
PHYSICAL REVIEW B 106, 075123 (2022)

Random singlet-like phase of disordered Hubbard chains
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Local moment formation is ubiquitous in disordered semiconductors such as Si:P, where it is observed both in
the metallic and the insulating regimes. Here, we focus on local moment behavior in disordered insulators, which
arises from short-ranged, repulsive electron-electron interactions. Using density matrix renormalization group
and strong-disorder renormalization group methods, we study paradigmatic models of interacting insulators:
one-dimensional Hubbard chains with quenched randomness. In chains with either random fermion hoppings or
random chemical potentials, both at and away from half-filling, we find exponential decay of disorder-averaged
charge and fermion two-point correlations, but power-law decay of disorder-averaged spin correlations that are
indicative of the random singlet phase. The numerical results can be understood qualitatively by appealing to the
large-interaction limit of the Hubbard chain, in which a remarkably simple picture emerges.
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I. INTRODUCTION

A fundamental challenge in condensed matter physics has
been to understand the implications of local moment forma-
tion in disordered electronic systems. Local moments have
long been observed in disordered semiconductors, such as
Si:P and Si:P,B, where they crucially affect the thermody-
namic [1,2] and dynamical [3] properties in both the metallic
and the insulating regimes [4–6]. If the properties of the
phases themselves are altered by local moments, it follows
that at least, in principle, local moments can influence the
universal behavior near metal-insulator quantum phase tran-
sitions [7–9].

Much work has been done in understanding magnetic
excitations in the metallic regime of disordered systems
[5,10]. In two spatial dimensions, for instance, there is a
tendency towards a magnetic instability even in the weak
disorder limit, far from a putative metal-insulator transition
[11–16]. By contrast, since the early seminal work of Bhatt,
Lee, and coworkers [17,18], considerably less attention has
been devoted to local moment behavior in the insulating
regime.

Assuming the existence of local moments in the insulator,
the theory of Bhatt and Lee [17] establishes the tendency
towards random singlet formation due to an exponentially
broad distribution of antiferromagnetic exchange interactions
among the local moments. Later work by Bhatt and Fisher
[19] pushed this picture further into the metallic regime, argu-
ing that local moments essentially decouple from the metallic
electrons due to vanishingly small Kondo temperatures. Nev-
ertheless, it remains unclear how such behavior emerges from
electrons in a random landscape in the presence of short-
ranged interactions.

In this paper, we report some progress in this direction and
analyze models of electrons in the presence of both short-
range interactions and strong disorder. Given our focus on the
insulating state, we study one-dimensional models in which
the tendencies towards insulating ground states are strongest.
We are especially interested in the behavior away from half-
filling, where at least microscopically, a description in terms
of local moments alone is not justified a priori.

Using a combination of density matrix renormalization
group simulations and real-space renormalization group tech-
niques, we demonstrate that the Hubbard chain exhibits
random singlet behavior both at and away from half-filling.
Our conclusion holds for both random potentials (site disor-
der) and random hoppings (bond disorder). To make intuitive
sense of our results, we appeal to the strong-interaction limit
of the Hubbard model and account for our results in terms of
spin-charge separation [20]: nearly free holes exhibit Ander-
son localization, while spins experience random Heisenberg
exchange, resulting in random singlet formation along the
lines of Bhatt and Lee.

II. MODEL

The simplest effective Hamiltonian governing electrons
with disorder and short-range interactions is the Hubbard
model with randomness

H = −
∑
i,σ

ti(c
†
i,σ ci+1,σ + H.c.) +

∑
i

μini + U
∑

i

ni↑ni↓,

(1)

