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Strain-induced collapse of Landau levels in real Weyl semimetals
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The collapse of Landau levels under an electric field perpendicular to the magnetic field is one of the distinctive
features of Dirac materials. So is the coupling of lattice deformations to the electronic degrees of freedom in the
form of gauge fields, which allows the formation of pseudo-Landau levels from strain. We analyze the collapse of
Landau levels induced by strain on realistic Weyl semimetals hosting anisotropic, tilted Weyl cones in momentum
space. We perform first-principles calculations to establish the conditions on the external strain for the collapse
of Landau levels in TaAs which can be experimentally accessed.
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I. INTRODUCTION

Dirac materials, such as graphene [1] and Weyl semimetals
(WSMs) [2,3], are characterized by having the Fermi-level
near a pair of band crossings in momentum space. The disper-
sion relation of the low-energy electronic excitations around
the Fermi level is linear and the quasiparticles are described
by the relativistic, massless Dirac equation. This fact is at
the origin of the recent fascination for the Dirac materials,
especially after the synthesis of the three-dimensional Dirac
and WSMs [2–6]. Phenomena described in the formalism of
quantum field theory as the chiral or gravitational anoma-
lies are being observed in the material realization of Weyl
physics [7].

The structure of the Landau levels (LLs) under a magnetic
field is one of the distinctive characteristics of the Dirac
spectrum. The dependence of the cyclotron frequency on the
magnetic field and the spacing of the LLs are different than
these of the standard nonrelativistic electron systems and,
more importantly, there is a zeroth LL with linear dispersion
band [8]. In three spacial dimensions, the zeroth LL plays an
important role in the realization of the chiral anomaly, the
nonconservation of chiral charge when parallel electric and
magnetic fields are applied [6,9,10].

An important relativistic effect of the Dirac system oc-
curs when an electric field is applied perpendicularly to the
magnetic field: It has been shown that, at a critical value of
the electric field, the LLs collapse and the spectrum becomes
continuus again. The collapse of LLs was first predicted to
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occur in graphene [11–13] and the possible experimental
confirmations were analyzed in Refs. [14,15]. This phenom-
ena was extended to WSMs in Ref. [16] and to Kane fermions
in Ref. [17].

Another interesting phenomena arising in Dirac matter is
the fact that lattice deformations couple to the electronic den-
sity in the form of pseudoelectromagnetic gauge potentials
[18–21]. Pseudomagnetic fields induce LLs [22] and the addi-
tional inclusion of perpendicular pseudoelectric field can lead
to the collapse of these LLs [16]. The possible experimental
observation of this phenomenon would be a direct confir-
mation of the reality of pseudogauge fields with important
potential applications [20,21].

The collapse of LLs in WSMs induced by elastic
pseudoelectromagnetic fields was analyzed in Ref. [16]
for the ideal case of a WSM having a pair of isotropic,
nontilted Weyl nodes. However, real materials such as TaAs
have tilted and anisotropic Weyl cones in the band structure
[4], and more complicated models to study the collapse of
LLs were proposed in Refs. [23,24]. Still, these models are
based on the effective low-energy continuum description
with tunable parameters, not allowing a comparison with
possible experiments. Modeling the Hamiltonian from the
results of first-principles calculations on real WSMs is an
important step toward the experimental confirmation of this
novel phenomenon.

In this paper, we will first review the criterion for the
collapse of LLs for a tilted and isotropic Weyl cone in
Sec. II. In Sec. III, we will introduce the strain-induced
pseudoelectromagnetic fields and review the condition for the
collapse of LLs at a tilted, isotropic Weyl cone similarly as in
Refs. [23,24]. We extend the analysis including both the tilt of
the Weyl cone and anisotropy in the velocity in Sec. IV. Based
on the developed theory and first-principles calculations, we
will present the criterion for the strain-induced collapse of LLs
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in TaAs in Sec. V. We summarize our paper and discuss open
problems in Sec. VI.

II. COLLAPSE OF LANDAU LEVELS IN A WEYL
SEMIMETAL

For completeness and to fix the notation, we will describe
in this section the collapse of LLs in WSMs with and with-
out tilted cones discussed previously in Refs. [16,24]. The
low-energy Hamiltonian of a WSM around a Weyl node with
chirality χ = ±1 is

H = χ vF σ · p, (1)

where vF is the Fermi velocity, pi the momentum operator (i =
1, 2, 3), and σ i’s are the Pauli matrices.

