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Electronic structure of α-RuCl3 by fixed-node and fixed-phase diffusion Monte Carlo methods
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Layered material α-RuCl3 has caught wide attention due to its possible realization of Kitaev’s spin liquid and
its electronic structure that involves the interplay of electron-electron correlations and spin-orbit effects. Several
DFT + U studies have suggested that both electron-electron correlations and spin-orbit effects are crucial for
accurately describing the band gap. This work studies the importance of these two effects using fixed-node
and fixed-phase diffusion Monte Carlo calculations both in spin-averaged and explicit spin-orbit formalisms.
In the latter, the Slater-Jastrow trial function is constructed from two-component spin orbitals using our recent
quantum Monte Carlo (QMC) developments and thoroughly tested effective core potentials. Our results show
that the gap in the ideal crystal is already accurately described by the spin-averaged case, with the dominant role
being played by the magnetic ground state with significant exchange and electron correlation effects. We find
qualitative agreement between hybrid DFT, DFT+U , and QMC. In addition, QMC results agree very well with
available experiments, and we identify the values of exact Fock exchange mixing that provide comparable gaps.
Explicit spin-orbit QMC calculations reveal that the effect of spin-orbit coupling on the gap is minor, of the order
of 0.2 eV, which corresponds to the strength of the spin orbit of the Ru atom.
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I. INTRODUCTION

Kitaev’s seminal work [1] on quantum spin liquids has
sparked numerous experimental and computational endeavors
in search of candidate materials to realize this exotic phase
[2–19]. In particular, despite the Ru atom’s weak spin-orbit
coupling (SOC), α-RuCl3 has been suggested as a prime can-
didate. However, to properly analyze and describe the spin
liquid physics with the meV energy scale (and potentially
derive appropriate effective Hamiltonians), it is important to
understand the basic electronic structure of this promising
material. To this end, numerous computational studies of
α-RuCl3 have been carried out, mainly using density func-
tional theory (DFT) with the Hubbard U parameter (DFT +
U ) method [2–5,18]. Interestingly, these studies resulted in
data that did not provide an unambiguous picture, with linger-
ing questions arising, especially on the origin of the band gap.
These DFT calculations essentially agreed on the observation
that it is a Mott insulator; however, the value of the gap and
how it is impacted by SOC showed significant differences
between the studies. Obtained band gap estimates covered a
significant range with values such as 0.2 [2], 0.4 [19], 0.7
[18], 1.0 [3,4], 1.2 [9], and 1.9 eV [5]. In particular, some
studies indicated that it is a spin-orbit assisted Mott insulator
with non-negligible SOC effects [2,5]. The matter is further
complicated by the occurrence of optically generated excitons
with sizable binding energies that make the analysis of the
fundamental band gap much less straightforward.

In this work we aim to address these points using many-
body fixed-node and fixed-phase diffusion Monte Carlo

(DMC) methods. Specifically, we carry out a pioneering study
of the band gap in the solid with the explicit contribution
of SOC using both spin-orbit averaged fixed-node DMC
(FNDMC) and two-component-spinor fixed-phase spin-orbit
DMC (FPSODMC) calculations [20,21]. We carefully verify
the valence-only Hamiltonians represented by effective core
(pseudo)potentials (ECPs) with a proper account of spin-
orbit effects. Systematic errors that could significantly affect
the quality of results, such as finite-size effects, basis sets,
and fixed-node biases are analyzed. We focus on studying
a periodic, stoichiometric, ideal model without considering
defects, impurities, or localized excitonic effects. Our many-
body trial functions are single reference that proved successful
in previous studies of transition metal oxides with significant
electron-electron correlations [20].

A very good agreement between fundamental and promo-
tion gaps is obtained with a value close to ≈2 eV, which agrees
very well with photoemission experiments. Most impor-
tantly, we find that the basic electronic structure parameters
such as cohesion and band gap are mainly determined by
spin-averaged physics. The impact of spin orbit on these
characteristics is found to be rather minor, confined to ≈0.1–
0.2 eV (5%–10%) shifts in the band gap and ≈0.5–0.6 eV
(4%–5%) shifts in cohesion. Therefore, we show that the key
issue of α-RuCl3 is the electron correlation that should be
properly included in any realistic study of low-lying states of
putative quantum spin liquids. To the best of our knowledge,
we present the first two-component spinor many-body wave
function calculation of a solid that recovers more than 95% of
the valence correlation energy in a variational setting.
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FIG. 1. Conventional cell crystal structure of α-RuCl3. (a) XY
plane and (b) YZ plane views are shown. Large spheres with light
colors are Ru atoms, and small spheres with dark colors are Cl atoms.

The paper is organized as follows. We begin with RuCl3

crystal structure (Sec. II) and methods sections (Sec. III) that
include brief descriptions of employed DFT and QMC ap-
proaches. The results (Sec. IV) involve testing the accuracy
of pseudopotentials, probing the finite-size and fixed-node
errors, calculating the cohesive energies and gaps with the
explicit impact of the spin-orbit effects. We conclude (Sec. V)
by pointing out the salient results and future perspectives of
the presented methodological improvements.

