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By using the extended Hubbard model of anyons, we numerically demonstrate the adiabatic deformation of
the spinful quantum Hall (QH) states by transmutation of statistical fluxes. While the ground state is always
spin-polarized in a series of v = 1 integer QH systems, the adiabatic continuity between the singlet QH states at
v =2and v = 2/5 is confirmed. These results are consistent with the composite fermion theory with spin. The
many-body Chern number of the ground-state multiplet works as an adiabatic invariant and also explains the
discrete change of the topological degeneracy during the evolution. The generalized Stfeda formula of spinful

systems is justified.
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I. INTRODUCTION

In these decades, topology has been coming to the fore in
condensed matter physics. The integer quantum Hall (IQH)
effect [1,2] is a prototypical example of the topologically
nontrivial phase, where the topological nature of the Chern
number is the origin of the quantization of the Hall con-
ductance [3.4]. Topological invariants also work as order
parameters beyond the Ginzburg-Landau theory based on the
breaking symmetry, which demonstrates how topology brings
further diversity to phases of matter. The electron-electron
interaction gives even more enriched topological phenomena.
The fractional quantum Hall (FQH) effect [5,6] is topo-
logically ordered [7,8] and hosts fractionalized excitations
carrying the fractional charge and fractional statistics [9—13].
Even though the origin of the energy gap is intrinsically
different in the IQH and the FQH effects, the composite
fermion theory [14,15] enables us to understand their un-
derlying physics in a unified scheme: the FQH state at the
filling factor v = p/(2mp £ 1) with p, m integers is inter-
preted as the v = p IQH state of composite fermions carrying
2m fluxes. Their adiabatic continuity by trading the external
fluxes for the statistical ones was demonstrated in various
situations [16-22], which justifies the validity of the com-
posite fermion picture. Intermediate states of this adiabatic
transformation are anyonic. Although systems of anyons on a
torus have some algebraic constraints [23,24] that come from
the braid group [25], the gap remains open and the many-body
Chern number [26] remains constant during the adiabatic evo-
lution. This describes the discrete change of the topological
degeneracy in a similar form of the Stfeda formula [27], which
we call the generalized Stfeda formula [18].

The internal degree of freedom generates further diversity
in the FQH effects. A typical system is the spinful FQH sys-
tems where small Zeeman splitting is neglected [28—33]. Mul-
tilayer systems [34-38] and (multilayer) graphene [39-55]
also give exotic FQH states that cannot be observed in single
component systems. They are not only fundamentally inter-
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esting in their own right, but may also provide a platform for
topological quantum computation based on the non-Abelian
braidings [56,57], which has attracted great interest over the
past few decades. The composite fermion theory is remark-
ably useful in the multicomponent FQH systems as well [15].
For example, the spin structure of the FQH states in the limit
of vanishing Zeeman energy depends strongly on the filling
factor. This selection rule for the spin can be predicted by
the corresponding IQH state of composite fermions [33]. This
can be applied to other degrees of freedom, such as a layer
index [37] and the valley degree [43]. The main goal of this
work is to justify the validity of this picture in terms of the
adiabatic continuity and to reveal the topological properties
during the evolution of the flux-attachment on a torus.

Below we numerically analyze the extended Hubbard
model of two-component anyons. They are spinful anyons
but it can be applied to other degrees of freedom such as the
layer index. We demonstrate that the spin-singlet IQH state at
v = 2 is adiabatically connected to the v = 2/5 singlet FQH
state [28] while the topological degeneracy changes discretely.
The adiabatic continuity between the bosonic IQH state at
v = 2[58,59] and the singlet FQH state at v = 2/3 [33] is also
confirmed. On the other hand, a series of v = 1 IQH system
always gives maximally spin-polarized ground states. These
results are consistent with the composite fermion theory with
spin [33]. We also confirm that the many-body Chern number
of the ground state remains constant during the adiabatic evo-
lution and also describes the discrete change of the topological
degeneracy. This justifies the validity of the generalized Stfeda
formula [18] in spinful QH systems.