If a magnetic field B = Bz ẑ associated to the vector po-
tential A = (−Bzy, 0, 0) in the Landau gauge is applied, the
spectrum of the Hamiltonian organizes into LLs [25],

εχ
n = ±vF

√
2l−2

B n + k2
z (n = 1, 2, 3, . . .), (2)

where we set h̄ = 1, lB = √
vF/eBz is the magnetic length, −e

is the electron charge, and kz is the momentum in the direction
of the magnetic field. Note that LLs of WSMs are proportional
to

√
n, whereas the LLs of ordinary materials are proportional

to n. The chiral zeroth LL, a characteristic of the Dirac system,
is described by

ε
χ

0 = χ vFkz. (3)

An electric field E = Eyŷ is now applied perpendicularly
to the magnetic field B = Bzẑ. A very elegant solution to this
problem uses the fact that the low-energy states around the
Weyl node are Lorentz invariant with the speed of light c being
replaced with the Fermi velocity vF [11]. Therefore, a boost
transformation of the fields with velocity v = vxx̂ leads to [26]

E ′
y = γ (Ey − vxBz ), (4)

B′
z = γ

(
Bz − vx

v2
F

Ey

)
, (5)

where γ ≡ 1/
√

1 − β2 and β ≡ vx/vF. The electric field in
the moving reference frame is zero if vx = v0, where

v0 ≡ Ey/Bz, (6)

or, equivalently, if β = Ey/vFBz.
We can then write the LLs in the moving frame with E ′

y =
0, ε′χ

n , and find LLs in the laboratory frame by inverting the
Lorentz transformation. The final result is

εχ
n = γ (1 − β2)ε′χ

n + vFβkx

= ±
√

2v2
Fl−2

B n(1 − β2)3/2 + v2
Fk2

z (1 − β2) + vFβkx. (7)

From Eq. (7), we can see that the LLs collapse at the critical
value β � 1 or Ey � vFBz. It is important to note that the
LL collapse does not occur in a nonrelativistic electron gas,
making it a distinctive property of Dirac materials, such as
WSMs or graphene.

Real WSMs have tilted Weyl cones described by the fol-
lowing Hamiltonian:

H = w · p + χ vF σ · p, (8)

where w is the tilt velocity. This Hamiltonian does not have an
analogy in special relativity, so alternative methods are needed
to obtain the criterion for the collapse of LLs. This problem
has been addressed with general relativity techniques [23] and
with algebraic methods [24]. The modified LLs for the tilted
cone given in Ref. [24] are

εχ
n = ±

√
2γ −3

χ v2
Fl−2

B n + γ −2
χ v2

Fk2
z + wzkz + v0kx (9)

for a positive integer n, where

γχ = 1/

√
1 − [

(χv0 − wx )2 + w2
y

]/
v2

F.

The modified criterion for the collapse of LLs is

(χv0 − wx )2 + w2
y � v2

F, (10)

where, as in the previous case, v0 = Ey/Bz.
In real WSMs, in addition to the tilt of the Weyl cones,

the Fermi velocity is also anisotropic. We will extend the
formalism to the realistic, general case later.

III. STRAIN-INDUCED COLLAPSE OF LANDAU LEVELS
IN A WEYL SEMIMETAL

The fact that elastic deformations of the lattice couple
to the electronic Hamiltonian of Dirac matter as elastic
gauge fields was first recognized in graphene where it gave
rise to a new line of research called straintronics [27,28].
More recently, the attention has moved to the strain-induced
gauge fields in WSMs [18,19] and the physical consequences
of the pseudo-electromagnetic fields [20,21].

When materials are strained, the hoping parameters be-
tween atomic orbitals and on-site energies are both changed.
In linear elasticity theory [29], the main role is played by the
strain tensor defined as ui j = 1/2(∂ui/∂x j + ∂u j/∂xi ), where
ui is the deformation vector. For small elastic deformations,
we can assume that the change in the Hamiltonian due to
the deformation depends linearly on ui j . If the Weyl nodes
are slightly shifted in the Brillouin zone, this Weyl node shift
can be interpreted as a pseudomagnetic gauge field due to the
strain [18].