II. CRYSTAL STRUCTURE

α-RuCl3 consists of weakly coupled two-dimensional (2D)
layers of RuCl6 octahedra. The Ru atoms form a near-perfect
hexagonal structure and sit in an almost-ideal, edge-sharing
RuCl6 octahedron.

Throughout this work we used the experimentally mea-
sured geometry from Ref. [22]. There are two proposed
space-group symmetries for this system [22]: C2/m (No. 12)
and P3112 (No. 151), which differ mainly in their stacking
order. We used the C2/m structure throughout the work since
it is suggested to be the correct ground state from experi-
mental observations [6,7] and from DFT + U calculations [8].
We also note that the energy differences between the above
space-group symmetries are rather small (∼1 meV/Ru) as
found previously [8].

A primitive cell of C2/m symmetry corresponds to a mon-
oclinic cell with two Ru atoms. Although this cell is large
enough to describe the ferromagnetic (FM) phase, for the
zigzag antiferromagnetic (ZZ) phase, it has to expand to the
conventional cell with four Ru atoms since antiferromagnetic
order breaks the equivalency of the Ru atoms. Therefore, the
conventional cell (Fig. 1) has been used for DFT calculations
and to obtain the larger QMC supercells via periodic tiling.

III. METHODS

We use effective core potentials (ECPs) to eliminate the
core electrons and to make the calculations feasible. Specifi-
cally, we will refer to two types of ECPs in this work. One is
the averaged spin-orbit relativistic effective potential (AREP),
which accounts for only scalar relativity and therefore does

not include explicit spin-orbit coupling terms. The other ECP
is a spin-orbit relativistic effective potential (SOREP), which
is fully relativistic with explicit two-component spin-orbit
terms. The AREP/SOREP labels will indicate whether ex-
plicit spin-orbit coupling is included or not in the following
sections.

The orbitals/spinors are obtained from Kohn-Sham DFT
using the QUANTUM ESPRESSO code [23]. We used DFT +
U with atomic wave function projectors and hybrid-DFT with
exact Fock exchange formulations where PBE is used as the
underlying functional in both cases. In this work, ω represents
the exact Fock exchange weight in hybrid DFT functional
with exchange and correlation components:

PBE0(w) = wEHF
x + (1 − w)EPBE

x + EPBE
c , (1)

where ω will be expressed in percentages throughout the
paper. The weight w = 25% corresponds to the definition of
PBE0 functional [24,25]. In all SCF calculations, we used
400 Ry kinetic energy cutoff and 2 × 2 × 2 k mesh in the
conventional cell. We have tested that these parameters result
in converged energies and gaps, which can be found in the
Supplemental Material [26].

We use single-reference Slater-Jastrow trial wave functions
throughout the work except for a few special calculations for
the Ru atom, where we used the complete open-shell config-
uration interaction (COSCI) method to build the appropriate
symmetry multireference states with spinors. For clarity, the
calculations are labeled as (QMC method)/(trial wave func-
tion orbitals), such as FNDMC/PBE, etc. QMC calculations
are carried out using QMCPACK [27,28] code. Unless other-
wise specified, all DMC calculations with hybrid DFT orbitals
are timestep extrapolated using [0.02, 0.005] Ha−1 timesteps
(with a timestep ratio of 4 as suggested in Ref. [29]) and use
the T-moves algorithm [30] for pseudopotential evaluation.
Calculations using orbitals from DFT + U calculations use a
0.02 Ha−1 timestep and the locality approximation [31] for
pseudopotential evaluation. In cases where there is a direct
comparison of DMC/(hybrid DFT) vs DMC/DFT + U re-
sults, the same 0.02 Ha−1 timestep and T moves are used
consistently.

In the standard FNDMC approach, the ground state wave
function and energies are obtained through an imaginary time
evolution process from an initial trial wave function. Under
specific boundary conditions (open or special k points in pe-
riodic boundary conditions), the wave function is real valued,
and the fermion sign problem is controlled through the fixed
node approximation where the final nodes must match the
trial wave function’s nodal structure. Additionally, since the
Hamiltonian does not depend on the spin in the absence of
spin orbit, the electron spin is conserved, and each electron
spin is fixed throughout the simulation. In the FPSODMC,
where the Hamiltonian now includes spin-orbit coupling, the
spin degree of freedom needs to be sampled since spin is no
longer conserved. To facilitate sampling, a smooth and com-
plex representation for the spin is introduced, which makes
the wave function complex. In this case, the fixed-phase ap-
proximation is introduced where the final phase of the wave
function must match the trial wave function. See the original
papers on this topic for a thorough discussion [32–36].
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TABLE I. Ru atom scalar relativistic AE excitations and corre-
sponding errors for various core approximations. ECPs correspond
to AREP with 16 valence electrons. All calculations are performed
with the RCCSD(T) method using an uncontracted aug-cc-pCV5Z
basis set. All values are in eV.

