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The incommensurate twist structure and the interlayer coupling induce van der Waals quasicrystals (vdW-
QCs). Replacing conventional band theory requiring translational symmetry, the resonant coupling Hamiltonian
endowing the quasiband structure in k space is adopted to describe electronic properties of vdW-QCs
[Moon et al., Phys. Rev. B 99, 165430 (2019)]. Here we investigate the symmetries of the resonant coupling
Hamiltonians in dodecagonal and octagonal vdW-QCs. Through symmetry analyses we derive compatibility
relationships (CRs) between � point and other irreducible pathways and predict the symmetry changes and band
splits. Especially, we find that from � point to Brillouin zone corner points of monolayers, arbitrary twofold
degenerate states are split into one A′ and one A′′ state, and from � point to the intersection points of two
Brillouin zones of monolayers, arbitrary twofold degenerate states are split into one A and one B state. Instead
of projection operation analyses, we discuss the CRs of different point groups between the coupled bilayers and
uncoupled monolayers to construct the interlayer hybridization selection rules (IHSRs) [Yu et al., Phys. Rev. B
105, 125403 (2022)], which govern how the interlayer states interact with each other in the resonant coupling
systems of dodecagonal and octagonal vdW-QCs. These derived IHSRs indicate that the first two main resonant
couplings allow the nonequivalent hybridizations only between B1 and B2 states and the equivalent hybridizations
for A, Ai, A′, A′′, E , or Ei states.

DOI: 10.1103/PhysRevB.106.075121

I. INTRODUCTION

A van der Waals quasicrystal (vdW-QC) of bilayer lattices
emerges when two copies of a periodic pattern are overlaid
with a high-symmetrical incommensurate twist, such as 30◦-
twisted bilayer hexagon lattices (dodecagonal vdW-QC) with
12-fold symmetry and 45◦-twisted bilayer square lattices (oc-
tagonal vdW-QC) with eightfold symmetry. The dodecagonal
bilayer graphene vdW-QC (i.e., graphene quasicrystal) has
been fabricated experimentally on top of various metal sur-
faces [1–9]. Many peculiar physical properties make graphene
quasicrystal quite distinctive from graphene monolayer, such
as multiple Dirac cones with 12-fold rotational symmetry [1],
the sensitive dependence on an electric field and a pressure
[10,11], unbalanced electron distributions [4], quantum oscil-
lations with spiral Fermi surfaces [12], and fractal features for
a low friction [13].

Compared with conventional quasicrystals, in which all
of the sites are intrinsically located within the quasiperiodic
order [14,15], a vdW-QC can be viewed as the extrinsic
quasicrystal because its quasiperiodicity originates from the
interlayer coupling and the high-symmetrical incommensu-
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rate twist structure. Due to the absence of the periodicity,
the conventional band theory for periodical crystallines is not
suitable for vdW-QCs. Alternatively, the resonant coupling
Hamiltonians capture the electronic structures and properties
of vdW-QCs by virtue of the quasiband structure [11,16],
which refers to the energy E(k0) of the resonant coupling
Hamiltonian as a function of the wave vector k0 with k0

within the set of k points inside the first Brillouin zone (BZ)
of monolayer. In periodical crystallines, compatibility rela-
tionships (CRs) of the band structure, i.e., the relationships
between irreducible representations at different k points, are
of importance for characterizing symmetry changes and band
splits. However, the CRs of quasiband structures for vdW-QCs
are not discussed in literature up to date. On the other hand,
the interlayer coupling is responsible for the origin and pecu-
liar physical properties of an extrinsic quasicrystal. Recently,
the interlayer hybridization selection rules (IHSRs) [17] have
been established to describe how the states from two layers
couple with each other within the real-space symmetries in bi-
layer graphene systems. However, the IHSRs for the resonant
couplings of vdW-QCs in k space are still not discussed.

Herein, we systematically investigate the symmetries of
both the first and second strongest resonant coupling Hamilto-
nians in dodecagonal and octagonal vdW-QCs. Our symmetry
analyses show that (i) the Hamiltonian has the highest Dnd

symmetries at � point for the first (n = 6) and second (n = 2)
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strongest resonant couplings in dodecagonal vdW-QC and
for both first two strongest resonant couplings in octagonal
vdW-QC with n = 4, and (ii) the Hamiltonian has respectively
Cs and C2 symmetries for the irreducible pathway of −kx

and the irreducible pathway from � point to the intersection
points of two Brillouin zones of monolayers. Through these
symmetry analyses we derive the CRs of quasiband structures
and predict the symmetry changes and band splits along these
irreducible pathways. Instead of previous projection operation
analyses determining the IHSRs, we alternatively discuss the
CRs of different point groups between the coupled bilayers
and uncoupled monolayers to derive the IHSRs of both the
first two strongest resonant couplings in dodecagonal and
octagonal vdW-QCs. Our further numerical calculations of
the energy spectra and nonzero interlayer hybridization ma-
trix element distributions identify these IHSRs predicted by
the CRs.

The paper is organized as follows. In Sec. II we present
the structures and symmetries of dodecagonal and octagonal
vdW-QCs. In Sec. III we describe the model and construct
the resonant coupling Hamiltonians. In Sec. IV we discuss the
symmetries of the Hamiltonians of the first two strongest res-
onant couplings in the two vdW-QCs. In Sec. V we derive the
CRs of quasiband structures and discuss symmetry changes
and band splits. In Sec. VI we discuss the IHSRs for both the
first two strongest resonant couplings and perform numerical
verifications. In Sec. VII we discuss the strategy to realize
the octagonal vdW-QC. Finally, we conclude our results and
findings in Sec. VIII.

II. STRUCTURES AND SYMMETRIES

The structure of a vdW-QC is determined by its lattice
vectors of two component layers (ab

1, ab
2) and (at

1, at
2), relative

positions of all sublattices inside one unit cell (τb
X and τt

X )
with the sublattice index X , and the interlayer distance h.
Superscripts b and t denote the bottom and top layers, respec-
tively. Positions of all sites in xy plane are determined by

Rb
X = mab

1 + nab
2 + τb

X ,

Rt
X = mat

1 + nat
2 + τt

X ,
(1)

where m and n run over all integer values.
Dodecagonal vdW-QCs are 30◦ twisted bilayer

hexagon lattices. The lattice vectors are ab
1 = a(

√
3

2 ,− 1
2 ),

ab
2 = a(

√
3

2 , 1
2 ), at

1 = R( π
6 )ab

1 = a(1, 0), and at
2 = R( π

6 )ab
2 =

a( 1
2 ,

√
3

2 ), where R(θ ) is the rotation operation around the
z axis by θ anticlockwise. The reciprocal lattice vectors
of the two layers are bb

1 = 2π
a ( 1√

3
,−1), bb

2 = 2π
a ( 1√

3
, 1),

bt
1 = 2π

a (1,− 1√
3

), and bt
2 = 2π

a (0, 2√
3

). The relative positions

of sublattices A and B are τb
A = 1

3 ab
1 + 1

3 ab
2, τb

B = 2
3 ab

1 + 2
3 ab

2,
τt

A = 1
3 at

1 + 1
3 at

2, and τt
B = 2

3 at
1 + 2

3 at
2.