II. EXTENDED ANYON-HUBBARD MODEL

A. Spinful anyons

Let us consider a two-dimenional (2D) toroidal system of
anyons on a square lattice under the magnetic field. Anyons
with two components are labeled by spin with S = 1/2, but
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it can be applied to other degrees of freedom such as the
layer index. Counterclockwise exchanges of particles with the
same spin give the phase factor ¢. Namely, particles with
0/m = 0(mod?2) and 1 (mod 2) are bosons and fermions, re-
spectively. Otherwise, they are anyons. Note that the statistical
phases are not well defined for exchanges of opposite spins
since the many-body configuration does not turn back to the
original one. In other words, this operation does not form
a closed loop in the configuration space, which implies that
the change of the phase depends on a choice of basis. On
the other hand, the two successive operations, where spin 1
moves around spin | or vice versa, form a closed loop in the
configuration space. We assign this to the phase factor ™.
Namely, a local move around another always gives ¢’ irre-
spective of their spins, which is a physically natural extension
of the fractional statistics to two-component systems [60,61].
In the following, we consider the QH systems where the
fundamental particles are two-component anyons. This should
not be confused with the anyonic quasiparticles of the FQH
effect.

B. Hamiltonian

Modeling the anyons as fermions with the statistical fluxes,
we define the Hamiltonian H = Hy;, + H;, with

Hin = —t Y _ cl,e%e%c,, (0
a.{ij)
Hiyy =U Z”iT”ii +V Zninj, )
i (i)

where C,L is the creation operator for a fermion [62] with spin
o =1, | onsite i, nyy = cjacia, n; = niy + n;y, {ij) indicates
the summation over the nearest-neighbor pairs of sites, and
e'?i describes the external magnetic field [63]. The statistical
fluxes are introduced by e/, see below for details. As shown
in Eq. (4) below, 6;; is an operator. The notation of the gauge
field 6;; should not be confused with the statistical phase 6.
When putting 6;; = 0, the Hamiltonian describes a fermionic
system with 8 /7 = 1 (mod2). Unless ¢’ = 1, i.e., bosons or
fermions, particles carry fractional fluxes, which implies that
0;; is ill defined if two or more particle coordinates coincide.
To avoid the singularities, we set U = +00 that results in the
hard-core constraint cfaciT = 0 for any spin «, 8. The other
parameters are set as t = 1 and V > 0. We use the Lanczos
method to diagonalize the Hamiltonian.

Our system preserves SU(2) spin-rotational symmetry
since the Hamiltonian is expressed as

H = Z(tijcjcj + Vijnin;), 3)
ij
where ¢/ = (cj'T, CL)’ t;; is a function of the operators n;’s,
and V;; is a constant. This is obviously invariant under the
transformation ¢! — ¢ u with u € SU(2).

i

C. Statistical fluxes with spin

The gauge field 6;; in Eq. (1) is assigned so that the
phase accumulated by a particle exchange by hoppings is
e, Following the method in Refs. [18,24,64,65], we first

construct the hopping Hamiltonian for spinless anyons under
with the statistical phase 6 under the magnetic field as H,;,, =
13 cle®ieic;, where 0/, = Zk#injkack with A;
real. The boundary conditions are modified to ensure the braid
group on a torus as described in the next paragraph. Within
this framework, we then define the Hamiltonian in Eq. (1) with

Q[j = Z Aijk(CZTCkT + CZLC/W) = Z Aijknk (4)
ki, j ki, j

under the same boundary conditions. Hoppings in H,; prop-
erly give the phase factors ¢/ and ¢’?’ for particle exchanges
and for moves of particles around another, respectively. In the
same manner, the hoppings in Hy, give ¢ and e for particle
exchanges within the same spin and for moves around another
particle irrespective of their spins as well.

On a torus, states of spinless anyons are not completely
determined by the positions of particles [23,24,64,65]. This
is derived from algebraic constraints of the braid group on a
torus. Accordingly, the Hilbert space of anyons with 6 /7 =
n/m (n, m: coprimes) is spanned by the basis |{r;}; w), where
{ri} is the particle configuration and w = 1, ..., m is the ad-
ditional label associated with the boundaries: when a particle
crosses the boundary in the x (y) direction, the label is shifted
from w to w — 1 (the phase factor ™? is given). This realizes
the nonlocal nature of anyons, which we employ in our spinful
system in the same way. This condition does not break the
SU(2) symmetry. The dimension of the Hilbert space with
6/m = n/mis given by dim H = m(N;v[:»") (11:,’?), where N, x N,
is the lattice number and N, = Ny + N, is the total particle
number.

