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Many physical quantities in solid-state physics are calculated from k-space summation. For spectral func-
tions, the frequency-dependent factor can be decomposed into the energy-conserving δ-function part and the
nondissipative principal value part. A very useful scheme for this k-space summation is the tetrahedron method.
Tetrahedron methods have been widely used to calculate the summation of the energy-conserving δ-function
part, such as the imaginary part of the dielectric function. On the other hand, the corresponding tetrahedron
method for the nondissipative part, such as the real part of the dielectric function has not been used much. In this
paper, we address the technical difficulties in the tetrahedron method for the nondissipative part and present an
easy-to-implement stable method to overcome those difficulties. We demonstrate our method by calculating the
static and dynamical spin Hall conductivity of platinum. Our method can be widely applied to calculate linear
static or dynamical conductivity, self-energy of an electron, and electric polarizability, to name a few.

DOI: 10.1103/PhysRevB.106.075126

I. INTRODUCTION

In the field of electronic structure calculations, many phys-
ical quantities of a periodic system are obtained from a
Brillouin zone (BZ) integral of the following form:

∑
n,m �=n

∫
BZ

d3k

(2π )3
fnk

Fnmk

h̄ω − (εmk − εnk ) + iη
. (1)

Here fnk and εnk are the Fermi-Dirac occupation factor and
energy eigenvalue for an electronic state with band index n
and Blöch wave-vector k, respectively, Fnmk, a complex func-
tion of two band indices n and m and Blöch wave-vector k, is a
product of proper matrix elements, and η = 0+ is an infinites-
imal positive number. Physical quantities, such as correlation
functions from linear-response theory (conductivity, suscepti-
bility, dielectric functions, etc.) or any integration of Green’s
functions in k space (e.g., self-energy) can be obtained by
calculating this integral.

The Brillouin-zone integration has been mainly performed
from two different schemes: the smearing method and the
tetrahedron method. The smearing method assumes that η is
small but finite. The integral can be replaced by a sum over
a special set of k points. Next, the tetrahedron method is the
analytical integration method assuming that Fnmk, εmk, and εnk
vary linearly inside a tetrahedron in k space. Six tetrahedra are
constructed for each parallelepiped in k space whose vertices
belong to the regular k-point grid: described in Appendix A.
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In a single tetrahedron, the matrix elements and band energies
are linearized.

The integral gives two terms, the principal value (P) part
and the δ-function part, thanks to the following decomposi-
tion:

1

h̄ω − (εmk − εnk ) + iη

= P
1

h̄ω − (εmk − εnk )
− iπδ[h̄ω − (εmk − εnk )]. (2)

Whereas being used to calculate the energy-conserving δ-
function part [1], the tetrahedron method has not been used
much for the nondissipative principal value part. In principle,
the nondissipative part can be obtained from the δ-function
part since the two are connected by the Kramers-Kronig re-
lation. However, the Kramers-Kronig transform may require
a significant amount of computational time: The Kramers-
Kronig relation is written as an integral with respect to the
frequency from zero to infinity. It is, thus, required to calculate
the δ-function part at a dense frequency grid covering a wide
frequency range, even if a single frequency component of the
nondissipative part is needed.

Previous studies suggested the tetrahedron method for the
nondissipative part [2,3]. The method can also be applied
to metals with a proper division of tetrahedra at the Fermi
surface at zero temperature [4]. However, this method has
some technical difficulties. First, the explicit formula for the
integration is in seven different complicated forms, depending
on the energy eigenvalues at the four vertices of a tetrahedron.
In more recent studies [5,6], the multiple-case method was
similarly adopted. Second, the criteria to distinguish between
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these cases are not well defined numerically: They depend
on whether some variables are exactly zero or not. Third,
most importantly, the round-off error occurring during the
evaluation of the logarithmic functions is not controlled. To
implement the tetrahedron method for the nondissipative part,
these difficulties should be handled appropriately.

In this paper, we present an easy-to-implement, numeri-
cally stable tetrahedron method for the nondissipative part to
overcome these technical difficulties. After a detailed expla-
nation of the method, we compare the convergence and the
computational time of the tetrahedron method with those of
the adaptive smearing technique [7] for the intrinsic static
and dynamical spin Hall conductivity (SHC) of fcc platinum
using the interpolation scheme based on maximally locallized
Wannier functions (MLWFs) [8,9]. We show that, to reach the
same level of convergence, our improved tetrahedron method
requires orders of magnitude shorter computation times than
the adaptive smearing method. Finally, we discuss how the
convergence can be achieved efficiently.