Octagonal vdW-QCs are 45◦-twisted bilayer square
lattices. The lattice vectors are ab

1 = a(
√

2
2 ,−

√
2

2 ),

ab
2 = a(

√
2

2 ,
√

2
2 ), at

1 = R( π
4 )ab

1 = a(1, 0), and at
2 = R( π

4 )ab
2 =

a(0, 1). The reciprocal lattice vectors are bb
1 = 2π

a (
√

2
2 ,−

√
2

2 ),

bb
2 = 2π

a (
√

2
2 ,

√
2

2 ), bt
1 = 2π

a (1, 0), and bt
2 = 2π

a (0, 1). There is
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FIG. 1. Top views of lattice structures for D6d dodecagonal vdW-
QC in (a) and D4d octagonal vdW-QC in (b). Their corresponding
BZs for two component layers in (c) and (d). The green solid and
gray dashed lines in (c) and (d) stand for the reflection mirrors and
the axes of twofold rotations in reciprocal spaces, respectively.

only one sublattice in square lattices, and its relative positions
are τb = 1

2 ab
1 + 1

2 ab
2 and τt = 1

2 at
1 + 1

2 at
2.

The octagonal vdW-QC has D6d symmetries for its struc-
ture and BZs in Figs. 1(a) and 1(c), and the octagonal vdW-QC
has D4d symmetries for its structure and BZs in Figs. 1(b) and
1(d). We next only discuss symmetries in reciprocal space
because the resonant coupling Hamiltonian (see Secs. III B
and IV) describing the quasicrystalline resonant states is based
on the k-space tight-binding model. Dnd (n = 6 and 4) point
groups consist of rotation operations Ci

n with the identity oper-
ation E , improper rotation operations S2i+1

2n , twofold rotation
operations C′

2,i, and reflections σd,i with i = 0, 1, . . . , n − 1.
For their BZs shown in Figs. 1(c) and 1(d), these symmetry
operations read

Ci
n = R

(
2π

n
i

)
,

S2i+1
2n = σhR

(
2π

n
i + π

n

)
,

σd,i = R

(
2π

n
i

)
σd,0

[
R

(
2π

n
i

)]†

,

C′
2,i = σhR

(π

n
i + π

2n

)
σd,0

[
R
(π

n
i + π

2n

)]†
,

(2)

where σh is the reflection with the xy mirror plane, σd,0 = σx

is chosen in this paper, and the rotation axis of C′
2,i bisects the

mirrors of σd,i and σd,i+1. Besides, we have σd, n
2

= σy with yz
plane being the mirror.

The BZs of two component layers for the D6d dodecagonal
BZ are C6v symmetrical, and the BZs of two component
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layers for the D4d octagonal BZ are C4v symmetrical. There-
fore, the interlayer couplings described in the k space have
the symmetry restriction Cnv + Cnv ⇒ Dnd , where n = 6 and
n = 4 are for dodecagonal and octagonal vdW-QCs, respec-
tively. The point group Cb/t

nv includes the rotations Ci
n with

i = 0, 1, . . . , n − 1 and two classes of reflections σ
b/t
v,i and

σ
b/t
d,i with i = 0, 1, . . . , n/2 − 1. We use the same labels Ci

n

to stand for the rotations around the z axis because both Cb
nv

and Ct
nv are the subgroups of Dnd and the three groups share

the same rotations, namely Ci
n = R( 2π

n i). The twist leads to

σ t
v,i = σ b

d,i = R

(
2π

n
i + π

6

)
σ b

v,0

[
R

(
2π

n
i + π

6

)]†

,

σ t
d,i = σ b

v, j = R

(
2π

n
j

)
σ b

v,0

[
R

(
2π

n
j

)]†

,

(3)

where j = (i + 1) mod (n/2) and σ b
v,0 = σx, which is iden-

tical to the σd,0 in Dnd point group. Therefore, from Eqs. (2)
and (3) we note that Cb

nv �= Ct
nv due to the twist although both

of them have the point group symmetry Cnv . Equations (2)
and (3) are also suitable for the symmetry restriction C2v +
C2v ⇒ D2d , which exists in the second strongest resonant
coupling (see Sec. III B) in the dodecagonal vdW-QC. We
remind readers that, for different symmetry restrictions under
consideration, including Cnv + Cnv ⇒ Dnd with n = 2, 4, 6,
the labels σd,i, σ t

v,i, σ b
v,i, σ t

d,i, and σ b
d,i correspond to different

operations, and here we always choose σd,0 in Dnd and σ b
v,0 in

Cb
nv being σx as the reflection with the xz mirror plane.

III. MODEL AND METHODS

A. Tight-binding model

Assuming only one pz orbital on each sublattice for both
vdW-QCs, the Hamiltonian is described by the two-center
Slater-Koster tight-binding model. The hopping energy be-
tween sites i and j is determined by [18]

t (ri j ) = n2Vppσ (|ri j |) + (1 − n2)Vppπ (|ri j |), (4)

where n is the direction cosine of relative position vectors ri j

with respect to the z axis. The Slater-Koster parameters Vppσ

and Vppπ read

Vppπ (|ri j |) = −γ0e(a/
√

3−|ri j |)/δ,

Vppσ (|ri j |) = γ1e(1.36a−|ri j |)/δ
(5)

for dodecagonal vdW-QCs, and

Vppπ (|ri j |) = −β0e(a−|ri j |)/δ,

Vppσ (|ri j |) = β1e(3a−|ri j |)/δ
(6)

for octagonal vdW-QCs. The interlayer distances are 1.36a
and 3a for dodecagonal and octagonal vdW-QCs, respectively,
and δ = 0.184a measures the decay length of the hopping en-
ergy with the site-site distance. The octagonal vdW-QCs has
not been fabricated experimentally, and for clarity we use sim-
ilar expressions in Eq. (6) for a twisted bilayer square lattice
like that of twisted bilayer graphene. The energy parameters
β0 and β1 for real materials with a twisted bilayer square
lattice are not necessarily the same as γ0 and γ1 of twisted

bilayer graphene in Eq. (5). For example, using cold atoms in
optical lattices to simulate the twisted bilayer square lattice,
β0 and β1 can be tuned in a wide range [19–22], as discussed
later in Sec. VII. Here we choose β0 = γ0 and β1 = γ1 with
γ1 = 0.142γ0, so that we can have a more direct comparison
between two different vdW-QCs.