The existence of the label w implies that dimH with
0/m =n/m is m times larger than that with fermions or
bosons even for the same particle and the same site numbers,
meaning that H changes discretely as 6 is changed contin-
uously. Nevertheless, as shown below, the energy gaps of
the QH states behave smoothly in the evolution of the flux-
attachment although the ground-state degeneracy is discretely
changed. Using this smoothness found in a dense set of the
energy gaps, we define “adiabatic continuity.”

III. ADIABATIC CONTINUITY

By the above setup, we investigate the adiabatic continuity
of the spinful QH states under the flux-attachment transfor-
mation [14,16,33]. This transformation trades the external
magnetic fluxes for the statistical fluxes while keeping their
total number constant, i.e.,

0
Ny + Np; = const., 5)

where Ny is the number of external fluxes and N, = Ny + N,
is the particle number. This implies that a fermionic system at
v = N,/Ny = p is transformed to systems of anyons with the
statistical angle 6 at

Y
p(1—0/m)+ 1

We call such a set of transformed systems the family of the
v = p IQH system. Figure 1 plots 1/v as a function of 6/

Q)
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FIG. 1. Each line represents the family of the v = 1 IQH system
(red) and the family of v = 2 IQH system (blue). These paths are
given by Eq. (6) with p =1 and 2, respectively. B and F in the
parentheses stand for bosons and fermions, respectively. The red line
contains the lattice analog of the Halperin /// state [28] at v = 1/I
with/ =1, 2, 3 (systems at v < 0 in this family are trivially mapped
to that at v > 0). The blue line contains the lattice analogues of the
Halperin 110 state, the Halperin 332 state, v = —2 (equivalently v =
2) bosonic IQH state [58,59], and the singlet v = —2/3 (equivalently
v = 2/3) FQH state [33].

using Eq. (6) with p = 1 and 2. This figure also shows various
states that each path contains as discussed below.

A. Family of the v = 1 IQH system
1. Energy gap

Let us first consider a family of the v = 1 IQH system. We
numerically demonstrate that the lattice analog of the Halperin
11 state [28] emerges at v = 1// with [ =1,2,3 and the
intermediate systems of anyons also give maximally polarized
ground state, see Fig. 1. This result justifies the composite
fermion theory with spin [33].

In Fig. 2(a), we plot the energy gap as functions of 1 /v, set-
ting N, =4,V =0, and the system size as N, x N, =9 x 9.
Here, 1/v (namely Ng) and /7 change under the constraint
in Eq. (5) with, implying that the filling factor is given by
Eq. (6) with p = 1. The dimension of the Hilbert space at
S =0 with 6/m =n/7 is given by dim H = 69877080.
The SU(2) spin-rotational symmetry allows us to label the
eigenstates with total spin Sy [66]. At v = 1, we obtain the
maximally polarized IQH state with Sio = Si* = 2, which
is the lattice analog of the Halperin 111 state. Even though
v is an integer, the Hubbard interaction is crucial here since
the lowest Landau level (LLL) is partially filled at v =1
(Note that the filling factor is defined as v = N,/Ny. While
the LLL has 2N, single-particle states, where 2 comes from
the spin degree of freedom, the particle number is N, = Ny
at v = 1). Following the argument of the flat band ferromag-
netism [67-70], one expects the spin-polarized ground state.
The first excited state gives § = Sig* — 1, which is consistent
with the spin wave of the polarized QH states. This means that
the obtained finite gap is a finite-size effect, but it survives as
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FIG. 2. Energy gaps as functions of 1/v for (a) V =0 and
(b)V =5. Weset N, =4 and N, x N, =9 x 9. We plot the lowest
15 energies within the S} = 0 sector at each 1/v. The number of
plots looks less than 15 because of the topological degeneracy. The
ground-state degeneracy for each 1/v is shown in Fig. 3(a). Since
its number increases as 1/v increases, only the first excited energy
is plotted in the region 1 < 1/v. The vertical dashed lines represent
fermionic systems.

1/v increases and then closes at v = 1/2. This suggests that
the spin-polarization at the fractional fillings is understood by
the maximally polarized IQH state [33].