II. METHOD

A. Tetrahedron method for the Kubo formula

Consider the following three types of integrals:

I1,nm(h̄ω) =
∫

tet.
d3k P

Fnmk

�nmk + h̄ω
, (3)

I2,nm(h̄ω) =
∫

tet.,�nmk=h̄ω

d2Sk
Fnmk

|∇k�nmk| , (4)

I3,nm =
∫

tet.
d3k

Fnmk

�2
nmk

, (5)

where the integration in momentum space is performed over a
particular tetrahedron and �nmk = εnk − εmk. Especially, I1,nm

and I3,nm is obtained by evaluating the nondissipative parts.
The formulas to calculate Green’s-function-like or suscep-
tibilitylike quantities, such as anomalous Hall conductivity
[10,11], Fan-Migdal self-energy [12–14], and spin Hall con-
ductivity [15,16], can be transformed and decomposed to
terms of the forms in Eqs. (3) and (5). To allow analytical
integration in Eqs. (3)–(5), we used the Padé approximant, the
best approximation by a rational function. The Padé approxi-
mant is obtained by using,

Fnmk = F0 + Fxkx + Fyky + Fzkz, (6)

�nmk = �0 + �xkx + �yky + �zkz, (7)

where F0, . . . , Fz, and �0, . . . ,�z are the parameters repro-
ducing the values at each of the four vertices of a tetrahedron.
As a result,

I1,nm(h̄ω) =
∫

tet.
d3k P

F0 + Fxkx + Fyky + Fzkz

�0 + h̄ω + �xkx + �yky + �zkz
, (8)

I3,nm =
∫

tet.
d3k

F0 + Fxkx + Fyky + Fzkz

[�0 + �xkx + �yky + �zkz]2
, (9)

and these can be integrated by hand since we know that the
integration of rational functions contains other rational func-
tions with logarithms. For example, the one-dimensional case

for Eq. (8) is equivalent to∫ k f

ki

dkxP
F0 + Fxkx

�0 + h̄ω + �xkx

= F0�x − Fx(�0 + h̄ω)

�2
x

ln

∣∣∣∣�xk f + �0 + h̄ω

�xki + �0 + h̄ω

∣∣∣∣
+ Fx

�x
(k f − ki ). (10)

The closed-form expressions for the three-dimensional case
are presented in Appendix B. We note that the equivalent
results for I1,nm [Eq. (3)] are in Ref. [3] and those for I2,nm

[Eq. (4)] are in Ref. [1]. The results for I3,nm [Eq. (5)] are not
presented elsewhere.

A specific component of the intrinsic spin Hall conductiv-
ity, for example, is expressed as [15,16]

σ z
xy(ω) = e

h̄

	

(2π )3

∑
n,m �=n

∫
BZ

d3k( fnk − fmk )

× Im
[〈

unk
∣∣ ĵz

xk

∣∣umk
〉〈umk|v̂yk|unk〉

]
�2

nmk − (h̄ω + iη)2
, (11)

where 	 is the volume of a unit cell and |unk〉 is the periodic
part of the Blöch state satisfying Hk|unk〉 = εnk|unk〉 where
Hk = e−ik·rHeik·r, and H is a lattice-periodic Hamiltonian.
ĵz
xk = h̄

4 {σ z, vxk}, and v̂yk = 1
h̄∂yHk are the spin current and

velocity operators, respectively. After dividing the Brillouin
zone according to the scheme presented in Appendix A, we
can decompose Eq. (11) into integrations over a single tetra-
hedron of the forms in Eqs. (3)–(5). We obtain the dynamical
conductivity of the form

1

2h̄ω

∑
n,m �=n

[{I1,nm(−h̄ω) − I1,nm(h̄ω)}

+ iπ{I2,nm(−h̄ω) + I2,nm(h̄ω)], (12)

and the static conductivity of the form∑
n,m �=n

I3,nm. (13)

B. Numerical problem and its solution

If we perform the integrations in Eqs. (3) and (5) analyti-
cally, we obtain the following results:

I1,nm(h̄ω) = − (1 + x1)(1 + x2)(1 + x3)

6x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

× det(t)

�4 + h̄ω

4∑
i=1

Fi

(
3∑

j=1

C(1)
i j ξ j + B(1)

i

)
, (14)

I3,nm = (1 + x1)(1 + x2)(1 + x3)

2x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

× det(t)

�2
4

4∑
i=1

Fi

(
3∑

j=1

C(3)
i j ξ j + B(3)

i

)
, (15)

where Fi and �i (i ∈ {1–4}) are the values of Fnmk and �nmk
at the four vertices of a single tetrahedron, respectively. x j and
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ξ j ( j ∈ {1–3}) are defined as

x j = �4 − � j

� j + h̄ω
, ξ j = ln|1 + x j |. (16)

The expressions for Ci j and Bi in terms of xi’s are given in
Appendix B.