B. Hamiltonian construction for quasicrystalline resonant states

The Bloch bases of two component layers are defined as

|kb, X 〉 = 1√
N

∑
Lb

eikb·(Lb+τb
X )

∣∣Lb + τb
X

〉
,

|kt , X 〉 = 1√
N

∑
Lt

eikt ·(Lt +τt
X )

∣∣Lt + τt
X

〉
,

(7)

where N is the normalization factor, Lb/t = n1ab/t
1 + n2ab/t

2 is
the unit cell vector, and |Lb/t + τ

b/t
X 〉 denotes the pz orbital

located at sublattice X in unit cell Lb/t . The intralayer Hamil-
tonian matrix element reads

〈kb, X |H0|k′b, X ′〉 = δkbk′b
∑
Lb

t
(
Lb + τb

X ′X
)
eikb·(Lb+τb

X ′X ),

〈kt , X |H0|k′t , X ′〉 = δkt k′t
∑

Lt

t
(
Lt + τt

X ′X
)
eikt ·(Lt +τt

X ′X ),

(8)

where τ
b/t
X ′X = τ

b/t
X ′ − τ

b/t
X . The interlayer Hamiltonian matrix

element reads [16,23–28]

〈kb, X |U |kt , X ′〉 =
∑
GbGt

T (kb + Gb)eiGb·τb
X e−iGt ·τt

X δkb+Gb,kt +Gt ,

(9)

where T (kb + Gb) is the in-plane Fourier transform of the
interlayer hopping function t (r) at kb + Gb. It is defined by

T (q) = 1

S

∫
t (rxy + hêz )e−iq·rxy drxy, (10)

where S is the area of the unit cell of hexagon or square lattice,
and êz is the unit vector along z axis. According to Eq. (9),
only Bloch bases with the wave vectors kb and kt satisfying
kb + Gb = kt + Gt can couple with each other, where Gb and
Gt are the reciprocal point vectors of the two layers.

These resonant kb and kt points are labeled as Qi(k0)
with even and odd i belonging to the bottom and top layers,
respectively, in which wave vectors Qi are determined by
the interlayer coupling strengths in Eq. (10). In this paper
we focus on these Qi, which lead to the first two strongest
interlayer coupling strengths. At � point, i.e., k0 = 0, the
coordinates of these Qi determined by Eq. (10) in dodecagonal
and octagonal vdW-QCs are given in Table I. For k0 �= 0,
these wave vectors Qi(k0) have a corresponding translational
motion of k0 with respect to Qi at k0 = 0, as shown in Figs. 2
and 3. In general, the resonant coupling Hamiltonian H (k0)
for vdW-QCs within the subspace consisting of Qi can be
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TABLE I. First two strongest coupling strengths T0 with their
wave vectors Qi in dodecagonal (dode) and octagonal (octa) vdW-
QCs. The coordinate of wave vector Qi is determined by Qi =
(−1)iR( π

n )Q0 with i = 0, 1, 2, . . . , n − 1. Here Qi with even and odd
i belong to the top and bottom layers, respectively.

Systems Order Symmetries Q0 T0

dode first D6d ( 4π√
3a

, 0) 0.047γ0

dode second D2d ( 2π√
3a

− 2π

a , 0) 0.014γ0

octa first D4d ( π

(
√

2+1)a
, π

a ) −0.0296γ0

octa second D4d ( (
√

2−2)π
a ,

√
2π

a ) 0.0024γ0

written as

H (k0) = Hb
0 (k0) + Ht

0(k0) + U (k0), (11)

where Hb
0 (k0) and Ht

0(k0) are the Hamiltonians of the two
component layers, and U (k0) is the interlayer coupling. The
matrix elements for Hb

0 (k0) and Ht
0(k0) are determined by

Eq. (8), and the matrix elements for U (k0) are determined
by Eq. (9). The eigenenergy E (k0) of H (k0) as a function of
k0 is called as the quasiband structure and can well describe
electronic properties of vdW-QCs [16].

IV. SYMMETRIES OF RESONANT
COUPLING HAMILTONIANS

A. The first strongest resonant coupling
in dodecagonal vdW-QC

We first consider the resonant coupling for k0 = 0 in
Fig. 2(b) and later discuss the other cases for k0 �= 0. For the
first strongest resonant coupling, there are 12 wave vectors
Qi ranging from Q0 to Q11 with their coordinates given in
Table I. These 12 wave vectors Qi have the same coupling
energy between Qi and Qi+1 (or Qi−1) with 0.047γ0 in the
dodecagonal vdW-QC. The couplings between other two Qi
points are very weak and hence are neglected. We adopt the
sublattice order for Qn as (A, B) if n mod 4 = 2, 3 and (B, A)
if n mod 4 = 0, 1, and then write the Hamiltonian at � point
as

H� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H (0) W0,1 W †
11,0

W †
0,1 H (1) W1,2

W †
1,2 H (2) . . .

. . .
. . . W9,10

W †
9,10 H (10) W10,11

W11,0 W †
10,11 H (11)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)
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FIG. 2. Wave vectors Qi for the (first, second) strongest resonant coupling in dodecagonal vdW-QC for (a) and (d) k0 shifting away from
� along −kx direction, (b) and (e) k0 at �, and (c) and (f) k0 shifting equivalently away from � along �O0 direction [also see Fig. 1(c)]. Wave
vectors Qi with odd and even i belong to the bottom and top layers, respectively. The reflection mirrors for Cs point group symmetry in (a) and
(d) are denoted by green solid lines. The twofold axes for C2 point group symmetry in (c) and (f) are denoted by gray dashed lines. In (b) and
(e), the interlayer coupling conditions between Q0 and Q1 are depicted, namely Q0 + Gt = Q1 + Gb. Blue and red hexagon networks are the
BZs of the bottom and top layers of dodecagonal vdW-QCs in each subplot.
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FIG. 3. Wave vectors Qi for the (first, second) strongest resonant coupling in octagonal vdW-QC for (a) and (d) k0 shifting away from �

along −kx direction, (b) and (e) k0 at �, and (c) and (f) k0 shifting equivalently away from � along �O0 direction [also see Fig. 1(d)]. Wave
vectors Qi with odd and even i belong to the bottom and top layers, respectively. The reflection mirrors σx for Cs point group in (a) and (d) are
denoted by green solid lines. The twofold axes �O0 of C2,�O0 for C2 point group in (c) and (f) are denoted by gray dashed lines. Blue and
red hexagon networks are the BZs of the bottom and top layers of dodecagonal vdW-QCs in each subplot. These Qi points connected by σx in
(a) and (d) and these Qi points connected by C2,�O0 are denoted as curved lines with double arrows.