States Term AE MDFSTU reg-MDFSTU UC

[Kr] 4d75s1 5F 0.000
[Kr] 4d75s2 4F −1.022 0.007 0.007 0.007
[Kr] 4d9 2D 2.383 0.033 0.034 −0.051
[Kr] 4d8 3F 1.215 0.034 0.033 −0.034
[Kr] 4d65s2 5D 0.810 −0.045 −0.045 0.033
[Kr] 4d7 4F 7.396 −0.010 −0.010 −0.023
[Kr] 4d65s1 6D 8.377 −0.059 −0.059 0.021
[Kr] 4d6 5D 24.003 −0.068 −0.068 −0.007
[Kr] 4d5 2T2g 57.044 −0.002 −0.002 −0.007
MAD 0.032 0.032 0.023

IV. RESULTS

A. Accuracy of pseudopotential Hamiltonians

Let us elaborate on the accuracy of employed ECPs since
this will enable us to validate the accuracy of calculations and
check for possible biases. For the Cl atom, we use an AREP
type, correlation consistent effective core potential (ccECP)
with seven valence electrons [37]. The high accuracy of this
ECP was demonstrated in the original paper, where the errors
in the low-lying atomic gaps, such as ionization potential
and electron affinity, were smaller than chemical accuracy
(1 kcal/mol ≈0.043 eV). Additionally, the binding energies
of ClO and Cl2 molecules across various bond geometries
agreed with all-electron (AE) CCSD(T) within the chemical
accuracy boundary. We neglect the spin-orbit coupling effects
for this element, but we account for scalar relativity, which is
implicitly included in ccECP. The interested reader is referred
to the original paper for more data and thorough discussions
of the Cl ECP [37].

For the Ru atom we use the small-core ECP of the Stuttgart
group (MDFSTU) with 16 valence electrons, and it is given
both in AREP and SOREP forms [38]. Stuttgart group ECPs
have a −Zeff/r Coulomb singularity at the origin, making it
problematic to use in DFT plane-wave calculations due to
resulting high kinetic energy cutoffs and more costly in QMC
calculations due to an increase in local energy fluctuations.
To overcome these issues, we have modified the MDFSTU
ECP by adding a regularizing local potential that cancels out
the Coulomb singularity near the ionic origin (reg-MDFSTU,
see the Supplemental Material for ECP parametrization [26]).
This has been done in a very conservative manner, i.e., only
at the vicinity of r = 0 since that preserves properties of the
original construction. Table I demonstrates the accuracy of
the AREP part of the reg-MDFSTU and shows that the spec-
trum is essentially the same as the original MDFSTU ECP.
The spectrum is calculated using the RCCSD(T) method for
AE and ECP cases and the mean absolute deviation (MAD)
is smaller than the chemical accuracy. Here UC stands for
an uncorrelated core, where the underlying self-consistent
calculation is fully relaxed, and the subsequent correlated

TABLE II. Ru atom experimental J-splitting excitations and cor-
responding errors using various methods. All values are in eV.

Term Expt. [40] COSCI VMC/COSCI DMC/COSCI

5F5 0.0000 0.0000 0.0000 0.0000
5F4 0.1476 0.0349 0.02(2) 0.08(2)
5F3 0.2593 0.0597 0.07(2) 0.07(2)
5F2 0.3364 0.0742 0.05(2) 0.05(2)
5F1 0.3850 0.0823 0.04(2) 0.07(2)
MAD 0.0628 0.05(1) 0.07(1)

calculations do not allow for any excitations that involve those
core states. We can see that reg-MDFSTU is only slightly
worse than UC, therefore, indicating the high quality of this
ECP. In Table I, 2T2g state represents the triply degenerate t2g

states encountered in solid state calculations with octahedral
geometry. This state occupies dxy, dyz, dxz orbitals, with one
of these left singly occupied and others doubly occupied. The
accuracy of this state is relevant to the solid calculations where
the Ru atoms exhibit the nominal Ru+3 (d5) occupation in
t2g orbital. Note that this “bare” atomic excitation is nomi-
nally very high compared to what is expected in a crystalline
environment since hybridization and crystal field pulls it sig-
nificantly lower. Despite its atomic value being over 50 eV, it
is remarkable that it is reproduced with the same accuracy as
the other atomic low-lying states. From the data in Table I, we
can conclude that the AREP accuracy of the employed ECP is
sufficiently high for further correlated QMC calculations.

In Table II we show the accuracy of spin-orbit terms of
SOREP using explicit spin-orbit calculations. In this case
we directly compare with experiments to better elucidate the
expected errors for the employed ECPs. Here the spinors are
obtained from the DIRAC code [39], and COSCI is used to ob-
tain the multireference states. We can see that both the COSCI
and QMC methods using COSCI as trial wave functions result
in minor errors that are well within the other systematic errors
present in this work. We have thus established that both AREP
and SOREP type approximations are accurate, allowing us
to study and estimate other systematic biases present in our
calculations.