However, there remains a numerical problem of calculating
a very small number divided by another very small number
with floating-point arithmetic, which occurs when the values
of �nmk of two or more vertices are very close to each other.
According to the definition above, x1, x2, x3, x1 − x2, x2 − x3,
and x3 − x1 are measures of how close �i and � j are for
pairs (i, j) = (1, 4), (2, 4), (3, 4), (1, 2), (2, 3), and (3, 1),
respectively. As two or more �i’s get closer, the elements
in a subset X ⊆ {x1, x2, x3, x1 − x2, x2 − x3, x3 − x1} become
closer to zero. Then, let us define I1,nm|X→0 and I3,nm|X→0 as
the limits of I1,nm and I3,nm if all the elements in X approach
zero. (The expressions for I1,nm|X→0 are presented in Ref. [3]).
However, errors are generated in evaluating the logarithmic
functions because of rounding of floating-point arithmetic and
are amplified due to the small denominator in the prefactors of
Eqs. (14) and (15), resulting in nonconvergence.

Let us define ε as the maximum value which a computer
cannot store when it is added to 1 due to rounding of floating-
point arithmetic. Roughly speaking, ε ≈ 10−8, 10−16, and
10−32 for single-, double-, and quadruple-precision data types,
respectively. Explicitly, we may write this as 1

.= 1 + O(ε),
where

.= means “equality in machines.” For example, if a
machine cannot distinguish two real numbers A and B, A

.= B.
For a real number x, x

.= x + O(xε).
A round-off error comes from calculating ξ j = ln|1 +

x j | = O(x j ) (in the case of |x j | 	 1) or ξk = ln|1 + xk| =
ln|1 + x j + (xk − x j )| = ξ j + O(x j − xk ) (in the case of |x j −
xk| 	 |1 + x j |). Since the default computer algorithm to
compute ln uses the Taylor expansion, ln (1 + x) is cal-
culated by (1 + x − 1) − (1 + x − 1)2/2 + (1 + x − 1)3/3 +
· · · , not by x − x2/2 + x3/3 + · · · . The value of 1 + x − 1 is
not the same as that of x, but 1 + x − 1

.= x + O(ε) if |x| 	 1.
Hence,

ln|1 + x| .= O(x) + O(ε) (17)

for small |x| (	 1). For a similar reason, ln|1 + x| = ln|1 +
y + (x − y)| .= ln|1 + y| + O(x − y) + O(ε) for small |x − y|
(	 1).

This round-off error can be problematic if x j → 0 or x j −
xk → 0. In the first case, a term, such as∑

l Cilξl + Bi

x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

.= O(1)

∑
l �= j Cilξl + Ci j[O(x j ) + O(ε)] + Bi

x2
j

= O(1)

(∑
l �= j Cilξl + Ci jO(x j ) + Bi

) + Ci jO(ε)

x2
j

= O
(
x2

j

) + O(ε)

x2
j

(18)

should be finite as x j → 0 but is divergent due to O(ε). In
the last equality, we have used the fact that the coefficients

of O(x j ) should vanish in order to have a nondivergent value
in the limit x j → 0 if ε = 0. We can also check this equality
using Eqs. (B7) and (B8) in Appendix B. In the second case,

∑
l Cilξl + Bi

x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

.= O(1)

[∑
l �=k Cilξl + Bi

(x j − xk )2

+Cik[ξ j + O(x j − xk ) + O(ε)]

(x j − xk )2

]

= O(1)

[∑
l �=k Cilξl + [Cik (ξ j + O(x j − xk )] + Bi

(x j − xk )2

+ CikO(ε)

(x j − xk )2

]

= O[(x j − xk )2] + O(ε)

(x j − xk )2
(19)

should also be finite as x j − xk → 0 but is divergent due to
O(ε). In the last equality, the coefficients of O(x j − xk ) should
vanish similarly as Eq. (18). The same phenomenon happens
when two or more x j, x j − xk’s are close to zero.

It is also well known that log 1P is a more accurate way
to compute ln(1 + x) in the case of |x| 	 1 [17], but the
round-off error does not completely disappear here either. It is
expressed as log 1P(x) = x ln(1 + x) / (1 + x − 1). The error
is O(xε), not O(ε) because

log 1P(x) = x
ln(1 + x)

1 + x − 1

= x
(1 + x − 1) − (1 + x − 1)2/2 + · · ·

1 + x − 1
= x[1 − (1 + x − 1)/2 + · · · ]
.= x[O(1) + O(ε)]

= O(x) + O(xε). (20)

Therefore, the numerical problem is not yet, in general, re-
solved even with log 1P function because of the remaining
error term.