where c†
iσ (ciσ ) creates (destroys) an electron with spin σ =

↑ ,↓, on lattice site i, and the density operator on site i is
ni = ∑

σ c†
iσ ciσ . On-site interactions are taken to be repulsive:
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FIG. 1. Density-density, fermion two-point and pair-field correlation functions on L = 144 Hubbard chains at electron filling n = 11/12
with random potential, random hopping as well as for the disorder-free systems. Additionally, results for the noninteracting (U = 0) but
site-disordered system are shown. All data are shown for r � L/2. The random-potential system has parameters U = 6t , Wμ/2 = 3t , Wt = 0;
the random-hopping system has parameters U = 12t , Wμ = 0, Wt/2 = 0.65t ; the clean system has parameters U = 6t , Wμ = Wt = 0; and the
Anderson system has U = 0, Wμ/2 = 3t , Wt = 0. (a) Disorder-averaged density-density correlations Cn(r) [Eq. (2)] decay exponentially with
distance r for the disordered systems, as opposed to decaying with a power law as in the clean system. (b) Disorder-averaged electron two-point
functions decay exponentially in all disordered systems. (c) Disorder-averaged superconducting pair-field correlations decay exponentially in
the disordered systems, in direct contrast to the power-law decay in the nondisordered Luttinger liquid. In the disordered systems, error bars
(omitted) are on the order of statistical fluctuations and are mostly not visible.

U > 0, ti are nearest-neighbor hopping amplitudes, and μi are
on-site chemical potentials.

We study two types of quenched randomness: site disor-
der, where the local chemical potentials μi are random, and
bond disorder, where ti are random. We choose μi from a
uniform distribution of mean μ = 0 and width Wμ (i.e., μi

is distributed uniformly on [−Wμ/2,Wμ/2]). Similarly, ti are
chosen from a uniform distribution of mean t and width Wt

(i.e., ti is distributed uniformly on [t − Wt/2, t + Wt/2]). We
choose t = 1, setting this to be the unit of energy.

In the absence of randomness, the model is integrable
and has, of course, been thoroughly studied [21]; the half-
filled system is well described by a S = 1/2 Heisenberg
antiferromagnet, and the doped chain exhibits Luttinger-liquid
behavior over a range of electron concentrations and interac-
tion strengths. With perturbatively weak disorder, it is known
that the Luttinger liquid tends towards localization and that
repulsive interactions enhance this tendency [22]. At half-
filling, bond disorder preserves particle-hole symmetry, and
a spin chain with random antiferromagnetic exchange ac-
curately captures the low-energy behavior of the system. It
has been well established that the random antiferromagnetic
Heisenberg chain results in an infinite randomness fixed point
with random singlet behavior [23,24]. We wish to explore the
fate of the Hubbard chain with site and bond randomness, both
at and away from half-filling where such a description in terms
of spin alone is not necessarily valid.

III. DMRG RESULTS

We analyze Hubbard chains described by Eq. (1) at
two fixed electron filling fractions, n = 1 (half-filling) and
n = 11/12, using the density matrix renormalization group
(DMRG) [25,26] procedure. We perform all of the simulations
in the strong-interaction regime, U = 12t for the random-
hopping chains and U = 6t for the random-potential chains.
The DMRG algorithm works well for both clean and weakly
disordered systems. For a more reliable study, we first ob-
tain the ground state of a system with weak disorder, then

quasiadiabatically increase the disorder strength, adaptively
increasing sweep number and the number of basis states kept,
until the resulting well-converged ground state is obtained. A
similar procedure was used before in DMRG to treat disor-
dered systems [27]. In the present study, we perform up to
50 sweeps and keep up to m = 1024 states with a typical
truncation error ε ∼ 10−9. For all parameters, we sample at
least 300 independent disorder realizations.

To characterize the ground-state properties, we calculate
various equal-time correlation functions over the interior half
of the chain (from site L/4 to 3L/4), to minimize the boundary
effects. We focus on measures of the charge and spin be-
haviors, probed through the charge density-density fluctuation
correlation function

Cn(r) ≡ 〈[n(x) − 〈n(x)〉][n(x + r) − 〈n(x + r)〉]〉 (2)

and the spin-spin correlation function

Cσ (r) ≡ 〈S(x)S(x + r)〉, (3)

respectively, where r is the displacement between two sites
along the chain and x = L/4 is a fixed reference point. We
also measure the fermion two-point function

G(r) ≡ 〈c†
↑(x)c↑(x + r)〉, (4)

where the choice of the up-spin does not matter due to the spin
SU(2) symmetry.