Here H (n) is the Hamiltonian at the nth k point with the same
form

H (n) = γ0

(
0.239 0.682
0.682 0.239

)
, (13)

and Wn,n+1 is the interlayer interaction between the nth and
(n + 1)th k points with the same form

Wn,n+1 = T0

(
e

2π
3 i 1
1 e− 2π

3 i

)
, (14)

where T0 = 0.047γ0 is the interlayer coupling strength be-
tween Qi and Qi+1. This Hamiltonian H� has D6d point group
symmetry, which is the same as that for BZs of dodecagonal
vdW-QC as shown in Fig. 1(c) but with following symmetry
operations [17]:

E = I (k) ⊗ σ0,

S2i+1
12 = S2i+1

12 (k) ⊗ σ0 (i = 0, 1, . . . , 5),

C2i
12 = C2i

12(k) ⊗ σ0 (i = 1, 2, . . . , 5),

C′
2,i = C′

2,i(k) ⊗ σ1 (i = 0, 1, . . . , 5),

σd,i = σd,i(k) ⊗ σ1 (i = 0, 1, . . . , 5).

(15)

All of these symmetry operations are the direct product of
the operations in k space and the operations in sublattice
space. Symmetry operations I (k), S2i+1

12 (k), C2i
12(k), C′

2,i(k),

and σd,i(k) are 12 × 12 matrices within the space of 12 wave
vectors Qi. These k-space operations can be described by
Eq. (2) with n = 6. Here operations σ0 and σ1 are the identity
matrix I and the x component of Pauli matrices in sublattice
space, respectively.

If k0 shifts away from � point along −kx direction, which
is equivalent to the case that k0 moves along arbitrary � →
Kb/t

i direction [the green solid lines in Fig. 1(c)], only the
symmetry operation σd,0 (i.e., σx) in point group D6d is kept.
In this case, the symmetry of the Hamiltonian decrease to be
Cs point group including E and σx, as shown in Fig. 2(a).

If k0 shifts away from � along � → O0 direction, which is
equivalent to the case that k0 moves along arbitrary � → Oi

direction [the gray dashed lines in Fig. 1(c)], only one twofold
rotation C′

2,1 in D6d , labeled by C2,�O0 with � → O0 as the
rotation axis, is kept. In this case, the symmetry decrease from
D6d to C2 point group including E and C2,�O0 , as shown in
Fig. 2(c).

B. The second strongest resonant coupling
in dodecagonal vdW-QC

For the second strongest resonant coupling, there are only
four wave vectors Qi supporting the subspace with their coor-
dinates in Table I. We label Q0 and Q2 from the top layer, and
Q1 and Q3 from the bottom layer in Fig. 2(e). The Hamiltonian
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H� at � point for the second strongest resonant coupling reads

H� =

⎛
⎜⎜⎜⎝

H (0) W0,1 0 W †
3,0

W †
0,1 H (1) W1,2 0
0 W †

1,2 H (2) W2,3

W3,0 0 W †
2,3 H (3)

⎞
⎟⎟⎟⎠. (16)

Here the sublattice order is arranged as (A, B) for Q0 and
Q3 and (B, A) for Q1 and Q2, the matrix elements in the
Hamiltonian take the form

H (n) = γ0

(
0.083 1.433
1.433 0.083

)
(17)

and

Wn,n+1 = T0

(
e

2π
3 i 1
1 e− 2π

3 i

)
, (18)

where T0 = 0.014γ0 is the interlayer coupling strength be-
tween Qi and Qi+1. The Hamiltonian in Eq. (16) has D2d point
group symmetry with the z axis being the principal axis, and
the symmetry operations read

E = I (k) ⊗ σ0,

Si
4 = Si

4(k) ⊗ σ0 (i = 1, 3),

C1
2 = C1

2 (k) ⊗ σ0,

C′
2,i = C′

2,i(k) ⊗ σ1 (i = 0, 1),

σd,i = σd,i(k) ⊗ σ1 (i = 0, 1),

(19)

where the operations I (k), Si
4(k), C1

2 (k), C′
2,i(k), and σd,i(k)

are 4 × 4 matrices acting on the k space of Qi ranging from
Q0 to Q3, which satisfy Eq. (2) with n = 2. Similar to the first
strongest resonant coupling, if k0 shifts away from � along
−kx and � → O0 directions, only the symmetry operations σx

and C2,�O0 are kept, respectively. In this way, the symmetries
the Hamiltonian correspondingly decrease to be Cs and C2, as
shown in Figs. 2(d) and 2(f).

C. First two strongest resonant couplings in octagonal vdW-QC

For both the first two strongest couplings [11], there are
eight wave vectors Qi (i = 0, 1, . . . , 7) with their coordinates
given in Table I. These wave vectors Qi for even and odd i be-
long to the top and bottom layers, respectively. The strongest
interactions occur between Qi and Qi+1 with the coupling
conditions Q2i + Gt = Q2i+1 and Q2i−1 + Gb = Q2i, where
Gb and Gt are some special reciprocal points with |Gt | = |Gb|
being 2π

a and 2
√

2π
a for the first strongest and the second

strongest resonant coupling, respectively, in Figs. 3(b) and
3(e). The resonant coupling Hamiltonian at � point reads

H� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h0 T0 T0

T0 h1 T0

T0 h2
. . .

. . .
. . . T0

T0 h6 T0

T0 T0 h7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

where the on-site energy hi for all Qi sites take the same value
0.158γ0 (0.105γ0) and hopping energy T0 between Qi and

Qi+1 is −0.0296γ0 (0.0024γ0) for the first (second) strongest
resonant coupling. As shown in Figs. 3(b) and 3(e), this
Hamiltonian has D4d point group symmetry with the principle
z axis, which is the same as the BZs of octagonal vdW-QC
as shown in Fig. 1(d). The symmetry operations include rota-
tions Ci

4, improper rotations S2i+1
8 , reflections σd,i, and twofold

rotations C′
2,i with i = 0, 1, 2, 3. These symmetry operations

satisfy Eqs. (2) and (3) with n = 4 with only one sublattice. If
k0 shifts away from � along −kx direction, only the reflection
σx is kept, and then the Hamiltonian has a lower Cs point
group symmetry in Figs. 3(a) and 3(d). If k0 shifts away from
� along � → O0 direction, the Hamiltonian has C2 point
group symmetry in Figs. 3(c) and 3(f).

However, here we figure out that the reflections in
Figs. 3(a) and 3(d) and the twofold rotations in Figs. 3(c) and
3(f) act on these Qi points in a different way from them acting
on a real-space molecule structure. Let us first take σx (i.e.,
σd,0) in Fig. 3(a) for the first strongest resonant coupling as an
example. Under the σx operation, red Q0 is reflected into the
position where blue Q1 is located in the xy plane. Blue Q1 is
at the bottom layer, and hence blue Q1 is not directly the point
reflected by σx for red Q0 from the top layer. However, a red
point at the same place of blue Q1 but for the top layer stands
for the same state of the red Q0 because of a reciprocal point
vector difference. Therefore, σx will reflect Q0 to itself. The
same way σx acts on the other Qi, and these Qi points reflected
by σx are denoted by curved lines with double arrows in
Fig. 3(a) for the first strongest resonant coupling and similarly
in Fig. 3(d) for the second strongest resonant coupling.