To avoid this difficulty, we may first consider using the
formulas for I1,nm|X→0 in Ref. [3] and finding and using the
formulas for I3,nm|X→0. However, this method has two prob-
lems in practice. First since there are six parameters in total,
many different limiting cases should be considered depending
on which of the six parameters are much smaller in magnitude
than one, making the implementation complicated. Second
since they are real numbers which are not exactly zero, it is
not easy to define the criteria to determine whether one of the
limiting-case formulas should be applied or not.

By introducing a criterion for determining whether the
elements of X are close to zero, we can solve the numer-
ical problem in a simple way without implementing many
cases. Let us redefine x1, x2, x3, x1 − x2, x2 − x3, and x3 − x1
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symmetrically,

xi j = �i − � j

(�i + � j )/2 + h̄ω
. (21)

If one of xi j gets close to zero, the numerical integration will
have the error shown in Eqs. (18) and (19). In order to prevent
this error, we enforce |xi j | to be not smaller than a specified
value εtet. (cutoff) by modifying �i and � j as

�i → �i + � j

2
± 0.5

∣∣∣∣�i + � j

2
+ h̄ω

∣∣∣∣εtet., (22)

and

� j → �i + � j

2
∓ 0.5

∣∣∣∣�i + � j

2
+ h̄ω

∣∣∣∣εtet., (23)

where the upper signs are selected if �i � � j and the lower
signs are selected if �i < � j . Accordingly, the updated
|xi j | = εtet., and the round-off error is not amplified by the
small denominator [see Eqs. (18) and (19)].

The cutoff should make the error term in the denominator
O(ε) small enough compared to the true value term, O(x2

j )
in Eq. (18) or O[(x j − xk )2] in Eq. (19). εtet. prevents the
error from becoming comparable to the true value with the
condition,

O(ε) 	 O
(
ε2

tet.

)
. (24)

Therefore, εtet. depends on the precision, or, equivalently, the
data type. If a higher-precision data type is used, the required
εtet. is smaller. We adopted εtet. = 10−3 for double precision
numbers, and we suggest using this value for other materi-
als. Since the material-dependent variables, Fi (velocity and
spin-current matrix elements) and xi j (determined by band
structure), are not included in the condition above, the same
value would work well for other materials.

C. Higher-order correction

In the ordinary tetrahedron method, the matrix elements
and the energy eigenvalues are linearly interpolated using
the values at the four vertices. The integrand can, thus, de-
viate from the true value due to the neglected curvature in
k space of the numerator and the denominator. To correct
this error, Blöchl suggested an improved tetrahedron method
[18], which has been widely implemented in many computer
programs. The method can take the curvature effect into ac-
count using only the matrix elements and energy eigenvalues
at the four vertices without higher-order interpolation using
the Gauss theorem. Quantities, such as the total energy or
the charge (spin) density can be calculated using Blöchl’s
correction. However, this method is limited to smoothly vary-
ing functions which are interpolated by polynomials, not by
rational functions. Near the zero of the denominator in k
space where �2

nmk − (h̄ω + iη)2 = 0, the integrand is rapidly
varying. The gradient and the curvature inside a tetrahedron
are not well represented, resulting in the failure of the method.

Kawamura et al. introduced a novel improved tetrahedron
method applicable to response functions [19]. The work is
about finding a good linear interpolation function from the
third-order correction. The method uses additional 16 k points
surrounding the original tetrahedron together with the four

original vertices and finds the 20 coefficients to construct
third-order interpolating polynomials for the matrix element
and for the energy eigenvalue. Finally, one fits a linear func-
tion using the least-squares method. As a result, the formulas
for the linear fitting functions are automatically calculated
from the matrix elements and the energy eigenvalues at the 20
k points. This scheme can also be employed with our solution
to the numerical problem (round-off errors) at the same time.

III. COMPUTATIONAL DETAILS

The intrinsic contribution to both the static and the dy-
namical SHC of platinum was investigated by the simple
summation with the adaptive smearing scheme [7] and the
tetrahedron method proposed here. The entire procedure from
the self-consistent calculations to the Wannier-interpolation is
the same as that in Ref. [9]. The norm-conserving pseudopo-
tential and the PBESOLexchange-correlation energy functional
[20] were used. The kinetic-energy cutoff for the wave
functions was set to 60 Ry. The energy eigenvalues, the
corresponding Fermi-Dirac occupancy factor, and the ma-
trix elements for the SHC were computed via self-consistent
and non-self-consistent calculations on 12 × 12 × 12 and
8 × 8 × 8 k-point grids, respectively, using the plane-wave
pseudopotential code PWSCF from the QUANTUM ESPRESSO

package [21,22], via the WANNIER90package, and via the
PW2WANNIER90 which is the connecting program between
PWSCF and WANNIER90 [23]. The initial guess at MLWFs
were s, p, and d atom-centered nodeless orbitals, and the
inner energy window is 15 eVs wide from the bottom of the
valence-band minimum up to 4 eV above the Fermi level.