B. DFT functionals, orbitals, and band structures

Previous DFT + U calculations found that α-RuCl3 fea-
tures almost degenerate magnetic states [4]. The ferromag-
netic phase (FM) and the antiferromagnetic zigzag phase (ZZ)
are two main candidate ground state phases. Most calculations
and measurements [7,22] suggest that the ZZ phase is the
genuine ground state, although DFT + U predicts the FM
phase to be lower in energy for some values of U [4]. To verify
this system’s correct ground state, we performed FNDMC
calculations using trial wave functions based on hybrid-DFT
PBE0 functional as shown in Table III. Since the ZZ phase
results in the lowest energy, we focus on this magnetic state
in what follows. Note that at the DFT + U level, the energy
difference is very small between the FM and ZZ phases
(≈1 meV/Ru) [4], whereas DMC predicts a much larger
difference of ≈0.07(1) eV/Ru.
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TABLE III. Total FNDMC energies with trial functions based
on orbitals from PBE0 with 15% exact exchange and averaged
spin-orbit AREP formalism. Conventional cell energies (Ha) in
nonmagnetic (NM), ferromagnetic (FM), and zigzag antiferromag-
netic (ZZ) phases are shown. Note significant gain from magnetic
ordering.

Phase FNDMC Energy

NM −558.012(1)
FM −558.900(1)
ZZ −558.909(1)

In Fig. 2 we plot the band structure corresponding to the
system’s conventional cell. The plots show the band structures
for PBE, PBE + U (1.5 eV), and PBE0(15%) functionals,
where the +U and ω parameters are chosen based on FNDMC
calculations. The choice for these specific values will be dis-
cussed later. Using plain PBE, we observe the usual band

gap underestimation with the resulting metallic state as it
was observed before [2–5]. However, as expected, reasonable
values of U and ω lead to finite gaps. Note that CBM to
VBM transition corresponds to � → � transition; therefore,
we study the � → � gap in the sections below.

C. Estimation of fixed-node bias

Table IV shows the estimation of FN bias for Ru and
Cl atoms. For calculation of exact atomic energies, we used
CCSD(T) with extrapolation to the complete basis set (CBS)
limit (for methodology, see Ref. [41]). We can see that using a
single-reference FNDMC calculation, we can obtain accurate
correlation energies with approximately 4% and 3% corre-
lation energies missing for Ru and Cl, respectively. These
calculations serve as an estimate for the expected FN bias
in the solid calculations. We see that the Ru atom’s FN
bias is much smaller than the isovalent Fe atom, which has
η = 10.5(1)% error [41]. The corresponding biases are sig-
nificantly smaller since the 4d states are more delocalized

FIG. 2. Band structures of the conventional cell in the ZZ phase. Employed functionals using spin-averaged AREP are plotted as follows:
(a) PBE, (b) PBE0(15%), (c) PBE + U (1.5 eV). Bands in the full SOREP framework with PBE + U (1.5 eV) are plotted in (d).
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TABLE IV. Estimation of FN bias for Ru and Cl atoms. Total
energies (Ha) using various methods are shown. ε (mHa) represents
the DMC/PBE0 error compared to CCSD(T)/CBS. η represents the
missing percentage of the correlation energy η = 100% · ε/|Ecorr|.

Qty. Ru Cl

ROHF/CBS −93.80594(5) −14.68947(1)
CCSD(T)/CBS −94.4892(9) −14.9267(2)
FNDMC/PBE0 −94.4613(2) −14.9192(1)
ε (mHa) 27.9(9) 7.5(2)
η (%) 4.1(1) 3.17(8)

than the corresponding 3d states, as pointed out previously
[42]. These observations motivate us to move forward with
single-reference trial wave functions for solid calculations.

D. Minimization of fixed-node bias

One of the significant systematic errors present in QMC
calculations is the fixed-node bias. Although direct opti-
mization of the trial wave functions to alleviate this is
possible [43–46], we take a more simple but rather effective
approach of optimizing the effective single-particle Hamilto-
nian, namely, the optimization of the hybrid DFT functional
that results in the lowest FNDMC energies. This has the
advantage of providing insight into one-particle effective the-
ories and their indirect optimality test concerning subsequent
QMC runs, and can be straightforwardly applied to complex
solids. As mentioned previously, we explore two different
routes, hybrid functionals and the DFT + U method. In the
DFT + U method, the value of effective U is varied while the
exact Fock exchange factor ω is varied in hybrid DFT with
the goal to find the best variational energy minimum. We use
the conventional cell at k = � point for these nodal optimiza-
tion calculations and probe the nodes of four different states:
ground state (GS), � → � promoted excited state, cation state

(CA), and anion state (AN). For simplicity, we will plot the av-
erage of these states, while the individual state data and plots
can be found in the Supplemental Material [26]. Figure 3(a)
shows the average energies of the above-mentioned states. We
can observe that there is a clear minimum in DMC/PBE0(ω)
calculations around ≈15%. DMC/PBE + U shows a mini-
mum around U = 1.5 eV; however, the corresponding total
energies are significantly higher. For the following calcula-
tions we take DMC/PBE0(15%) as the most optimal value
for both ground and excitations, whereas the DMC/PBE +
U (1.5 eV) will be used as a secondary reference. Note that
plots as Fig. 3(a) comparing the nodes of hybrid-DFT and
DFT + U were also presented elsewhere with similar results
[47].