Here, to adapt to the ab initio calculations to be introduced
later, we will propose a formulation that differs from the
previous ones described in Ref. [18]. We call the ratio between
the Weyl node shift and strain tensor the Weyl node shift per
unit strain. The deformation of the crystal lattice can also shift
the energy position of each band, and we will call the ratio
between the shift in energy with respect to the Fermi level and
strain the energy shift per unit strain. We can incorporate these
two effects into the Hamiltonian as follows (Fig. 1):

H = χ vF σ · (p + Ã) + �̃, (11)

with

Ãi =
∑

jk

bi jku jk, (12)
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FIG. 1. Shift of the position of a single Weyl node W1 to W ′
1 under

strain defining the pseudogauge fields in Eqs. (12) and (13).

�̃ =
∑

i j

gi jui j . (13)

Here, we used symbols with a tilde, Ãi and �̃, to denote that
they are not the actual vector and gauge potentials, respec-
tively, but are strain-induced pseudoquantities.

As we see, the Weyl node shift per unit strain bi jk is a
rank-three tensor that defines the magnitude and direction of
the node shift Ã under strain. It encodes all the material’s
details (anisotropy, elastic parameters and alike). Similarly, in
the deformation potential associated to the displacement of the
position in energy of the Weyl node, we absorb the material
parameters in the energy shift per unit strain gi j . These tensors
will be obtained from first-principles calculations. The present
formulation, based on the displacement of a single Weyl node
under strain is, in principle, more general than the standard
formulation in the continuum limit [18] based on the vector
separating the two Weyl nodes.

The strain-induced gauge field and the energy shift per unit
strain couple to the electronic degrees of freedom as the elec-
tromagnetic vector and scalar potentials, respectively. Hence,
we can introduce the strain-induced pseudoelectromagnetic
fields as

B̃ = ∇ × Ã, (14)

Ẽ = −∇�̃. (15)

Note that strain-induced pseudogauge fields differ from real
electromagnetic gauge fields in that they may be different
for different Weyl nodes. For example, for a time-reversal-
symmetric WSM such as TaAs, the pseudogauge fields near
the time-reversal paired nodes are of opposite signs.

Next, we will describe the condition under which strain
will induce the collapse of LLs. Since the elastic fields
Eq. (14) involve derivatives of the strain tensor, only inho-
mogeneous strain configurations will give rise to nontrivial
physical effects. Consider the simple case where the only
nonzero component of the strain tensor is

uxx = a · x. (16)

Here, a is the constant strain gradient vector at position x.
This vector, together with the strain of Weyl node shift will
determine the collapse of the LLs. Using the strain gradient
vector, we can write the Weyl node shift and the energy shift
per unit strain as

Ã = b uxx = b (a · x), (17)

�̃ = g (a · x), (18)

where, in this simple case, bi in Eq. (17) is bixx in Eq. (12),
gxx in Eq. (13) is g in Eq. (18), and all the other bi jk and gi j

components are zero.
We will also consider later the case where the only nonzero

strain component is given by

uzz = a · x. (19)

The quantities b, g, Ã, and �̃ are similarly defined as in the
previous case. We will use more general strain configurations
in Sec. V.

From Eqs. (17) and (18), the pseudoelectromagnetic fields
read

B̃ = ∇ × Ã = a × b, (20)

Ẽ = −∇�̃ = −g a. (21)

Consequently, the criterion for the LL collapse [Eq. (10)]
for this particular example becomes

|b|2
g2

[(
v2

F − w2
x − w2

y

)
sin2(θa,b) − 2χ

gwx

|b| sin(θa,b)

]
� 1,

(22)

where θa,b is the angle between the Weyl node shift per unit
strain b and the strain gradient vector a.

Here, we assume the x and y axes to be along Ẽ × B̃ =
−g a × (a × b) and Ẽ = −ga, respectively. The (v2

F − w2
x −

w2
y ) term could be negative in the case of type-II WSMs, but

it is always positive in the case of type-I WSMs [3]. Note
that the criterion for the LL collapse does not depend on the
magnitude of the strain gradient vector |a|. This is similar
to the result found in Refs. [16,30], where the conditions for
the LL collapse turned into conditions on the elastic coupling
constants of the material. Notice also that, if the cones are not
tilted, the condition for the collapse is the same for the two
Weyl nodes of opposite chirality.