Lastly, the superconducting pair-field correlation function
is defined as

D(r) ≡ 〈�†(x)�(x + r)〉, (5)

where �(y) ≡ (c†
↓(y)c†

↑(y) − c†
↑(y)c†

↓(y))/
√

2 is the spin-
singlet pair creation operator on bond y.

We start by presenting evidence for charge localization
in the disordered systems away from half-filling. In the ab-
sence of disorder, the n = 11/12 system has a Luttinger-liquid
ground state. We observe that disorder, regardless of type,
localizes the charges. Figure 1 shows the exponential decay
of the disorder-averaged density-density correlation function
Cn(r) [Eq. (2)], the fermion two-point function G(r) [Eq. (4)],
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FIG. 2. Disorder-averaged spin-spin correlation Cσ (r) [Eq. (3)]
for L = 144-site chains. Data are shown for distances r � L/3,
as fluctuations increase with distance. Black dashed lines indicate
r−2 decay. (a) Cσ (r) in random Heisenberg chain (yellow) and

random-hopping Hubbard chain at half-filling (purple) (see main
text), averaged over at least 500 realizations. In both chains, Cσ (r)
exhibits long-distance r−2 behavior for r > 10. Error bars (omitted)
are not visible for r > 10. (b) Cσ (r) in random-hopping and random-
potential systems at n = 11/12 electron filling, averaged over at
least 1000 realizations, also exhibit decay close to r−2. Error bars
(omitted) are on the order of statistical fluctuations.

and the superconducting pair-field correlation function D(r)
[Eq. (5)] of the ground state in the disordered systems as a
function of distance r, indicating a gap to charge excitations.
Qualitatively, the behaviors of these correlation functions
in the random-potential and random-hopping systems are
very similar, both differing significantly from the power-law
correlations expected for the disorder-free system. These cor-
relation functions for both site and bond randomness resemble
those of an Anderson insulator. We now turn to analyzing
the disorder-averaged spin-spin correlation functions Cσ (r)
[Eq. (3)] for different chains: random-potential and random-
hopping Hubbard chains as well as the random-exchange
Heisenberg antiferromagnetic chain. Despite the presence of
disorder, we find that the spin SU(2) symmetry is not spon-
taneously broken in Cσ (r) of each disorder realization and
therefore not broken in the disorder-averaged correlation func-
tion Cσ (r).

FIG. 3. Spin correlation statistics in a L = 144 site chain with
random potential Wμ/2 = 3t̄ . Disorder-averaged spin correlations

Cσ (r) and the root-mean-square spin correlations
√

[Cσ (r)]2 shown
for r � L/3. In the absence of disorder, the two quantities should
be equivalent. Their difference here indicates the importance of rare
regions at a strong disorder fixed point. A dotted line shows a 1/r2

decay and a dashed line shows a 1/r decay.

The half-filled system is unsurprisingly a Mott insulator
since the repulsive interaction U is the dominant energy
scale. The effective low-energy description of the half-filled,
large-interaction systems should then be equivalent to the ran-
dom Heisenberg antiferromagnet. The results for the random
Heisenberg chain and the random-hopping Hubbard chain at
half-filling are shown in Fig. 2(a), and the agreement between
them reflects this intuition. Our results agree also with pre-
vious studies of the disordered Hubbard chain at half-filling
[28]. We note that the random-potential chain at half-filling
exhibits some curious charge behavior at weak disorder that
can be understood through a particle-hole transformation (see
the Appendix). At large distances r, the spin correlations in
both the half-filled Hubbard chain with random hoppings and
the random Heisenberg chain exhibit decays close to 1/r2,
the expected behavior in a random singlet phase. More sur-
prisingly, Fig. 2(b) shows that Cσ (r) in the random hopping
and random potential systems away from half-filling decay
at large distances r as a power law close to 1/r2, indicating
that the spin order, both at and away from half-filling, are
random-singlet-like. Away from half-filling, statistical fluctu-
ations decrease more slowly with sample number, as electron
configurations must now be taken into account.