For the operation C2,�O0 in Figs. 3(c) and 3(f), we can
also perform a similar analysis. For example, under the C2,�O0

operation in Fig. 3(c), red Q0 will be rotated to a blue k point
at the same place as the red Q0 in the xy plane. Owing to a
reciprocal point vector difference, the blue Q7 stand for the
same state of the blue k point at the same place as the red Q0.
Therefore, blue Q7 is the point for red Q0 under C2,�O0 . The
same way of C2,�O0 acts on the other Qi, and these Qi points
connected by C2,�O0 are denoted by curved lines with double
arrows in Fig. 3(c) for the first strongest resonant coupling
and similarly in Fig. 3(f) for the second strongest resonant
coupling.

V. COMPATIBILITY RELATIONSHIP
FOR QUASIBAND SPLITS

A. Dodecagonal vdW-QC

As previously discussed in Figs. 2(a)–2(c), at � point, the
first strongest resonant coupling Hamiltonian H� in dodecago-
nal vdW-QC has the highest D6d point group symmetry, while
for k0 along −kx and � → O0 directions, the Hamiltonians
H (k0) have Cs and C2 point group symmetries, respectively.
Therefore, if k0 deviates from � point, the original two-
dimensional degenerate Ei states at � point in D6d symmetry
will be split into one-dimensional nondegenerate states due to
the decreased symmetry. Using the character tables of D6d ,
Cs, and C2 in Table II, we derive the CR between D6d and Cs

and the CR between D6d and C2, as also listed in Table II for
comparison. From the CRs in Table II, we can see that (i) as
D6d is broken into Cs along −kx direction, we have A1 → A′,
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TABLE II. Character tables of D6d , Cs, and C2 point groups and their CRs.

C2 E C2,�O0

Cs E σx

D6d E 2S12 2C6 2S4 2C3 2S5
12 C2 6C′

2 6σd

A A′ A1 1 1 1 1 1 1 1 1 1
B A′′ A2 1 1 1 1 1 1 1 −1 −1
A A′′ B1 1 −1 1 −1 1 −1 1 1 −1
B A′ B2 1 −1 1 −1 1 −1 1 −1 1
A ⊕ B A′ ⊕ A′′ E1 2

√
3 1 0 −1 −√

3 −2 0 0
A ⊕ B A′ ⊕ A′′ E2 2 1 −1 −2 −1 1 2 0 0
A ⊕ B A′ ⊕ A′′ E3 2 0 −2 0 2 0 −2 0 0
A ⊕ B A′ ⊕ A′′ E4 2 −1 −1 2 −1 −1 2 0 0
A ⊕ B A′ ⊕ A′′ E5 2 −√

3 1 0 −1
√

3 −2 0 0

A2 → A′′, B1 → A′′, and B2 → A′ for nondegenerate states,
and have Ei → A′ ⊕ A′′ with i = 1, . . . , 5 for degenerate Ei

states; and (ii) as D6d is broken into C2 along � → O0 di-
rection, we have A1 → A, A2 → B, B1 → A, and B2 → B for
nondegenerate states, and have Ei → A ⊕ B with i = 1, . . . , 5
for degenerate Ei states.

Similarly, for the second strongest resonant coupling in
Figs. 2(d)–2(f), using the character tables of D2d , Cs, and
C2 in Table III, we derive the CR between D2d and Cs and
the CR between D2d and C2, as also listed in Table III for
comparison. From the CRs in Table III, we can see that (i) as
D2d is broken into Cs along −kx direction, we have A1 → A′,
A2 → A′′, B1 → A′′, and B2 → A′ for nondegenerate states,
and have E → A′ ⊕ A′′ for degenerate E states; and (ii) as D6d

is broken into C2 along � → O0 direction, we have A1 → A,
A2 → B, B1 → A, and B2 → B for nondegenerate states, and
have E → A ⊕ B for degenerate E states.

On the other hand, substituting the Hamiltonian matrix
elements in Eqs. (8) and (9) into the Hamiltonian H (k0) in
Eq. (11) for the first and second strongest resonant couplings
in dodecagonal vdW-QC, we numerically obtain their qua-
siband structures as a function of k0 and plot the results in
Fig. 4. We clearly see the symmetry changes and band splits
predicted by the CRs in Tables II and III.

B. Octagonal vdW-QC

Both the first and second strongest resonant coupling
Hamiltonians at � point in octagonal vdW-QC have the high-
est D4d point group symmetry, as shown in Figs. 3(b) and 3(e).
For k0 along −kx and � → O0 directions, the Hamiltonians

TABLE III. Character tables of D2d , Cs, and C2 point groups and
their CRs.

C2 E C2,�O0

Cs E σx

D2d E 2S4 C2 2C′
2 2σd

A A′ A1 1 1 1 1 1
B A′′ A2 1 1 1 −1 −1
A A′′ B1 1 −1 1 1 −1
B A′ B2 1 −1 1 −1 1
A ⊕ B A′ ⊕ A′′ E 2 0 −2 0 0

H (k0) have Cs and C2 point group symmetries, respectively.
Using the character tables of D4d , Cs, and C2 in Table IV,
we derive the CR between D4d and Cs and the CR between
D4d and C2, as also listed in Table IV for comparison. From
the CRs in Table IV, we can see that (i) as D4d is broken
into Cs along −kx direction, we have A1 → A′, A2 → A′′,
B1 → A′′, and B2 → A′ for nondegenerate states, and have
Ei → A′ ⊕ A′′ with i = 1, 2, 3 for degenerate Ei states; and
(ii) as D4d is broken into C2 along � → O0 direction, we have
A1 → A, A2 → B, B1 → A, and B2 → B for nondegenerate
states, and have Ei → A ⊕ B with i = 1, 2, 3 for degenerate
Ei states. The numerically calculated quasiband structures as
a function of k0 in Fig. 5 verify the symmetry changes and
band splits predicted by the CRs in Table IV.

VI. IHSRS IN k SPACE

The interlayer hybridization is important because it is re-
sponsible for the unique properties of vdW-QCs distinct from
those of component monolayers. In our previous work we pro-
posed the IHSRs for the symmetry restriction C6v + C6v ⇒
D6d in graphene quasicrystal systems by using projection
operator analysis [17]. The interlayer hybridizations are clas-
sified into three categories, (1) equivalent hybridization, if
the allowed pairing states from two monolayers for interlayer
hybridizations have the same irreducible representations, (2)
nonequivalent hybridization, if the allowed pairing states from
two monolayers for interlayer hybridizations only have differ-
ent irreducible representations, and (3) mixed hybridization, if
the allowed pairing states from two monolayers for interlayer

TABLE IV. Character tables of D4d , Cs, and C2 point groups and
their CRs.

