. M. Fye, Phys. Rev. Lett. 72, 916 (1994).
[44] I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52,

9528 (1995).
[45] T. A. Costi, A. C. Hewson, and V. Zlatic, J. Phys.: Condens.

Matter 6, 2519 (1994).
[46] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Nature (London) 391,
156 (1998).

[47] D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman,
D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).

[48] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P.
Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and
V. Umansky, Phys. Rev. Lett. 88, 226805 (2002).

[49] M. Yoshida and L. N. d. Oliveira, Phys. B: Condens. Matter
404, 3312 (2009).
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