Another hallmark of the random singlet phase is that
the physics is dominated by rare, long-range singlets. This
characteristic can be probed by analyzing the typical cor-
relation function (see the Appendix) and by comparing the
disorder-averaged spin-spin correlations Cσ (r) to the root-

mean-square (RMS) spin-spin correlations
√

[Cσ (r)]2. In the

random-singlet phase, both Cσ (r) and [Cσ (r)]2 are dominated
by the probability of forming a singlet of length r, which
scales as 1/r2 at large r. One then expects the disorder-
averaged spin-spin correlations to scale as 1/r2 and the RMS
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spin-spin correlations to scale as 1/r in the random-singlet
phase. By contrast, the two quantities should agree in the
weak-disorder limit, in which rare-region effects can be ig-

nored. Figure 3 shows Cσ (r) and
√

[Cσ (r)]2 with behaviors
consistent with random-singlet physics for a random-potential
system away from half-filling. Similar rare-region-dominated
behavior is found for the random-hopping system.

IV. LARGE-INTERACTION LIMIT
AND NUMERICAL SDRG

Our results thus far can be understood qualitatively through
the simple picture of the Bethe-Ansatz solution of the (clean)
Hubbard chain in the U/t → ∞ limit. In this limit, the spins
and charges are decoupled: the holes are free to order t/U ,
and the spins form a Heisenberg antiferromagnet on electron
coordinates [20]. One could thus expect the decoupled spins
and charges to respond independently to the disorder; the
holes undergo Anderson localization and the spins form a
random singlet on electron coordinates.

Quantitatively, we can explore this perspective by numer-
ically implementing a strong-disorder renormalization group
(SDRG) decimation procedure. We again study the n = 11/12
chain with random potential, imposing now that the holes are
localized (as justified by the evidence from DMRG, Fig. 1) at
local maxima in the potential of a given disorder realization
so that we are left with an effective spin model. The effective
spin model, a random Heisenberg chain on electron coor-
dinates, can be computed using perturbation theory in t/U .
We then numerically implement the SDRG decimation of the
effective random spin model (see the Appendix). Averaging
the resulting ground states of many realizations is equivalent
to averaging over all configurations of the localized holes and
we recover random singlet behavior.

From the numerical decimation, we obtain the probability
Ps(r) of forming a singlet pair separated by a distance of
r lattice sites, shown in Fig. 4(a) for system sizes ranging
from L = 600 to L = 12 000 at n = 11/12 electron density.
This probability distribution ultimately determines the long-
distance behavior of Cσ (r) [24,29]. The probability of forming
a singlet pair decays as r−2 (dashed line) at large r, which is
consistent with the observations from DMRG.

Furthermore, the probability distribution of (logarithmic)
bond energies ζ ≡ ln(J0/J ) at late times in the decimation
(when only 50 free spins remain) agrees with analytical pre-
dictions for the fixed-point distribution of the vacancy-free
Heisenberg chain [24], as shown in Fig. 4(b). We perform a
single-parameter fit for the energy scale � in P(ζ , �) of the
form e−ζ/�/�. In the vacancy-free random Heisenberg chain,
the fixed-point distribution demands that the energy scale is
related to the lengthscale via � ∼ √

L. As shown in Fig. 4(c),
we find that the disordered Heisenberg chain with localized
holes exhibits this same scaling, which is a signature of infi-
nite randomness. Our numerical SDRG analysis thus indicates
that a disordered system with a finite density of localized holes
still exhibits random-singlet-like behavior, corroborating the
results from DMRG and the intuitive picture offered by the
large-interaction limit of the Bethe-Ansatz solution.

FIG. 4. Results of numerically implementing bond decimation,
assuming charge localization, for various system sizes at electron
density n = 11/12, averaged over 2000 realizations. (a) Log-log plot
showing r−2 scaling of probability Ps(r) of forming a singlet pair
over r lattice sites. (b) Probability distribution of the logarithmic
energy scale ζ = ln(J0/J ), when 50 free spins remain, where J0

is the largest bond energy. Solid lines are fits for � according to
P(ζ , �) = e−ζ/�/�. (c) Extracted best-fit values for energy scale � as
a function of system size L follows a trend � ∼ √

L, a clear signature
of infinite randomness.