C2 E C2,�O0

Cs E σx

D4d E 2S8 2C4 2S3
8 C2 4C′

2 4σd

A A′ A1 1 1 1 1 1 1 1
B A′′ A2 1 1 1 1 1 −1 −1
A A′′ B1 1 −1 1 −1 1 1 −1
B A′ B2 1 −1 1 −1 1 −1 1
A ⊕ B A′ ⊕ A′′ E1 2

√
2 0 −√

2 −2 0 0
A ⊕ B A′ ⊕ A′′ E2 2 0 −2 0 2 0 0
A ⊕ B A′ ⊕ A′′ E3 2 −√

2 0
√

2 −2 0 0
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FIG. 4. (a) and (d) The quasiband structures of the dodecagonal vdW-QC for the (first, second) strongest resonant couplings with Dirac
point ED as energy reference. (b) and (c) Zoom-in images of (a) with irreducible representations in negative and positive energy regions around
� point. (e) and (f) Zoom-in images of (d) with irreducible representations in negative and positive energy regions around � point.

hybridizations can have the same and different irreducible
representations. Here we alternatively use the CRs of different
point groups to derive the IHSRs of both the first and second
strongest resonant couplings in k space for dodecagonal and
octagonal vdW-QCs.

A. IHSRs at � point

There are 12 wave vectors Qi forming the D6d subspace
for the first strongest resonant coupling at � point in Fig. 2(b)
for dodecagonal vdW-QC. The six Qi with even i form the

FIG. 5. The quasiband structures of the octagonal vdW-QC around � point with irreducible representations for (a) the first and (b) second
strongest resonant couplings.
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TABLE V. Character tables of D6d , Cb
6v , and Ct

6v point groups and their CRs. 3σ b
v /3σ b

d and 3σ t
d/3σ t

v respectively stand for the two classes
{σ b

v,i} and {σ b
d,i} in Cb

6v and the two classes {σ t
d,i} and {σ t

v,i} in Ct
6v , with i = 0, 1, 2.

Ct
6v E 2C6 2C3 C2 3σ t

d/3σ t
v

Cb
6v E 2C6 2C3 C2 3σ b

v /3σ b
d

D6d E 2S12 2C6 2S4 2C3 2S5
12 C2 6C′

2 6σd

A1 A1 A1 1 1 1 1 1 1 1 1 1
A2 A2 A2 1 1 1 1 1 1 1 −1 −1
A2 A2 B1 1 −1 1 −1 1 −1 1 1 −1
A1 A1 B2 1 −1 1 −1 1 −1 1 −1 1
E1 E1 E1 2

√
3 1 0 −1 −√

3 −2 0 0
E2 E2 E2 2 1 −1 −2 −1 1 2 0 0
B1 ⊕ B2 B1 ⊕ B2 E3 2 0 −2 0 2 0 −2 0 0
E2 E2 E4 2 −1 −1 2 −1 −1 2 0 0
E1 E1 E5 2 −√

3 1 0 −1
√

3 −2 0 0

top Ct
6v layer, and the six Qi with odd i form the bottom Cb

6v

layer. Due to the twist, Cb
6v �= Ct

6v . Therefore, the interlayer
hybridization at � point must follow the symmetry restriction
Cb

6v + Ct
6v ⇒ D6d in dodecagonal vdW-QC. Using the char-

acter tables of D6d , Cb
6v , and Ct

6v , we derive the CR between
D6d and Ct

6v and the CR between D6d and Cb
6v , as listed in

Table V. Using the CRs in Table V we can find the allowed
interlayer hybridizations at � point for the first strongest res-
onant coupling in dodecagonal vdW-QC as follows:

(i) equivalent hybridizations,

A1 + A1 ⇒ A1 + B2,

A2 + A2 ⇒ A2 + B1,

E1 + E1 ⇒ E1 + E5,

E2 + E2 ⇒ E2 + E4,

(21)

(ii) nonequivalent hybridizations,

B1 + B2 ⇒ E3 + E3,

B2 + B1 ⇒ E3 + E3.
(22)

For the second strongest resonant coupling at � point in
dodecagonal vdW-QC, there are four wave vectors Qi forming
the D2d subspace with Q0 and Q2 from the top Ct

2v layer and
Q1 and Q3 from the bottom Cb

2v layer, as shown in Fig. 2(e).
Therefore, the interlayer hybridization at � point must follow
the symmetry restriction Cb

2v + Ct
2v ⇒ D2d for the second

strongest resonant coupling. Using the character tables of D2d ,
Cb

2v , and Ct
2v , we derive the CR between D2d and Ct

2v and the
CR between D2d and Cb

2v , as listed in Table VI. According
to the CRs in Table VI we can obtain the allowed interlayer
hybridizations at � point for the second strongest resonant
coupling in dodecagonal vdW-QC as follows:

(i) equivalent hybridizations,

A1 + A1 ⇒ A1 + B2,

A2 + A2 ⇒ A2 + B1,
(23)

(ii) nonequivalent hybridizations,

B1 + B2 ⇒ E + E ,

B2 + B1 ⇒ E + E .
(24)

In octagonal vdW-QC, there are eight wave vectors Qi
forming the D4d subspace for both the first and second
strongest resonant couplings at � point in Figs. 3(b) and 3(e).
The four Qi with even i form the top Ct

4v layer, and the four Qi
with odd i form the bottom Cb

4v layer. Therefore, the interlayer
hybridization at � point must follow the symmetry restriction
Cb

4v + Ct
4v ⇒ D4d in dodecagonal vdW-QC. Using the char-

acter tables of D4d , Cb
4v , and Ct

4v , we derive the CR between
D4d and Ct

4v and the CR between D4d and Cb
4v , as listed in

Table VII. We obtain the allowed interlayer hybridizations
at � point for both the first and second strongest resonant
couplings in octagonal vdW-QC as follows:

(i) equivalent hybridizations,

A1 + A1 ⇒ A1 + B2,

A2 + A2 ⇒ A2 + B1,

E + E ⇒ E1 + E3,

(25)

(ii) nonequivalent hybridizations,

B1 + B2 ⇒ E2 + E2,

B2 + B1 ⇒ E2 + E2.
(26)

The interlayer hybridization matrix element is defined as
Uir,ir′ = | 〈ϕb

ir |U |ϕt
ir′ 〉 |, where |ϕb

ir〉 and |ϕt
ir′ 〉 are the states of

the bottom and top layers with irreps ir and ir′. The nonzero
Uir,ir′ represents the allowed interlayer hybridizations. From
Eqs. (21)–(26) we can derive the IHSRs predicted by the CRs

TABLE VI. Character tables of D2d , Cb
2v , and Ct

2v point groups
and their CRs. σ b

v /σ b
d and σ t

d/σ
t
v respectively stand for the two classes

{σ b
v,0} and {σ b

d,0} in Cb
2v and the two classes {σ t

d,0} and {σ t
v,0} in Ct

2v .