IV. GENERALIZATION TO ANISOTROPIC WEYL CONES

The Weyl cone in the band structure of a real WSM has
both tilt and anisotropy, resulting in an effective Hamiltonian
of the following form:

H = wi pi + σ ivi j p j (23)

or, using matrix and vector notations,

H = w · p + σ · v · p, (24)

where vi j is the matrix element for anisotropic Fermi veloc-
ities. One can directly obtain the velocity operator projected
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onto the double-degenerate space

dH
dp

= w + σ · v (25)

by using a Wannier-function-based method (see Supplemental
Material of Ref. [31]). Instead, we use the energy dispersion to
extract the necessary information on w and v. Using the polar
decomposition theorem, we can uniquely decompose the real
matrix v as

v = O U, (26)

where O is a real, orthogonal 3 × 3 matrix and U a real
symmetric, positive semidefinite 3 × 3 matrix. We can further
decompose O as O = χ R, where χ = ±1 is the chirality and
R is a proper rotation matrix whose determinant is +1. U can
be further diagonalized as

U = R̃DR̃T, (27)

where R̃ is another proper rotation matrix and D is a diagonal
velocity matrix whose diagonal components are non-negative
and are denoted as v′

x, v′
y, and v′

z:

D =
⎛
⎝v′

x 0 0
0 v′

y 0
0 0 v′

z

⎞
⎠. (28)

Therefore,

v = χ R U = χ R R̃DR̃T. (29)

Using Eq. (29), we can rewrite Eq. (24) as

H = w · p + χ σ · RUp, (30)

whose energy eigenvalue is given by

εsp = w · p + s
√

RUp · RUp

= w · p + s
√

pT(UTU)p

= w · p + s
√

pTU2p,

(31)

where s = ±1 is the band index. Note that the matrix U2 is, as
U, symmetric and positive semidefinite. From the energy band
structure near the Weyl node, we can uniquely determine U2

or, equivalently, U and w. Then, by diagonalizing U, we obtain
both R̃ and D [Eq. (27)].

We have to note, however, that from this method we can-
not determine the chirality χ or the rotation matrix R in
Eq. (29). They can also be uniquely determined if we use the
Wannier-function-based method developed in Ref. [31] (see
Supplemental Material therein).

Now, let us take the strain-induced fields into account using
Eqs. (17) and (18). The Hamiltonian becomes

H = w · p + σ · v · [p + b (a · x)] + g (a · x)

= w · p + g (a · x)

+ σ · (χ R R̃DR̃T)[p + b (a · x)]

= w′ · p′ + g (a′ · x′)

+ χ (R̃TRTσ ) · [p′ + b′ (a′ · x′)], (32)

where we have defined

p′ = DR̃Tp,

x′ = D−1R̃Tx,

w′ = D−1R̃Tw,

a′ = DR̃Ta,

b′ = DR̃Tb.

(33)

Note that x′ and p′ satisfy the canonical commutation relation:

[x′
i, p′

j] = ih̄ δi, j . (34)

In finding the condition for the LL collapse, we are entitled
to perform a proper spin rotation to H in Eq. (32) and finally
obtain

H′ = w′ · p′ + χ σ · [p′ + b′ (a′ · x′)] + g (a′ · x′). (35)

Note that now we don’t have to worry about the R ma-
trix [Eqs. (29) and (30)] which cannot be obtained from the
electronic band structure alone. Instead, we should use our
knowledge on the chirality χ of each Weyl node.

Since Eq. (35) is the Hamiltonian for an isotropic Weyl
cone with a tilt under strain, we can now use the criterion in
Eq. (22) except that vF is set to 1 and w, a, and b are replaced
with w′, a′, and b′, respectively. Finally, the criterion for LL
collapse [Eq. (22)] then reduces to

|b′|2
g2

[(
1− w′2

x − w′2
y
)
sin2(θa′,b′ ) − 2χ

gw′
x

|b′| sin(θa′,b′ )

]
� 1.