Regarding the adaptive smearing for the simple summa-
tion, we followed the scheme of Ref. [7]: We set η in Eq. (11)
as η = a| ∂εnk

∂k − ∂εmk
∂k |�k where a is a dimensionless constant

of order 1 (we set a = √
2), and �k is the distance between the

nearest-neighbor k points in the interpolation grid. To avoid
the aforementioned numerical instability for the tetrahedron
method, we set εtet. to be 10−3.

IV. RESULTS

The band structure of platinum is shown in Fig. 1. The 18
MLWFs successfully reproduced the band structure within the
inner window (<4 eV).

Figure 2 shows the comparison of the two methods for the
dynamical SHC. We used unshifted Monkhorst-Pack grids.
The adaptive smearing scheme requires a finer-k mesh to
reach convergence. The tetrahedron method achieved conver-
gence at a relatively coarse 40 × 40 × 40 grid. On the other
hand, the peak value at 0.57 eV of the real part obtained on
100 × 100 × 100 grids, using the adaptive smearing, does not
reach half of that obtained on 40 × 40 × 40 grids using the
tetrahedron method.

The imaginary part is zero below 0.48 eV, which is the
threshold for a direct band-to-band transition. The tetrahedron
method is useful to see this feature since it reproduces the δ

function better than the smearing method. This result agrees
with previous studies on the original tetrahedron method for
the integrals over the Fermi surface, such as in the case of
density of states.
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−4

0

4

8

Γ Γ

FIG. 1. The combined electronic band structure of fcc platinum.
The black dots indicate the band structure obtained from ab initio
calculations, and the red curves were obtained from the Wannier
interpolation. The Fermi level of undoped platinum is located on the
top of the valence band, as displayed by a solid horizontal line. The
black dashed horizontal line is the ceiling of the inner window.

To quantify convergence, we defined the standard deviation
of the dynamical SHC as follows:

ddyn. =
√∫ ω2

ω1
dω

∣∣σ z
xy(ω) − σ z

xy,conv.(ω)
∣∣2

ω2 − ω1
, (25)

where ω is the frequency, ω1 = 0 and ω2 = 7 eV. For the static
SHC, the Fermi-energy shift EF is substituted for ω,

dstat. =
√∫ EF2

EF1
dEF

∣∣σ z
xy(0) − σ z

xy,conv.(0)|2
EF2 − EF1

, (26)

where EF1 = −7.1 and EF2 = +3 eV. The integrals were eval-
uated by a summation using �ω = 0.1 and �EF = 0.1 eV.
Using the tetrahedron method, the SHC calculated on 140 ×
140 × 140 grids for the dynamical and static SHC was con-
sidered the converged one (σ z

xy,conv.).
To see the cutoff dependence of our tetrahedron method,

we obtained ddyn. and dstat. with five different k meshes as a
function of εtet. values (Fig. 3). In general, the smaller εtet. is,
the larger the round-off error is. On the other hand, the larger
εtet. is, the larger the deviation of the energy eigenvalues at the
four vertices of a tetrahedron [Eqs. (22) and (23)] is. There-
fore, as Figs. 3(a) and 3(c) show, there is an optimal range
for εtet. to converge SHC with which the standard deviation of
the error (dstat. or ddyn.) is small enough compared to the total
SHC value σ z

xy ∼ O(103)(h̄/e) (S/cm). The dashed vertical
lines indicate εtet. = 10−3 located in the middle of this optimal
range. This value was adopted in obtaining the results shown
in Figs. 2, 3(b), and 3(d).

We compared the computational time to see which method
is the most effective. Figures 3(b) and 3(d) show, respectively,
that ddyn. and dstat. decrease as the k-point grid for integration
becomes dense. Convergence is not reached at all if the tetra-
hedron method without the cutoff treatment is used, whereas
the tetrahedron method with the cutoff treatment achieves
convergence faster than the adaptive smearing method. The
higher-order correction proposed in Ref. [19] improves the
convergence further.

Figure 4 illustrates how much the SHC values for a single
tetrahedron with the cutoff treatment deviate from the exact
value as a function of x (= x12 = x23 = x34) [Eq. (21)]. With
the treatment, the integration values are fixed to be that of
|x| = εtet.; hence, the nearly horizontal lines emerge when
|x| < εtet.. Too small or too large εtet. leads to sizable errors,
and εtet. = 10−3 displays the smallest error. For example,
εtet. = 10−5 is too small since the round-off error is not yet
corrected by the treatment until this error gets very large.
On the other hand, εtet. = 100 is too large because the energy
eigenvalues at the four vertices are changed too much by the
treatment. These facts are consistent with the results shown in
Figs. 3(a) and 3(c). Without the treatment, the error increases
with decreasing x due to the round-off term O(ε). The slope
of the diagonally scattered data in Fig. 4 is −3 from which we
can infer that the round-off error is proportional to 1/x3. If all
|xi j |’s decrease at the same time, the error is not proportional
to 1/x2 as Eqs. (18) and (19). The reason for the slope being
−3 is explained in Appendix C.