V. DISCUSSION

We explore the ground-state properties of Hubbard chains
in the presence of quenched bond and site randomness, both
at and away from half-filling. We find in all cases that disorder
localizes charges and gives rise to random antiferromagnetic
spin interactions, ultimately driving the system to a random-
singlet-like phase. These results are consistent with the simple
picture offered by the large-interaction limit of the Bethe-
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Ansatz solution for the Hubbard chain, in which charges and
spins are decoupled and respond independently to disorder.

Our analysis here is specific to one dimension. In higher
dimensions, one has to also consider the nontrivial effects
of lattice geometry, particularly geometric frustration. Studies
of (quasi) two-dimensional disordered spin systems suggest
that geometry, alongside disorder, plays an important role in
determining the spin state [30–32]; in this case, possibilities
include short-range antiferromagnetic order, random-singlet,
and spin glass order.

Since all single-particle states are localized in the random
Hubbard chain, the systems we consider here offer valu-
able insight to the nature of the interacting insulator. For
the same reason, these models do not allow us to make
contact with the physics of local moments on the metal-
lic side, or even near the metal-insulator transition. While
most one-dimensional models suffer from the same afflic-
tion, higher-dimensional models might allow for the study of
metal-insulator transitions, but they prove significantly more
difficult to solve without employing physically motivated ap-
proximations [33–35]. Fortunately, certain one dimensional
models with quasiperiodicity as a proxy for disorder exhibit
single-particle mobility edges [36–38] and remain solvable in
the presence of interactions [39]. Thus, the extent to which
their low-energy behavior carries over to their disordered,
higher-dimensional counterparts, is an open question that can
be investigated with a fair degree of rigor. We shall report on
this in future studies.
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APPENDIX

1. System with a random potential at half-filling

At half-filling, the clean Hubbard chain is a Mott insulator
due to the presence of strong interactions, which force the
ground state to have only singly occupied sites. At half-filling,
particle-hole symmetry of the Hubbard model allows for an
interesting distinction between the effects of random hop-
ping and random potential. The difference is demonstrated
in the behaviors of the charge density-density correlation
functions [Fig. 5(a)] at weak and strong disorders. While the
weak random hopping model is still interaction-dominated
and thus remains similar to the nonrandom half-filled Hubbard
model, the weak random chemical potential model appears to
promote charge density fluctuation correlations. For a range
of Wμ sufficiently small, the density fluctuation correlations

FIG. 5. Density-density correlation functions in half-filled Hub-
bard chains of length L = 144 with (a) weak and (b) strong site
and bond disorder. In both cases, density correlations in the chain
with random hopping remain dominated by interactions and exhibit
little change as the disorder is increased. In contrast, the chain with
random potential undergoes a transition in behavior as the disorder
increases. The density fluctuation correlations in the chain with weak
random potential appear to have a short-range, interaction dominated
region joined to a disorder-dominated region at large distances. At
strong disorder, the same system becomes dominated by disorder.

appear to have contrasting short- and long-distance behaviors.
At sufficiently strong disorder, both the random potential and
random hopping models yield exponentially decaying charge
density-density correlations, although with different correla-
tion lengths.

This weak-to-intermediate disorder behavior of the half-
filled chain may be understood by analyzing the negative-U
Hubbard model. The particle-hole transformation

c†
i,↑ → (−1)idi,↑, ci,↓ → di,↓, (A1)

maps the original Hubbard Hamiltonian in Eq. (1) to

H̃ = −
∑
i,σ

ti(d
†
i,σ di+1,σ + H.c.) −

∑
i

μiS
z
i − U

∑
i

ñi↑ñi↓,

(A2)

where ñi,σ = d†
i,σ di,σ . Comparing Eqs. (A2) and (1), we see

that the spin and charge sectors effectively swap roles (ni →
Sz

i ) and that the sign of the interaction has flipped (U → −U ).
The disorder in the hopping remains bond disorder, but the
disorder in the chemical potential is transformed to a random
magnetic field. Correspondingly, the charge density-density
correlator [Eq. (2)] of the U > 0 model is transformed into
a spin-spin correlator 〈Sz(x)Sz(x + r)〉 in the U < 0 model.