The gap closing at v = 1/2 is explained by the compos-
ite fermion theory [14,33]. Noting U = oo and V =0 on a
lattice, let us consider an interaction ), ; 82(zi — w ;) in the
continuum system in the disk geometry, where z; = x; — iy;
and w; = x; — iy; are the positions of particles with o =%
and |, respectively. Within the LLL, this interaction gives the
zero-energy degenerate eigenfunctions of bosons at v = 1/2:

v =T - [Jwi—wp[Je—wp@is,. @)

=3 11 11 ]
i<j i<j i,j

Here, ®5_, is a LLL projected state at v = 1 with total spin S,
which is macroscopically degenerate for general S as the LLL
is partially filled while Cbij‘“‘“ is unique. The gap closing at
v = 1/2 in Fig. 2(a) is consistent with this fact.

The discussion implies that the adiabatic continuity in a
wider range of v is established by turning on the nearest-
neighbor interaction V. Figure 2(b) is the same as Fig. 2(a),
but for V = 5. The gap at v = 1/2 becomes finite and the
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FIG. 3. (a) Ground-state degeneracy N divided by the spin
degeneracy 2S,+ 1 (=5 in this case) as a function of 1/v.
(b) Many-body Chern number. (c) Ground-state degeneracy Np di-
vided by the denominator of 6 /7. (d,e) Spectral flows at (d) 1/v =3
of fermions and (e) 1/v = 0 of bosons. In the all panels, the same
setting as Fig. 2(b) is used.

v = 1 IQH state is adiabatically connected to the lattice ana-
log of the Laughlin state (Halperin 333 state) at v = 1/3.

2. Topological degeneracy and Chern number

Because of the spin polarization, topological properties
of the obtained ground state are identical to that of spinless
systems [18] except for the (2S57* + 1)-fold spin degeneracy.
Assuming that the states are degenerate if their energy dif-
ference is less than 0.001 in Fig. 2(b), we plot in Fig. 3(a)
the ground-state degeneracy Np. It changes discretely even
though the energy gap behaves smoothly. In Fig. 3(b), im-
posing the twisted boundary conditions, we compute the

many-body Chern number [26]

c=— [ & ®)
2wi T2
where 7 = (n,,7m,) is the twisted angles, T2 =
[0,27] x [0, 2], F = (8A,/n,) — (0A,/d11,),  Avoy) =
Tr [@T(8®/91x)], and @) = [IGi(D)), - - ., |G, ()] is
the ground-state multiplet. As shown in Fig. 3(b), the Chern
number C works as an adiabatic invariant numerically.
Extending the generalized Stfeda formula for spinless
anyons [18], the discrete change of the degeneracy is de-
scribed by the many-body Chern number as

ANp

A(m/v) ©)

where m is the denominator of /7 and A represents the
difference for two possible cases in a family. This works
even for polarized states with the spin degeneracy because
the additional factors appear in both sides of Eq. (9) as

Np — 28 + 1)Np and C — (255 + 1)C. In Fig. 3(c),
we plot Np/m as a function of 1/v. The slope is surely identi-
cal to C (= 5 in this case), which is consistent with Eq. (9).
Let us mention the twisted boundary conditions. In our
model, they are defined as follows: when an anyon hops across
the boundary in x (y) direction, the phase factor ¢/™% (¢)
is given to the basis [{ry4}, {rry}; w). In Figs. 3(d) and 3(e),
we plot the energies at 1/v = 3 and 1/v = 0 of Fig. 2(b) as
functions of 7, fixing 1, = 0. Note that 1/v = Ng/N, =0
means the absence of the external magnetic field. While the
FQH state at v = 1/3 is insensitive to the boundary condition,
the spectral flow at 1/v = 0 gives the strong 7,-dependence
and the gap is closed. This is consistent with the emergence of
Nambu-Goldston modes of the bosonic superconductor [71].

B. Family of the v = 2 IQH system
1. Energy gap

Let us next consider a family of the v = 2 IQH system.
We demonstrate the adiabatic continuity between the singlet
FQH states at v =2 and v = 2/5, which correspond to the
Halperin 110 state and Halperin 332 state, respectively. It
is also shown that the v = —2 bosonic IQH state [58,59], a
symmetry-protected topological phase of bosons discussed in
Ref. [72-74], is adiabatically connected to the singlet FQH
state at v = —2/3 [33], see Fig. 1. These results are consistent
with the composite fermion theory with spin [33].