In Fig. 3(b) the calculated DMC gaps are shown for sev-
eral trial wave functions and settings. In particular, one can
calculate the optical (or excitonic) gap as

Eg = E��
N − EGS

N (2)

and the fundamental (charge/quasiparticle) gap as

EG = IP − EA = EAN
N+1 + ECA

N−1 − 2EGS
N , (3)

where N is the number of electrons. Figure 3(b) shows the
importance of obtaining proper trial wave functions since both
Eg and EG heavily depend on the quality of the employed
orbitals. Both types of trial wave functions result in similar Eg,
EG gaps, although DMC/PBE + U are higher in total energy.
Note that these values are still tentative since they correspond
to a rather small conventional cell with significant finite-size
biases. It is therefore important to filter out the presence of
systematic shift in Fig. 3(b) and to converge the estimators
with respect to the system size as in Sec. IV F.

FIG. 3. FNDMC total energies and gaps for various nodal surfaces using exact exchange mixing ω and Hubbard U parameters. FNDMC
timestep 0.02 Ha−1 and T moves were used for these calculations. Energies correspond to conventional cell (n = 4 RuCl3 units) in ZZ phase.
(a) Average energies of all considered states. (b) Optical (Eg) and fundamental (EG) gaps.
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TABLE V. Effective charges of Ru and Cl atoms in α-RuCl3 from
DFT calculations (this work).

Method Ru (e−) Cl (e−)

PBE 0.943 −0.313
PBE0(15%) 1.022 −0.342
PBE0(20%) 1.048 −0.351
PBE + U (1.5 eV) 1.182 −0.315
Refs. [48,49] 1.13 −0.38

E. Effective charges and magnetic moments
for QMC-optimized U/ω

The VMC and DMC variationally optimized results also
provide the best effective one-particle theory on post-DFT
optimization space (Hubbard U or Fock exchange weight).
Therefore it is worth probing for straightforward quantities
such as effective charges and magnetic moments. We provide
the corresponding values in Tables V and VI, respectively.

Indeed, even these basic expectation values vary signifi-
cantly between various flavors of DFT and post-DFT methods.
This has been discussed previously, and we can quote, for
example, “Moreover, the physical parameters characterizing
the electronic structure and interactions that constitute a key
input into the theoretical descriptions of the unconventional
magnetism have not yet been determined.” and “...determin-
ing the accurate values of physical parameters related to the
Kitaev physics, possibly from electronic structure studies, is
important.” [5].

F. QMC finite-size errors

Finite-size errors can significantly affect total energies per
particle and band gap estimates. In self-consistent approaches
such as DFT or HF, these issues are easier to control in bulk
solids using a very dense k mesh. In many-body methods such
as QMC or even mean-field calculations with defects, one has
to employ increasingly large supercells to extrapolate to the
thermodynamic limit (TDL). Often, finite-size corrections for
kinetic [50] and potential [51–53] energies are used in QMC
since very large supercells with fixed-node/fixed-phase DMC
calculations can become prohibitively expensive.

In this work we opt for commonly used Ewald interactions
for the potential energy and single k-point supercells, which
worked very well in previous calculations such as for Si [54]
and LaScO3 [21] solids provided sufficiently large cells are
used, and thermodynamic limit can be ascertained for all the

TABLE VI. Magnetic moments μz of Ru in α-RuCl3 from the
references and from this work.

Ref. μz (μB)

Banerjee et al. [22] 0.4(1)
Cao et al. [6] 0.45(5)
Johnson et al. [7] 0.64(4)
This work, PBE0(15%) 0.89
This work, PBE0(20%) 0.91
Refs. [48,49] 0.935

FIG. 4. Extrapolations of DMC/PBE0(15%) energy per chemi-
cal formula for n = (16, 32) in ground, � → � excited, anionic, and
cationic states.