Ct
2v E C2 σ t

d/σ
t
v

Cb
2v E C2 σ b

v /σ b
d

D2d E 2S4 C2 2C′
2 2σd

A1 A1 A1 1 1 1 1 1
A2 A2 A2 1 1 1 −1 −1
A2 A2 B1 1 −1 1 1 −1
A1 A1 B2 1 −1 1 −1 1
B1 ⊕ B2 B1 ⊕ B2 E 2 0 −2 0 0
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TABLE VII. Character tables of D4d , Cb
4v , and Ct

4v point groups
and their CRs. 2σ b

v /2σ b
d and 2σ t

d/2σ t
v respectively stand for the two

classes {σ b
v,i} and {σ b

d,i} in Cb
4v and the two classes {σ t

d,i} and {σ t
v,i} in

Ct
4v , with i = 0, 1.

Ct
4v E 2C4 C2 2σ t

d/2σ t
v

Cb
4v E 2C4 C2 2σ b

v /2σ b
d

D4d E 2S8 2C4 2S3
8 C2 4C′

2 4σd

A1 A1 A1 1 1 1 1 1 1 1
A2 A2 A2 1 1 1 1 1 −1 −1
A2 A2 B1 1 −1 1 −1 1 1 −1
A1 A1 B2 1 −1 1 −1 1 −1 1
E E E1 2

√
2 0 −√

2 −2 0 0
B1 ⊕ B2 B1 ⊕ B2 E2 2 0 −2 0 2 0 0
E E E3 2 −√

2 0
√

2 −2 0 0

at � point for dodecagonal and octagonal vdW-QCs, as listed
in Table VIII. Obviously the IHSRs for the first strongest
resonant coupling in dodecagonal vdW-QC are the same as
the IHSRs in real-space graphene quasicrystal due to the same
symmetry restriction Cb

6v + Ct
6v ⇒ D6d [17].

We now numerically verify the IHSRs predicted by the
CRs by virtue of the interlayer hybridization matrix element.
Let us take Dnd with n = 2, 4, 6 at � point as an example.
Eigenstates from each layer can be classified by the rota-
tional operation Cn, i.e., Cn|ϕb

ir,θ 〉 = eiθ |ϕb
ir,θ 〉 and Cn|ϕt

ir′,θ ′ 〉 =
eiθ ′ |ϕt

ir′,θ ′ 〉. Figure 6 shows the classified energy levels from
each layer by Cn and the eigenenergy spectra of the first
and second strongest resonant Hamiltonians. We can see that
these hybridization-generated energy states are governed by
Eqs. (21)–(26) in dodecagonal and octagonal vdW-QCs. We
also figure out here that, in two middle subplots of Figs. 6(c)
and 6(d), B1 and B2 states from the bottom and top Cb/t

4v

layers are directly converted into E2 bulk states of the coupled
bilayers, because B1 and B2 states do not coexist in bottom

TABLE IX. Character tables of Cs, Ct
s, and Cb

s point groups and
their CRs.

Ct
s E σx

Cb
s E σx

Cs E σx

A′ A′ A′ 1 1
A′′ A′′ A′′ 1 −1

and top layers for the first two strongest resonant couplings
in octagonal vdW-QC. In other words, B1 and B2 states from
the bottom and top Cb/t

4v layers are also the eigenstates of
D4d bilayer system for the first two strongest resonant cou-
plings in octagonal vdW-QC. In the basis functions of C6,
the hybridization matrix elements satisfy U θθ ′

ir,ir′ = δθθ ′U θθ ′
ir,ir′

[17]. Figure 7 shows | 〈ϕt
ir,θ |U |ϕb

ir′,θ ′ 〉 | for the first and second
strongest resonant couplings in dodecagonal and octagonal
vdW-QCs. These nonzero matrix elements | 〈ϕt

ir,θ |U |ϕb
ir′,θ ′ 〉 |

manifest the IHSRs in Table VIII predicted by the CRs.

B. IHSRs at k0 �= 0 points

For k0 shifting away from � point along −kx direction,
these wave vectors Qi form the Cs subspace with Cb

s and Ct
s

symmetries for bottom and top layers for both the first and
second strongest resonant couplings in dodecagonal and oc-
tagonal vdW-QCs [cf. Figs. 2(a) and 2(d), Figs. 3(a) and 3(d)].
Therefore, the interlayer hybridizations for k0 in −kx direction
follow the symmetry restriction Cb

s + Ct
s ⇒ Cs. Using the

character tables of Cs, Cb
s , and Ct

s point groups, we derive
the CR between Cs and Cb

s and the CR between Cs and Ct
s,

as listed in Table IX. We obtain the only allowed equivalent

TABLE VIII. IHSRs and interlayer hybridization classifications in the first and second strongest resonant couplings of dodecagonal (dode)
and octagonal (octa) vdW-QCs.

Interlayer hybridization classifications

Systems Order Point groups IHSRs Equivalent Nonequivalent

dode first D6d UAi,A j = δAi,A jUAi,A j

UEi,E j = δEi,E jUEi,E j

UB2,ir′ = δB1,ir′UB2,ir′

UB1,ir′ = δB2,ir′UB1,ir′

A1 + A1 ⇒ A1 + B2

A2 + A2 ⇒ A2 + B1

E1 + E1 ⇒ E1 + E5

E2 + E2 ⇒ E2 + E4

B1 + B2 ⇒ E3 + E3

B2 + B1 ⇒ E3 + E3

dode second D2d UAi,A j = δAi,A jUAi,A j

UB1,ir′ = δB2,ir′UB1,ir′

UB2,ir′ = δB1,ir′UB2,ir′

A1 + A1 ⇒ A1 + B2

A2 + A2 ⇒ A2 + B1

B1 + B2 ⇒ E + E
B2 + B1 ⇒ E + E

octa first/second D4d UAi,A j = δAi,A jUAi,A j

UE ,E = δE ,EUE ,E

UB1,ir′ = δB2,ir′UB1,ir′

UB2,ir′ = δB1,ir′UB2,ir′

A1 + A1 ⇒ A1 + B2

A2 + A2 ⇒ A2 + B1

E + E ⇒ E1 + E3

B1 + B2 ⇒ E2 + E2

B2 + B1 ⇒ E2 + E2

dode/octa first/second Cs UA′,A′ = δA′,A′UA′,A′

UA′′,A′′ = δA′′,A′′UA′′,A′′
A′ + A′ ⇒ A′ + A′

A′′ + A′′ ⇒ A′′ + A′′

dode/octa first/second C2 UA,A = δA,AUA,A A + A ⇒ A + B
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FIG. 6. (a) and (b) The classified eigenenergy spectra for the (first, second) strongest resonant coupling Hamiltonians at � point under
(C6, C2) operations in dodecagonal vdW-QC. (c) and (d) The classified eigenenergy spectra for the (first, second) strongest resonant coupling
Hamiltonians at � point under (C4, C4) operations in octagonal vdW-QC. In each subplot, the left and right blue lines stand for the energy
levels of the bottom and top layers and the middle red lines for the coupled bilayer. The value of θ corresponds to the eigenvalue eiθ of Cn

acting on the eigenstates of the bottom and top layers.

hybridizations,

A′ + A′ ⇒ A′ + A′,

A′′ + A′′ ⇒ A′′ + A′′.
(27)

For k0 shifting away from � point along � → O0 direction,
these wave vectors Qi form the C2 subspace with Cb

1 and
Ct

1 symmetries for bottom and top layers for both the first
and second strongest resonant couplings in dodecagonal and
octagonal vdW-QCs [cf. Figs. 2(c) and 2(f), Figs. 3(c) and
3(f)]. Therefore, the interlayer hybridizations for k0 in � →
O0 direction follow the symmetry restriction Cb

1 + Ct
1 ⇒ C2.