(36)

V. APPLICATION TO TaAs

In this section, we will apply the previous formulation to
find the condition for the LL collapse [Eq. (36)] in TaAs, the
best-known WSM [5]. The TaAs system has a body-centered
tetragonal structure with lattice parameters a = 3.437 Å and
c = 11.656 Å [Fig. 2(a)]. In the Brillouin zone of TaAs, there
are 24 Weyl nodes in total, among which eight nodes are
located in kz = 2π/c plane (W1 nodes) and the other 16 nodes
are located outside this plane (W2 nodes) [Fig. 2(b)]. Figure 3
shows the tilted Weyl cones in the band structure of TaAs.

Table I shows w, the tilt velocity [Eq. (8)], v′
x, v′

y, and v′
z,

the principal values of U [Eqs. (26)–(28)], and x̂′
p, ŷ′

p, and ẑ′
p,

the corresponding principal axes, obtained by following the
procedure detailed in Sec. IV. The values for w and v′

x, v′
y,

and v′
z are in good agreement with those reported in a previous

study [32].
Tables II and III show the calculated values for the strain

gradient vector, a, and the energy shift per unit strain, g. By
using these parameters, together with D and R̃ matrices shown
in Table I, we can calculate the renormalized vectors w′, a′,
and b′ in Eq. (33) and, using these vectors, finally obtain the
criterion on the direction of the strain gradient vector, a, for
the collapse of LLs [Eq. (36)].

Figures 4 and 5 show the left-hand side of the criterion
in Eq. (36) at a given strain gradient vector a [Eq. (16)], for
strains along z and x, respectively. If this value is lower than
1, the LLs arising from a specific Weyl node collapse. To
concentrate on bending by an external stress, we confine the
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FIG. 2. (a) Crystal structure of TaAs (b) A Schematic positions
of the Weyl nodes of TaAs projected on the (001) surface in the
Brillouin zone. There are two types of Weyl nodes: W1 (kz = 2π/c)
and W2 (kz �= 2π/c). (c) The band structure near the Fermi energy.

direction of a to be orthogonal to the direction of the strain.
First, the condition on a for the collapse of LLs depends on
the Weyl node and the strain tensor (here, along x or along z).
For example, the collapse cannot occur at Weyl nodes A–D,
A′, and C′ when the tensile strain is applied along x (Fig. 5).
On the other hand, in the case of A′, B′ in Fig. 4 and B′, D′ in
Fig. 5, we can easily check the collapse.

Moreover, the criteria for different Weyl nodes connected
by a symmetry operation of TaAs are connected by the same
symmetry operation. For example, node A (A′) is connected
to node B (B′) by a C4 rotation in momentum space (thanks to
a screw rotation 41 in real space involving a quarter-lattice-
parameter translation along z) and a mirror reflection with
respect to the ky − kz plane (thanks to the mirror reflection
with respect to the yz plane in real space). Thus, for strain
along z, the condition for LL collapse for node A (A′) is
connected to that for node B (B′) by a mirror reflection with
respect to the y = x plane (Fig. 4). Also, nodes A, A′, B, and
B′ are connected to nodes C, C′, D, and D′, respectively, by a

FIG. 3. Tilted Weyl cone band structures near (a) a W1 node at
(0.0076, 0.5140, 0) and (b) a W2 node at (0.0193, 0.2818, 0.5899) in
units of (2π/a, 2π/a, 2π/c) in the Brillouin zone of TaAs.

mirror reflection with respect to the ky − kz plane (thanks to
the mirror reflection with respect to the yz plane). Therefore,
the two nodes in each pair have the same condition for the
collapse of LLs for strain along x (Fig. 5; note that in this case
the strain gradient vector a is confined within the yz plane);
however, the condition for node A (A′) is not connected to that
for node B (B′) due to the strain-induced breaking of the 41

symmetry. Notably, the collapse always occurs when the vec-
tor a′ and b′ are parallel to each other because sin(θa′,b′ ) = 0
in Eq. (36). This condition is equivalent to a and b being par-
allel to each other [see Eq. (32)]; we can check this reasoning
in the panels for nodes A and B in Fig. 4.