states involved. In Fig. 4 we show the TDL extrapolations
using DMC/PBE0(15%) energies for all the states we calcu-
lated. The data points correspond to the [1 × 1 × 1] (n = 4),
[2 × 1 × 2] (n = 16), and [2 × 2 × 2] (n = 32) multiples of
the conventional cell where n is the number of RuCl3 chemical
formula units in a supercell. The [2 × 1 × 2] (n = 16) was
particularly chosen for its near-cubic shape (see the Sup-
plemental Material for visualizations of the supercells [26]).
We use the largest two supercells for extrapolations, and the
crucial point is the agreement of the energy per formula for
all the states within 2.4 mHa since one-electron excitation
energies between the states must vanish in the thermodynamic
limit. From previous experience [21,54] we did not include the
smallest size in the extrapolations since we found that this can
be a source of additional bias instead of improvement. Too
small supercells typically show shifts in both kinetic and po-
tential energies that do not conform to the asymptotic scaling
and, therefore, can be counterproductive for extrapolations.
The observed agreement in Fig. 4 gives us a clear indication
that the supercells are large enough for reliable estimations of
desired quantities such as cohesive energy or energy gaps.

G. Cohesive energies

Let us start by focusing on the cohesive energy of α-RuCl3.
Figure 5 provides the cohesive energies using various methods
and estimations with AREP and SOREP. As described previ-
ously, the two largest supercells n = 16 and n = 32 were used
to estimate the QMC TDL cohesive energy. (The total ener-
gies for atoms, each supercell, and TDL can be found in the
Supplemental Material [26]). The AREP value for DMC uses
the PBE0(15%) as the reference, resulting in the lowest energy
among all tested trial wave functions. Unfortunately, we were
not able to properly converge the DFT/PBE0(15%) SOREP
SCF calculations. Therefore, we used the DFT + U (1.5 eV)
to converge the needed states in the SOREP setting and sub-
sequently we estimate the changes due to spin-orbit coupling
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FIG. 5. Cohesive energies using various methods using AREP
and SOREP. Above 9 eV is shown to better illustrate the differences
in methods.

as follows:

ESOREP
DMC/PBE0(15%) = EAREP

DMC/PBE0(15%) + [
ESOREP

DMC/PBE+U(1.5 eV)

− EAREP
DMC/PBE+U(1.5 eV)

]
, (4)

where E represents the cohesive energy, and the term in brack-
ets represents cohesive energy change due to SOC. We expect
this estimator to introduce only very marginal bias since the
energy differences using DMC/PBE0(ω) and DMC/PBE +
U systematically agree as can be seen in Fig. 3(b). The biases
are further diminished since the SOC effect is evaluated as the
difference of differences.

We probe two trial wave functions for atomic DMC en-
ergies: single reference and proper multireference from the
COSCI method. If single-reference atomic energy is used, the
cohesive energy is reduced by 0.48 eV, while the multiref-
erence case results in 0.61 eV reduction due to SOC. We take
the difference between the two references as a lower bound on
the systematic error of the cohesive energy. In Fig. 5 we plot
the DMC/SOREP using single-reference energies to achieve
better error cancellation and the above-mentioned systematic
error of ≈0.1 eV is shown.

The significant reduction of binding due to SOC has
been observed before in several molecular cases for
FNDMC/FPSODMC binding energies that are in excellent
agreement with experiments [32,34]. This follows from the
fact that the energy gains from SOC in isolated atoms are
larger than in solid state orbitals that, at least in this material,
appear to average out the SOC effects due to hybridization and
periodicity.

To the best of our knowledge, an experimental cohesive
energy estimate has not been published so far. It is worth
noting that our DMC estimate of cohesive energy [12.3(1)
eV] closely agrees with DFT/PBE0(15%) value and this also
provides another feedback for the optimal value of the exact-
exchange mixing in the functional. For completeness, we
point out that DFT/PBE overestimates while DFT/PBE0 and
DFT + U (1.5 eV) slightly underestimate the cohesive ener-

TABLE VII. DMC � → � excitonic (Eg) gaps (eV) using vari-
ous trial wave functions.

WF n = 4 n = 16 n = 32 TDL

AREP
PBE0(15%) 0.70(4) 1.83(5) 2.5(1) 1.9(2)
PBE + U (1.5 eV) 0.59(3) 1.72(5) 2.3(1) 1.8(1)

SOREP
PBE + U (1.5 eV) 0.97(4) 1.98(7)

gies when compared to DMC or DFT/PBE0(15%) values, and
this agrees with what has been seen in other systems [55–57].

H. Band gaps

Similar to the estimation of cohesive energy, for evaluation
of band gaps, we rely on the largest two supercells we were
able to afford, with n = 16 and n = 32 units. One possible
way to calculate Eg and EG is to simply use the difference of
extensive energies as in Eqs. (2) and (3). Unfortunately, this
gets problematic due to the cost of required error bars and also
due to the difficult estimation of systematic biases for total
energies in large supercells. Clearly, using simple extensive
energies for very large supercells becomes unreliable since
one tries to obtain a small gap from two large numbers with an
increasing level of noise (in this case, the gap is ≈eV, whereas
the largest supercell energy is ≈ −121640 eV). Therefore, we
decided to use another approach that relies on energy per n
(intensive energies) and then uses the slopes of different states
to evaluate Eg and EG in a manner that is consistent with
the thermodynamic limit. Detailed discussions about using
slopes to obtain gaps and related elaborations can be found
in Refs. [21,54].