Let f (x) the formula evaluating the contribution to the
integration from a single tetrahedron with a given x. Then the
slope of the black curve at small x approaches +1 because
f (x) − f (0) = f ′(0)x + O(x2), where f (0) is the limiting for-
mula. Also, f ′(0) can be found from the explicit formulas of
the tetrahedron method, such as Eqs. (B4) and (B6). Thus, the
slope of the logarithmic plot is +1 when x is small enough.

If we adopt a cutoff εtet., the error follows the black curve
when x < εtet.. and the red scattered points when x > εtet.. The
optimal cutoff is around 2 × 10−4 from the figure above since
the error is minimized both when x < εtet. and x > εtet. at the
same time. Even if we adopt this cutoff, however, the error is
comparable to or even larger than the error from our proposed
simpler method with εtet. = 0.001 (the green curve).

The Fermi-Dirac distribution we used is the step function,
which cannot describe the smooth Fermi-Dirac distribution
for finite temperatures. By scanning multiple Fermi levels and
conducting a convolution of the integral of the nondissipative
part and the Fermi-Dirac distribution, we can take finite tem-
peratures into account. This idea has been implemented in the
WANNIERBERRI code [24].

Our method can be applied to evaluate the integration of
much more complicated functions with a different pole struc-
ture. From other correlation functions to the Green’s function
or various self-energies, (for example, see Ref. [25]) there
are many quantities which can be expressed in the form of
Eqs. (3)–(5) after partial fraction decomposition.

The proposed tetrahedron method for the Kubo formula
can also be straightforwardly extended to deal with the
nk-dependent finite imaginary part of the quasiparticle self-
energy. The arguments of logarithms in Eqs. (14) and (15)
are now complex numbers instead of absolute values of real
numbers. For this extension, when calculating ln A − ln B, one
should use the same branch cut for both logarithm terms. For
example, if A = eia and B = eib with a, b ∈ (−π, π ], ln A −
ln B = i(a − b), whereas ln (A/B) = i(a − b + 2nπ ) where n
is 0, +1, or −1 depending on a and b. Therefore, one should
use ln A − ln B and not ln(A/B) in deriving the results such as
Eqs. (14) and (15).

To summarize, we developed a new tetrahedron method
to accurately evaluate the nondissipative part of spectral
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FIG. 2. The dynamical SHC of platinum calculated by the simple summation with the adaptive smearing method and by the tetrahedron
method with higher-order correction. The k-point grid used for the numerical integration is specified.

functions. By discovering and solving a numerical problem
due to rounding of floating-point arithmetic, we achieved
improved convergence than the adaptive smearing method. A
higher-order correction was also combined with our method.

We demonstrated the advantage of our method by calculating
the dynamical and static spin Hall conductivity of platinum.
Our method can be applied to a wide range of other physical
quantities. We will make the implementation of our pro-

FIG. 3. (a) ddyn. [Eq. (25)] as a function of εtet.. (b) A comparison of computational time among the three tetrahedron methods and the
adaptive smearing method. (c) and (d) Similar quantities as (a) and (b), respectively, for dstat. [Eq. (26)]. The vertical dashed line in (a) and
(c) denotes εtet. = 10−3 selected for other calculations [the results shown in Figs. 2, 3(b), and 3(d)].
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FIG. 4. The difference (absolute value) between the value of
static SHC from a single tetrahedron calculated using the cutoff treat-
ment and the ‘exact’ value versus x = x12 = x23 = x34 [Eq. (21)].
The exact value was obtained using quadruple precision numbers
producing an ignorable round-off error within the shown x range. The
black curve indicates the absolute value of the difference between the
exact value at a given x and the value when x is strictly zero.

posed method publicly available through WANNIER90 [23]
soon.
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APPENDIX A: STANDARD WAY TO CONSTRUCT
TETRAHEDRA

The original way to construct tetrahedra is as follows [18].
In the first Brillouin zone, N k points are chosen uniformly,
and the N parallelepipeds whose vertices are the neighboring
k points are built. Each parallelepiped is cut into six tetrahedra
as depicted in Fig. 5. As a result, the number of the simplexes
becomes 6N . The choice of the main diagonal (18 in the
figure) is not unique, but it is advisable to select the shortest
one.