Although the criterion for the pseudo-Landau level col-
lapse does not depend on the magnitude of strain, the
formation of the pLLs does. In the Landau quantization exper-
iments, we need a sufficiently high magnetic field to resolve
LLs because of the thermal fluctuation and impurities. Like-
wise, pLLs will be observable only if the pseudomagnetic field
is sufficiently high. The required pseudomagnetic field de-
pends on the quality of the sample. LLs in graphene and NbAs
are resolved when the magnetic field is higher than 3 ∼ 10 T
[33,34], respectively. Likewise, we think the pseudomagnetic
field should be larger than 3 ∼ 10 T in our case.

We can present the roughly estimated value of required
strain gradient to make 3 ∼ 10 T of pseudomagnetic field.
When we set the scale of bi jk is of the order of 1/Å (see
Tables II and III), the scale of pseudomagnetic field is B̃ =
a × b ≈ ab ≈ a × 1/Å [see Eq. (20)], and it should have the
same scale as e/h̄ × 3 ∼ 10 (T). Finally, the strain gradient
should be higher than 0.003 ∼ 0.01% Å to make a pseudo-
magnetic field of 3 ∼ 10 T. In this range of strain gradient,
the collapse of pLLs could be observed if conditions shown in
Figs. 4 and 5 are satisfied.

TABLE I. Band-structure parameters of TaAs Weyl cones: The tilt velocities in the laboratory frame, anisotropic Fermi velocities in the
principal frame, and the corresponding principal axes. The tilt velocities and anisotropic Fermi velocities are in units of 105 m/s. We consider
the W1 node at (0.0076, 0.5140, 0) and W2 node at (0.0193, 0.2818, 0.5899) in units of (2π/a, 2π/a, 2π/c) in the Brillouin zone of TaAs.

Weyl node wx wy wz vx′ vy′ vz′ x̂′
p ŷ′

p ẑ′
p

W1(A) −1.194 −0.855 0 4.053 2.145 0.238 (0.977, 0.214, 0) (−0.214, 0.977, 0) (0, 0, 1)
W2(A′) −0.892 0.850 1.364 4.671 1.087 2.079 (−0.475, −0.707, 0.524) (−0.651, −0.119, −0.750) (−0.593, 0.679, 0.404)
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TABLE II. Weyl node shift vectors in the laboratory frame and
the energy shift per unit strain for tensile strain along z: the W1
and W2 nodes are, respectively, at (0.0076, 0.5140, 0) and (0.0193,
0.2818, 0.5899), in units of (2π/a, 2π/a, 2π/c) in the Brillouin zone
of TaAs. The Weyl node shift vector is shown in units of Å−1, and the
energy shift per unit strain in units of eV. Note that W1 (W2) node in
this table means B (B′) node in Fig. 4.

Weyl node bxzz byzz bzzz g

W1 (A) −0.136 2.125 0 −0.327
W2 (A′) 0.053 −0.097 1.196 0.690

Furthermore, there are some experimental methods which
can make strain gradient to observe the collapse of pLLs.
The first method uses a piezoelectric device [35]. By this
piezoelectric device, large (over 1%) strain and strain gradient
could be generated, and a strain gradient could be generated,
too [22]. Also, a strain gradient can be induced during the
cleaving of a layered material, and it can be checked by the
ripples in scanning tunneling microscopy images. An experi-
mental study has shown the generation of a pseudomagnetic
field equivalent to 3 T in Re-doped MoTe2, a WSM. Another
method to generate a strain gradient is to bend the nanoribbons
[36]. Nanoribbons could be bent under an optical microscope
using a glass tip, and the bending shape could be consolidated
by an atomic layer deposition system. By this method, 0.002%
of strain gradient can be made, which is the same scale as the
value to make a pseudomagnetic field of 3 ∼ 10 T.

VI. CONCLUSIONS AND OPEN QUESTIONS

WSMs have Dirac cones in their electronic band structure,
which allow fascinating relativistic phenomena to be realized
in table-top experiments. Due to the relativistic nature of the

TABLE III. Weyl node shift vectors in the laboratory frame and
the energy shift per unit strain for tensile strain along x: the W1, W1′,
W2, and W2′ nodes are, respectively, at (0.0076, 0.5140, 0), (0.5140,
0.0076, 0), (0.0193, 0.2818, 0.5899), and (0.2818, 0.0193, 0.5899)
in units of (2π/a, 2π/a, 2π/c) in the Brillouin zone of TaAs. The
Weyl node shift vector is shown in units of Å−1 and the energy shift
per unit strain in units of eV. Note that W1 (W2) node in this table
means B (B′) node in Fig. 5, and W1′ (W2′) means A (A′) therein.