Table VII provides the excitonic gaps (Eg), and Table VIII
provides the fundamental gaps (EG) calculated via DMC using
hybrids and DFT + U trial wave functions. We can draw
several points from this data. One is that Eg ≈ EG within
error bars is obtained considering the largest supercells as
well as TDL gaps. In fact, obtaining similar values for Eg and
EG is not surprising, and our Eg values represent fundamen-
tal gaps as discussed at length elsewhere, see Refs. [58,59].
Note that, depending on the system, there are usually mi-
nor differences between these two estimators. This is caused
by a combination of two effects. One is the differences in
systematic errors in charged vs uncharged states since these
are not identical. Typically, the charged state convergence to
the thermodynamic limit is slower due to the Ewald model
for potential energies. The root cause here comes from the
homogeneous charge compensation background that contrasts

TABLE VIII. DMC � → � quasiparticle (EG) gaps (eV) using
various trial wave functions.

WF n = 4 n = 16 n = 32 TDL

AREP
PBE0(15%) 1.59(6) 1.9(1) 2.5(2) 2.3(4)
PBE + U (1.5 eV) 1.55(5) 2.02(9) 2.7(2) 2.1(2)

SOREP
PBE + U (1.5 eV) 1.64(7) 2.2(1)
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FIG. 6. Gaps using various methods using AREP and SOREP.
Experimental (Expt.) results are from Refs. [5,61,62].

with excitation-related charges, with added or subtracted elec-
tronic states, which are inhomogeneous. Corrections of this
model are not straightforward, especially in QMC, where very
large supercells could be rather costly or even out of reach.
Furthermore, the fixed-node errors for the considered states
might not be uniform. There is a related bias, as can be
seen, for example, in our calculations of excitations in simpler
molecular systems [60].

Assuming Eg ≈ EG and taking the average of TDL gap
values from Tables VII and VIII, our estimate for AREP EG

is 2.0(1) eV. The SOC effect on gaps is extracted from the
n = 16 supercell energies (the largest we were able to afford
using SOREP). Once again, taking the average of Tables VII
and VIII, the SOC effect on gaps is an increase by 0.22(8)
eV. Therefore, our estimate for SOREP EG is 2.2(1) eV from
DMC calculations. This is significantly larger than some pre-
vious band gap estimates [2–4,18], while it agrees with more
recent results such as from Sinn et al. [5]. However, Sinn
et al. [5] estimate the increase in the gap due to SOC to be
≈0.6 eV while our estimate of 0.22(8) eV is much smaller.
We also note that PBE0(20%), which is energetically close to
the optimal PBE0(15%) [Fig. 3(a)], provides a � → � gap
value of 2.02 eV which agrees with FNDMC value of 2.0(1)
eV in SOC-averaged framework. On the other hand, we find
that a larger value of U ≈ 4 eV is required to reproduce the
≈2 eV gap when compared to the optimal value of U =
1.5 eV in the DFT + U method. For the sake of completeness,
we point out that the gap is strongly overestimated in Hartree-
Fock, with a value of ≈11.7 eV as seen in other Mott-Hubbard
antiferromagnets with transition elements.

Figure 6 summarizes the EG gaps obtained from the data
we obtained in various methods. We observe the usual un-
derestimation of the band gap using PBE, while the hybrids
exhibit values closer to DMC and to experiment. Our DMC
estimate EG = 2.2(1) is in a good agreement with the exper-
imental value of 1.9 eV obtained from photoemission (PE),
inverse-PE [5], and angle-resolved photoemission (ARPES)
measurements [61,62]. A small overestimation with respect to
the experiment is typical for the QMC data due to marginally
larger fixed-node bias in excitations than in the ground states.

Our results also indicate that the sharp α peak at around
1 eV observed in optical experiments [2,3,11] has either an
excitonic nature, or it is related to defects/impurities, or a
combination thereof. Because α-RuCl3 is a quasi-2D mate-
rial, this is not surprising since very large excitonic binding
energies of that order are observed in other 2D materials
[63,64]. Indeed, recent time-resolved two-photon PE spec-
troscopy experiments indicate that above-mentioned ∼1 eV
gap is excitonic [61].

V. CONCLUSIONS

In this work we presented highly accurate benchmark re-
sults for α-RuCl3 by studying its cohesive energy and band
gaps. In order to apply the many-body method to a complex
material such as RuCl3, we also advance several methodolog-
ical steps that lead to less ambiguous results and provide a
more transparent path for similar studies in the future. Except
for the employed experimental geometry, this work provides
a fully ab-initio study of α-RuCl3.