When the Fermi surface or the surface h̄ω − �nmk = 0
passes through a tetrahedron, a surface of constant energy
εmk = εF or constant energy difference �nmk = h̄ω cuts it into
smaller polyhedra. Figures 6(a)–6(c) depict how the surface
cuts a tetrahedron depending on the value of εF or h̄ω. Since
εnk and εmk are linearly interpolated inside a single tetrahe-
dron, each surface cuts a tetrahedron by a plane. The pieces
cut by the surface are polyhedrons that can be constructed
from smaller tetrahedra [Fig. 6(d)].

FIG. 5. A schematic showing how six tetrahedra are generated
from a given parallelepiped (cube in the figure): 1248 (red lines),
1628, 1568, 1758, 1378, and 1438. Here 18 is adopted to be the main
diagonal (the red, dash-dotted line), and six edges (12, 13, 15, 84, 86,
and 87) and five diagonals traversing a surface (dashed lines; 14, 17,
28, 38, and 48) become edges of tetrahedra.

APPENDIX B: ANALYTIC TETRAHEDRON METHOD

Equations (3)–(5) can be integrated over each tetrahedron
using linear interpolations. Equations (3) and (5) are volume
integrals, whereas Eq. (4) is a surface integral. The integrands
of the volume integrals are rational functions in k space, so the
results are associated with logarithmic functions. The volume
integral is a triple integral of a linear function divided by an-
other linear function over a polyhedron, whose shape depends
on εF [Fig. 6]. The surface integral is a double integral on
a plane cut by a surface with a constant energy difference
�nmk = h̄ω [Fig. 6].

All the tetrahedra and triangles can be parametrized in
new coordinate systems, (s1, s2, s3) and (u, v), respectively,
defined by

ki =
∑

j

ti js j (B1)

ti = (t1i, t2i, t3i ), (B2)

and ⎛
⎜⎜⎝

s1

s2

s3

⎞
⎟⎟⎠ = ∂ (s1, s2, s3)

∂ (u, v)

(
u

v

)
, (B3)

where ti is the vector from vertex 1 to vertex (i + 1) [Fig. 6].
The Jacobian matrix in Eq. (B3) is given in Table I. Under this
change of variables, one vertex is set to be the origin, whereas
the other two vertices are defined as (u, v) =(1,0) and (0,1)
for the triangular surface integral, and the other three vertices
are defined as (s1, s2, s3) =(1,0,0), (0,1,0), and (0,0,1) for the
tetrahedral volume integral.

The expressions for Eqs. (3)–(5) are as follows:

I1,nm(h̄ω) = − (1 + x1)(1 + x2)(1 + x3)

6x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

× det(t)

�4 + h̄ω

4∑
i=1

Fi

(
3∑

j=1

C(1)
i j ξ j + B(1)

i

)
, (B4)
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FIG. 6. Illustrations of how the Fermi surface or the surface h̄ω − �nmk = 0 cuts a tetrahedron in the Brillouin zone. It is assumed that the
indices of the vertices are in order of increasing εmk or �nmk, and they are denoted as εi or �i for i = 1–4. (a) ε1 < εF < ε2 or �1 < h̄ω < �2.
(b) ε2 < εF < ε3 or �2 < h̄ω < �3; the tetragonal surface is cut into two triangular pieces, A and B. (c) ε3 < εF < ε4 or �3 < h̄ω < �4. (d) A
schematic showing that the polyhedron in panel (b) is constructed from three tetrahedra—1285 plus 5267 plus 5268.

I2,nm(h̄ω) =
∣∣ ∂k

∂u
∂k
∂v

∣∣
|∇k�nmk|

×
∫ 1

0

∫ 1−u

0
du dv Fnmk(u,v), (B5)

I3,nm = (1 + x1)(1 + x2)(1 + x3)

2x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

×det(t)

�2
4

4∑
i=1

Fi

(
3∑

j=1

C(3)
i j ξ j + B(3)

i

)
. (B6)

The expressions for Ci j , Bi, |∇k�nmk|, and Fnmk(u,v) are given
below. The definitions of the other used variables are pre-
sented in the main text.

For a, b, c ∈ {1–3}, define b ≡ a + 1 (mod 3), and c ≡ a +
2 (mod 3). In other words, they are cyclic.

C(1)
aa = −(xb − xc)2x2

bx2
c

× (
3x2

a − 2(xb + xc)xa + xbxc
)
,

C(1)
ba = −(xb − xc)2x2

bx2
c xa(1 + xb)(xc − xa),

C(1)
ca = +(xb − xc)2x2

bx2
c xa(1 + xc)(xa − xb),

C(1)
4a = −(xb − xc)2x2

bx2
c (xa − xb)(xc − xa),

B(1)
a = xaC

(1)
4a ,

B(1)
4 = −x1x2x3(x1 − x2)2(x2 − x3)2(x3 − x1)2, (B7)

C(3)
aa = −(xb − xc)2x2

bx2
c (1 + xa)