Weyl node bxxx byxx bzxx g

W1 (A) −0.797 −0.047 0 0.520
W1′ (B) 0.236 −0.175 0 1.374
W2 (A′) 1.442 −0.143 0.605 −2.682
W2′ (B′) 0.252 −0.607 −1.415 −2.628

WSMs, Landau bands formed by an external magnetic field
are different than those of a standard electron gas and can
collapse when perpendicular electric and magnetic fields are
applied. Also due to the Dirac nature of the quasiparticles,
strain of the ion lattice couples to the electronic density in
the form of vector and scalar potentials and pseudoelectro-
magnetic fields can be induced by strain. Pseudo-LLs have
already been observed [22] and additional strain can lead to
the collapse of these elastic LLs.

In this paper, we have investigated the electronic structure
and the condition for the collapse of LLs in realistic WSMs,
taking into account the full electronic structure. We have ex-
tended previous results on the LL collapse done on minimal
models of WSMs to the more realistic case of anisotropic and
tilted Weyl cones. We have also developed a formalism to treat
the lattice strain in these realistic situations.

Finally, using our theory and first-principles calculations
we derived the criterion for the strain-induced collapse of LLs
in TaAs, a prototypical WSM. As discussed in Ref. [16], the

FIG. 4. Each polar plot shows the left-hand side of Eq. (36) for the corresponding Weyl node (specified in the left panel) as its radius as
a function of the direction of the strain gradient vector a [Eq. (16)] in the blue or green curve; for a positive value, the curve is solid blue
and for a negative value, the curve is dashed green. The radius of red circles is 1. The green arrows in (a) and (b) show the direction of the
strain-gradient vector b at each node. Here, the strain is applied along z. The direction along which the blue curve is either inside the red circle
or is dashed green is where the LL collapse occurs. The region where the collapse occurs is painted in gray.

075125-6



STRAIN-INDUCED COLLAPSE OF LANDAU LEVELS IN … PHYSICAL REVIEW B 106, 075125 (2022)

FIG. 5. Each polar plot shows the left-hand side of Eq. (36) for the corresponding Weyl node (specified in the upper left panel) as its radius
as a function of the direction of the strain gradient vector a [Eq. (16)] in the blue or green curve; for a positive value, the curve is solid blue,
and for a negative value, the curve is dashed green (the lower-right panel for B′ and D′). The radius of red circles is 1. Here, the strain is applied
along x. The direction along which the blue curve is either inside the red circle or is dashed green is where the LL collapse occurs. The region
where the collapse occurs is painted in gray.

criterion is determined by material parameters: the anisotropic
Fermi velocities, tilt velocities, and the energy shift and Weyl
node shift vector per unit strain. We found that the criterion
for the collapse of the LLs depends on the direction of the
strain gradient vector but not on its magnitude. However, for
the collapse of LLs to be observed, the pseudo-LLs should
be discernible, which determines the lower bound for the
magnitude of the strain.

The results of this paper can easily be applied to the cases
of other materials and set a solid basis for the experimental
observation of this novel effect.

A very interesting possibility is to study the interplay be-
tween real and pseudoelectromagnetic fields. In particular,
it can be seen if real LLs induced by an external magnetic
field in a given direction can collapse by the introduction of a
pseudoelectric field in the perpendicular direction.

Computational detail

We calculated the electronic structure of pristine and
strained TaAs using density functional theory as implemented
in the Quantum ESPRESSO package [37]. From these results,
we calculated the required material parameters for our theory.
We used fully relativistic, norm-conserving pseudopotentials

[38,39] to treat spin-orbit coupling, and approximated the
exchange-correlation energy by the scheme of Perdew et al.
[40]. The Brillouin zone was sampled with a a 10 × 10 ×
10 Monkhost-Pack [41] k-point mesh, and the kinetic energy
cutoff was set to 100 Ry. Figure 2(c) shows the calculated
band structure of TaAs. We interpolated the electronic band
structure using Wannier90 [42,43] and used Wanniertools [44]
to find Weyl nodes.
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