First, we use both spin-orbit averaged conventional fixed-
node DMC method as well as two-component spinor-based
fixed-phase DMC, which explicitly includes the spin-orbit
interaction. For this purpose, the atom of Cl is represented
by recently developed ccECPs with [Ne] core. For Ru, we
adopt ECP with valence 4s24p64d65s2 from the Stuttgart
table [38] with a minor adjustment that smooths out the ef-
fective Coulomb term into a finite value at the ion origin.
This straightforward modification keeps the accuracy of the
original construction essentially untouched.

Second, we employ the spin-averaged framework both in
DFT and in QMC methods which provides an initial picture
of the electronic structure, such as DFT bands, estimates of
cohesive energies, and band gaps. We have made an effort to
estimate the extent of systematic errors such as the quality of
the ECP, basis sets, finite-size effects, and fixed-node/fixed-
phase errors and to show relevant details of the calculations
for maximum transparency.

Part of this is also a probe of the spin-orbit impact using
both DFT with Hubbard U and also two-component DMC
calculations. Considering an ideal system without localized
and strong excitonic effects, we do not see any significant
changes in the cohesive energy and band gap estimates, and
the obtained SOC-related shifts are mild, in contrast with pre-
vious suggestions [3,5,16,22,65,66]. The SOC shifts of gaps
appear to be bounded by ≈0.2 eV, in line with expectations
for Ru from atomic and molecular calculations. Our estimates
that include both promotion (charge-neutral excitations) and
fundamental (charged calculations with ionized supercells)
gaps show good agreement with PE/IPE and ARPES experi-
ments with an overall accuracy of 0.2 eV. To the best of our
knowledge, the experimental cohesive energy is not known,
and our DMC result provides a truly many-body prediction
for this quantity.

We note that the much more subtle physics of the possi-
ble spin liquid phase remains hidden in the statistical noise.
Clearly, for this purpose, one needs to build a proper effec-
tive Hamiltonian, for the relevant low-lying states. However,
despite many attempts to do so previously in various settings,
we are not much closer to a genuine understanding of the
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spin liquid aspects of this material. In particular, the spin
liquid phase studies using DFT and downfolding approaches
based on DFT-derived wave functions [65,67] require knowl-
edge about suitable values of U or exact-exchange mixing
ω which are not known a priori. Such a study would also
need to account for the role of phonons, as recent thermal
Hall effect measurements showed that the thermal Hall sig-
nal is dominated by phonons [68,69]. We believe that the
insights provided in this work regarding the weak strength
of SOC and the importance of electron correlations will be
an excellent starting point for future studies in this direction.
Our results show that hybrid DFT with ω exact-exchange
mixing in the range of 15%–20% provides a representative,
effective one-particle picture of ideal α-RuCl3. Beyond this
level we conjecture that a more accurate correlation treat-
ment with multireference wave functions will be needed
to evaluate appropriate parameters for downfolding studies
relevant to spin liquid phases. Indeed, after solving the im-
portant challenge of multireference state construction and
optimization in solids, this is the next opportunity for provid-
ing deeper insights based on spinor-based, many-body wave
functions.

From a broader perspective, we believe the significance
of the presented DMC results goes beyond only being rele-
vant to this material. In particular, the presented data reveal
vital insights about appropriate DFT functionals for studies
in systems with heavier atoms and non-negligible spin-orbit
effects. We observe, now in a more systematic manner [47],
that the nodes of trial functions obtained from hybrid DFT
are more accurate than for orbitals from DFT + U , suggesting
thus that the hybrid orbitals better describe the most optimal
single-particle Hamiltonian. Note that these two theories ad-
dress the shortcomings of practically used DFT functionals
from two different sides. In hybrid functionals, the effects of
local exchange are emphasized, which leads to lowering the
energy in the triplet vs singlet channels. DMC calculations,
being variational, indeed support this effect since that leads
to lower total energies by exchange-driven, better localization
of orbitals. On the other hand, Hubbard U pushes up the
singlet channel relative to the triplet channel. Although the
relative effect of the singlet-triplet energy shift is qualitatively
similar, the hybrid functional electronic picture is closer to
reality, at least for the purpose of providing a better variational
orbital set for ground state calculations. Assuming that the ex-
cited states of interest are essentially single-reference, similar
conclusions would also apply to such excitation calculations.
In case the calculated state is not a single-reference, neither
of these orbital sets would be optimal, and further process-
ing would be needed, for example, by obtaining the natural
orbitals from diagonalization of correlated single-particle den-
sity matrix [70].

As far as we are aware, this is the first study of solids
with spin-orbit effects using many-body QMC in explicit two-
component spinor formalism. Considering all the aspects of
the presented work, it provides important, many-body derived
data for effective spin liquid studies and opens further oppor-
tunities for many-body wave function studies of systems with
heavy atoms and strong spin-orbit effects.

See the Supplemental Material [26] for raw total energies,
bulk geometry, and convergence studies. The input, output

files, and supporting data generated in this work are pub-
lished in Materials Data Facility [71,72] and can be found in
Ref. [73].

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [74].
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