Using the character tables of C2, Cb
1, and Ct

1 point groups,
we derive the CR between C2 and Cb

1 and the CR between
C2 and Ct

1, as listed in Table X. We obtain the only allowed
equivalent hybridizations,

A + A ⇒ A + B. (28)

Using Eqs. (27) and (28) we obtain the IHSRs at k0 �= 0 points
for dodecagonal and octagonal vdW-QCs and also list them in
Table VIII.

VII. DISCUSSIONS

It is known that the dodecagonal vdW-QC has been real-
ized experimentally[1,2] in the 30◦-twisted bilayer graphene.
The two-dimensional phthalocyanine-based metal-organic
framework (MPc-MOF) [29] has an effective square lattice
structure and energy bands contributed by the pz orbitals of
the carbon and nitrogen atoms around the Fermi energy. The
45◦-twisted bilayer MPc-MOF is a candidate of the octagonal
vdW-QC with eightfold rotational symmetry.

On the other hand, cold atom in optical lattices is a
novel and powerful platform [19,20], which simulates var-
ious condensed-matter systems, such as the twisted bilayer

TABLE X. Character tables of C2, Cb
1, and Ct

1 point groups and
their CRs.

Ct
1 E

Cb
1 E

C2 E C2,�O0

A A A 1 1
A A B 1 −1
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FIG. 7. | 〈ϕb
ir,θ |U |ϕt

ir′,θ ′ 〉 | in unit of eV in (a) and (b) for the (first,
second) strongest resonant couplings under (C6, C2) operations in
dodecagonal vdW-QC. | 〈ϕb

ir,θ |U |ϕt
ir′,θ ′ 〉 | in unit of eV in (c) and

(d) for the (first, second) strongest resonant couplings under (C4, C4)
operations in octagonal vdW-QC. The color map stands for the value
of | 〈ϕb

ir,θ |U |ϕt
ir′,θ ′ 〉 |, where |ϕb

ir,θ 〉 and |ϕt
ir′,θ ′ 〉 are the eigenstates

of the bottom and top layers. The value of θ corresponds to the
eigenvalue eiθ of Cn acting on the eigenstates of the bottom and top
layers.

square optical lattice with controllable twist angle, intralayer
hopping. and interlayer hopping [21,22]. In this respect, the
45

◦
-twisted bilayer square lattice, i.e., the octagonal vdW-QC,

can be realized experimentally in optical lattices.
In the twisted bilayer square optical lattice the Hamiltonian

H is expanded in a separable Wannier basis w(r − Rαm),
where Rαm is the position of site m in layer α. If the on-site in-
teraction is tuned to a quite weak magnitude close to 0 through
Feshbach resonances [30], the noninteracting Hamiltonian H
reads [21]

H = Hintra + Hinter, (29)

with

Hintra = −
∑
m,n,α

J‖(Rαm − Rαn)a†
αnaαm,

Hinter =
∑

m,n,α,β

J⊥(Rαm − Rβn)a†
αmaβn,

(30)

where a†
αm (aβn) is the creation (annihilation) operator for

the Wannier function at Rα,m (Rβn), J‖(Rαm − Rαn) is the
intralayer hopping between the Wannier functions at site m
and n of layer α, and J⊥(Rαm − Rβn) is the interlayer hopping
between the Wannier functions at site m of layer α and at
site n of layer β. J‖(Rαm − Rαn) and J⊥(Rαm − Rβn) have the

following expressions [21,30]:

J‖(Rαm − Rαn) ∝ ERe
− 1

4L2
0

(Rαm−Rαn )2

,

J⊥(Rαm − Rβn) ∝ �⊥e
− 1

4L2
0

(Rαm−Rβn )2

. (31)

Here ER = h̄2k2

2M is the recoil energy with the atom mass M
and k = 2π

λ
with λ being the wavelength of the laser, �⊥

controls the strength of the interlayer coupling and can be
tuned independently through a direct microwave transition

or a two-photon Raman process, and L0 =
√

h̄
Mωt

is the size

of ground-state wave function with ωt being the trapping
frequency. As a result of the same symmetry of the twisted bi-
layer square lattice and only one orbital in each site, Eqs. (31)
and (6) have very similar expressions. We can obtain the
transformation between hopping parameters for the octagonal
vdW-QC from Eq. (31) to Eqs. (4) and (6). At last, we empha-
size that our symmetry analyses, compatibility relationships,
band splits, and IHSRs are a result of lattice symmetry and
hence they are independent of numerical values of these tight-
binding parameters.

VIII. CONCLUSION

We investigated the symmetries of both the first and second
strongest resonant coupling Hamiltonians, which endow
the quasiband structures describing electronic properties
of dodecagonal and octagonal vdW-QCs. Our symmetry
analyses indicate that (i) the Hamiltonian has the highest Dnd

symmetries at � point for the first (n = 6) and second (n = 2)
strongest resonant couplings in dodecagonal vdW-QC and
for both first two strongest resonant couplings in octagonal
vdW-QC with n = 4, and (ii) the Hamiltonian has respectively
Cs and C2 symmetries for −kx and � → O0 pathways in
both dodecagonal and octagonal vdW-QCs. The derived CRs
predict that in the quasiband structures the degenerate Ei (or
E ) states at � point are split into one A′ and one A′′ state
along −kx direction and into one A and one B state along
� → O0 direction due to the decreasing symmetries. We
use the CRs of different point groups between the coupled
bilayers and uncoupled monolayers to derive the IHSRs of
both the first two strongest resonant couplings in dodecagonal
and octagonal vdW-QCs. Our results show that the resonant
couplings allow nonequivalent hybridizations only between
B1 and B2 states and equivalent hybridizations for A, Ai, A′,
A′′, E , or Ei states. Numerical results of the energy spectra and
nonzero interlayer hybridization matrix element distributions
further verify these IHSRs predicted by the CRs.
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