In the large interaction limit |U/t | � 1, the ground state
of the U < 0 Hubbard model is superconducting. The s-
wave superconducting state has a gap to spin excitations
(interaction-dominated) and is stable to bond disorder. How-
ever, it is unstable to magnetic disorder. In the presence of
weak magnetic disorder, the superconducting state retains
the interaction-dominated behavior at short distances, but
shows evidence of pair-breaking at longer lengths, shown in
Fig. 5(a). For stronger magnetic disorder [Fig. 5(b)], the spins
of the U < 0 problem are completely locally polarized by
the strong random fields, meaning the charges of the U > 0
problem are localized by deep wells and high barriers in the
random potential.
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2. Numerical SDRG Of the Hubbard Chain

To corroborate the results from our DMRG calculations,
we implement the real-space strong-disorder renormalization
group (SDRG) procedure used to characterize the ground
state and infinite-randomness fixed point of the random an-
tiferromagnetic Heisenberg chain [24]. We cannot apply this
procedure directly since we start with a Hubbard chain.
Rather, we tackle the problem using perturbation theory in
t/U to find the effective low-energy (spin) Hamiltonian cor-
responding to the system, assuming the charges are localized.
The initial Hamiltonian is Eq. (1).

At half-filling the procedure is straightforward as the physi-
cal system is a Mott insulator, so the low-energy description is
a Heisenberg antiferromagnet with no vacancies. The spin in-
teraction between the ith and i + 1th spins is found at second
order in t/U as Ji

eff = 4t2
i /U in the random-hopping chain.

In the random-potential chain, we perturb the eigenstates of
H0 = HU + Hμ with the correction V = Ht to second order.
Starting with |ψ0〉 = (|↑,↓〉 − |↓,↑〉)/

√
2, we see that acting

with V brings this to two intermediate states:

|↑↓, 0〉, E = U + μi − μ j,

|0,↑↓〉, E = U + μ j − μi.

Then, the total second-order energy correction to the singlet
state is

�E (2) = − 2t2

U + (μi − μ j )
− 2t2

U − (μi − μ j )
.

From this, we see that the effective spin interaction be-
tween two neighboring sites is

Ji j
e f f = 2t2

U + (μi − μ j )
+ 2t2

U − (μi − μ j )

= 4t2

U

[
1

1 − (�μi j/U )2)

]
,

where �μi j = μi − μ j . This interaction remains antiferro-
magnetic so long as Wμ never exceeds U .

Away from half-filling, the evidence from DMRG sug-
gests that the charges are still localized. We assume then
that the holes sit at the local maxima of the chemical poten-
tial, and we can again recover a description the low-energy
physics in terms of purely spin. In this case, spin inter-
actions of neighboring spins with no vacancy separating
them still take the form described above, but the spin in-
teraction Ji

eff between spins separated by a hole, at sites i
and i + 2, is now found at fourth order in t/U using the
Rayleigh-Schrodinger perturbation theory. Note that we must
go to fourth order because the singlet and triplet energies
are split only when the intermediate states involve double
occupancy.

In general, the fourth-order correction to the nth energy in
perturbation has the form

�E (4)
n =

∑
i, j,k �=n

〈n|V |i〉〈i|V | j〉〈 j|V |k〉〈k|V |n〉(
E (0)

n − E (0)
k

)(
E (0)

n − E (0)
j

)
(E (0)

n − E (0)
i

) .

(A3)

TABLE I. Contributions involving double occupancy of virtual
states in the fourth-order energy correction of a singlet state across a
hole.