× (
2x3

a + (3 − xb − xc)x2
a − 2(xb + xc)xa + xbxc

)
,

C(3)
ba = (1 + xa)C(1)

ba ,

C(3)
ca = (1 + xa)C(1)

ca ,

C(3)
4a = (1 + xa)C(1)

4a ,

B(3)
a = xaC

(3)
4a ,

B(3)
4 = B(1)

4 . (B8)

The parametrizations for the surface integral I2,nm are writ-
ten in terms of the values of energy differences. The detailed
formulas are in Table I. The gradient of �nmk is constant on a
single surface,

|∇k�nmk| =

√√√√√
∣∣∣∣∣∣
∑
i, j,k

t−1
ik t−1

jk �i� j

∣∣∣∣∣∣. (B9)

Using the coefficients of Fnmk in the newly parametrized coor-
dinate, F̃0, F̃1, and F̃2,

Fnmk(u,v) = F1 + (F2 − F1)s1(u, v)

+ (F3 − F1)s2(u, v) + (F4 − F1) s3(u, v)

≡ F̃0 + F̃1u + F̃2v, (B10)

we find that the surface integral is given by∫ 1

0

∫ 1−u

0
du dv Fnmk(u,v) = F̃0

2
+ F̃1 + F̃2

6
. (B11)

TABLE I. Parametrizations of the surface integrals [Eq. (4)], assuming �1 � �2 � �3 � �4. For �2 < h̄ω < �3, both triangles A and B
shown in Fig. 6(b) are parametrized.

Range Parametrization ∂ (s1, s2, s3)/∂ (u, v)

�1 < h̄ω < �2

⎛
⎝−y1 −y1

y2 0
0 y3

⎞
⎠, y1 = h̄ω−�1

�2−�1
, y2 = h̄ω−�1

�3−�1
, y3 = h̄ω−�1

�4−�1

�2 < h̄ω < �3

⎛
⎝ y1 0

0 y2

1 − y1 − y3 −y3

⎞
⎠ for A,

⎛
⎝y1 − y4 −y4

y4 − 1 y4 − 1 + y2

1 − y1 0

⎞
⎠ for B, y1 = h̄ω−�4

�2−�4
, y2 = h̄ω−�1

�3−�1
, y3 = h̄ω−�1

�4−�1
, y4 = h̄ω−�3

�2−�3

�3 < h̄ω < �4

⎛
⎝ y1 0

0 y2

1 − y1 − y3 1 − y2 − y3

⎞
⎠, y1 = h̄ω−�4

�2−�4
, y2 = h̄ω−�4

�3−�4
, y3 = h̄ω−�4

�4−�1
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Also, | ∂k
∂u × ∂k

∂v
| in Eq. (B5) is obtained using Eqs. (B1)–(B3)

and the parametrization in Table I between the two coordinate
systems (s1, s2, s3) and (u, v). The integrals are, hence, calcu-
lable by collecting all the terms in Eqs. (B4)–(B6).

APPENDIX C: ANALYSIS OF THE ROUND-OFF ERROR
SHOWN IN FIG. 4

According to Eqs. (18) and (19), the round-off error is pro-
portional to O(ε)/x2 if only one of |x j | or |x j − xk| approaches
0. In Fig. 4, however, the slope in logarithmic scale is −3,
implying the error is proportional to O(ε)/x3.

In order to understand this behavior, suppose that x1, x2, x3,
x1 − x2, x2 − x3, and x3 − x1 are all proportional to O(x). We
are using ln(x)

.= O(x) + O(ε) or log 1P(x)
.= O(x) + O(xε),

so s = 0 or 1 for ξl = ln(1 + xl )
.= O(xl ) + O(xs

l ε), respec-
tively, ∑

l Cilξl + Bi

x2
1x2

2x2
3 (x1 − x2)2(x2 − x3)2(x3 − x1)2

.= O(1)

x12

{
Cii

[
O(xi ) + O

(
xs

i ε
)] + Ci j

[
O(x j ) + O

(
xs

jε
])

+Cik
[
O(xk ) + O

(
xs

kε
)] + Bi}

= 1

x12
{O(x8)[O(x) + O(xsε)] + O(x8)[O(x) + O(xsε)]

+O(x8)[O(x) + O(xsε)] + O(x9)}

= 1

x12
[O(x12) + O(x8)O(xsε)]

= O(x4−s) + O(ε)

x4−s
. (C1)

In the second to last equality in Eq. (C1), we have used the
fact that the coefficients of O(x9), O(x10), and O(x11) should
vanish in order to have a nondivergent value in the limit x → 0
if ε = 0. Hence, the round-off error term is

O(ε)

x4−s
. (C2)

The error is proportional to 1/x3 as shown in Fig. 4 since
log 1P was used in our implementation, i.e., s = 1.
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