Int. state 1 V01 Int, state 2 V12 Int. state 3

|S12〉, E = μ1 + μ2 t |0, ↑↓, 0〉, E = 2μ2 + U
√

2t |S12〉
|S12〉, E = μ1 + μ2 t |0, ↑↓, 0〉, E = 2μ2 + U

√
2t |S23〉

|S12〉, E = μ1 + μ2 t |↑↓, 0, 0〉, E = 2μ1 + U
√

2t |S12〉
|S23〉, E = μ3 + μ2 t |0, ↑↓, 0〉, E = 2μ2 + U

√
2t |S23〉

|S23〉, E = μ3 + μ2 t |0, ↑↓, 0〉, E = 2μ2 + U
√

2t |S12〉
|S23〉, E = μ3 + μ2 t |0, 0, ↑↓〉, E = 2μ3 + U

√
2t |S23〉

We consider a three-site system with a hole on site 2
(by construction, this implies μ2 > μ1, μ3). Starting with the
singlet state |S13〉 = (|↑, 0,↓〉 − |↓, 0,↑〉)/

√
2, which has en-

ergy E = μ1 + μ3, one can identify six possible contributions
to the fourth-order energy correction, shown in Table I. Let
|Si j〉 be the singlet state between spins on sites i and j and
Vi j = 〈i|V | j〉. Again, we consider the case of a random poten-
tial, so H0 = HU + Hμ and V = Ht .

Defining μi j = μi − μ j , we can write the effective spin
interaction between spins 1 and 3 as

J1,3
eff = 2t4

U 3

[
1

(μ12/U )2 · (1 + μ31/U )

+ 1

(μ32/U )2 · (1 − μ31/U )

+ 1

(μ12/U )2 · (1 − μ12/U − μ32/U )

+ 1

(μ32/U )2 · (1 − μ12/U − μ32/U )

+ 1

(μ12μ32/U 2) · (1 − μ12/U − μ32/U )

+ 1

(μ12μ32/U 2) · (1 − μ12/U − μ32/U )

]
. (A4)

Note that because μ2 > μ1, μ3 by construction, the last
four terms in the effective interaction are guaranteed to be
positive. So long as Wμ < U , all terms in Jeff are positive
and therefore Jeff remains antierromagnetic. The expression
in Eq. (A4) holds for the case of � = 1 holes in a row. If
there are � � 2 holes in a row, we approximate the effective
spin interaction between the spins sandwiching the holes by
the correct order of magnitude in t/U : U (t/U )2�. Note that
the interactions also remain antiferromagnetic for the same
reason.

Given the similarity in the effects of the random hopping
and random potential away from half-filling, we implement
the SDRG procedure only for the case of the random potential,
but we expect no qualitative difference if considering the sys-
tem with random hoppings. We use chains of various lengths
(see main text), with n = 11/12 electron filling.

The SDRG decimation procedure then proceeds as de-
scribed for a random Heisenberg antiferromagnetic chain with
no vacancies. At a given step, say the strongest bond Jj con-
nects the jth spin to the j + 1th spin (note that these may not
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FIG. 6. Typical spin correlations ln |Cσ (r)| in a L = 144 random
potential chain at n = 11/12 electron filling, with Wμ/2 = 3t̄ .

reside on sites j and j + 1 away from half-filling). This bond
is decimated, as spins j and j + 1 are locked into a singlet,

giving rise to an effective bond of J̃ = Jj−1Jj+1/(2Jj ). To re-
construct the probability Ps(r) of forming a singlet bond with
spins separated by r sites, we track the spatial indices of the
singlets that are formed at each step and find the distribution
of their separations r over many realizations.

To find the distribution of couplings near the end of the dec-
imation procedure, we consider the couplings of each chain
when there are 50 remaining free spins. These couplings are
normalized by the energy scale at each SDRG step (i.e., by
the largest bond in the system at each step). Figure 4(b) in
the main text shows the resulting histogram of normalized
couplings across many realizations for each chain length.

3. Typical spin correlations

We analyze the typical (rather than average) spin cor-
relations, ln |Cσ (r)|, which has a long-distance behavior
ln |Cσ (r)| ∼ r0.5 in the random singlet phase [24]. We find
typical spin correlations ln |Cσ (r)| ∼ rp, with p between 0.42
and 0.48 for the region L/4 < r < L/2, as shown in Fig. 6.
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