We plot the energy gap as functions of 1/v in Fig. 4(a),
setting N, =4,V =0, and N, x N, = 8 x 8. The dimension
of the Hilbert space at S = 0 with 6 /7 = n/7 is given by
dim H = 26685792. At v = 2, we obtain the spin-singlet IQH
state with St = St‘gti" = 0. If the Hubbard U vanishes, the
ground state is a completely occupied LLL (Halperin 110
state). The obtained ground state is expected to be topolog-
ically equivalent to that even for the infinite Hubbard U since
the density per site is very small. The energy gap at v = 2 sur-
vives as 1/v increases. It closes at v = 2/5 since maximally
polarized states at least can be ground states in the fermionic
system with U = oo. Figure 4(b) is the same as Fig. 4(a), but
for V. = 5. This indicates that the nearest-neighbor interaction
brings the singlet ground state at v = 2/5, and consequently
the adiabatic continuity between the v =2 and v =2/5 is
established. As mentioned below, the ground state at v = 2/5
is five-fold degenerate and its many-body Chern number C is
2, which is consistent with the Halperin 332 state. (Detailed
discussions about the topological degeneracy and the many-
body Chern number C are given below.) Although whether the
gap survives in the thermodynamic limit is an open question,
our demonstration for the fixed system size includes important
scientific information.

In a family of v = 2 IQH system, two systems at +v and
—v are not identical since they are not mapped to each other
by simply reversing the magnetic and the statistical fluxes.
In Fig. 4(b), a singlet ground state is obtained at v = —2
with /7 = 2. This is unique and gives C = —2, which is
consistent with the bosonic IQH state [58,59]. Figure 4(b)
suggests that this is adiabatically connected to the singlet FQH
state of fermions at v = —2/3 [33].

Let us now focus on the vicinity of 1/v = 0 with /7 =
3/2 (semions) in Figs. 4. The energy gap looks symmetric
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FIG. 4. Energy gaps as functions of 1/v for (a) V =0 and
(b)V =5. Weset N, =4 and N, x N, = 8 x 8. We plot the lowest
25 energies within the S} = 0 sector at each 1/v. The number of
plots looks less than 25 because of the topological degeneracy. The
ground-state degeneracy for each 1/v is shown in Fig. 6(a). The
vertical dashed lines represents fermionic systems.

around 1/v =0 and closes at 1/v = 0. In fact, this sym-
metry is exact since the energy with Sy = 0 should be an
even function of 1/v when N, =4 (see the Appendix). We
then plot the energy gap but for N, = 6 in Fig. 5. The di-
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FIG. 5. Energy gaps as functions of 1/v for V =5. We set
N, =6 and N, x N, = 6 x 5. We plot the lowest 15 energies within
the S = 0 sector at each at each 1/v. The vertical dashed lines
represent fermionic systems.
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FIG. 6. (a) Ground-state degeneracy Np divided by the spin
degeneracy 28+ 1 (=1 in this case) as a function of 1/v.
(b) Many-body Chern number. (c) Ground-state degeneracy Np di-
vided by the denominator of 6 /7. (d,e) Spectral flows at (d) 1/v =
5/2 of fermions and (e) 1/v = 0 with 8 /7 = 3/2. In the all panels,
the same setting as Fig. 4(b) is used.

mension of the Hilbert space at S = 0 with /7 =n/9 is
given by dim H = 106 879 500. Even though the systems no
longer have the emergent symmetry, the energy gaps with
Stot = 0 at v are almost symmetric [e.g., the gap of the
first excited states AE(1/v)at1/v = £1/6 gives AE(1/6) —
AE(—1/6) = 0.0008]. This symmetric behavior is consistent
with the pairing of two semions [60,61,75-79] since the sign
of fluctuations of 1/v has no influence for bosons. The gap
closing at 1/v = 0 is also consistent with the emergence of the
Nambu-Goldston modes of the spinful anyon superconductor
as in the case of the gap closing in Fig. 2. In Fig. 4(b), the
larger gaps look symmetric around 1/v & 1/2, which is still
an open question.

2. Topological degeneracy and Chern number

Let us discuss the topological properties of the ground
states. Assuming that states are degenerate if their energy
difference is less than 0.001 in Fig. 4(b), we plot the ground-
state degeneracy Np and their many-body Chern number C in
Figs. 6(a) and 6(b), respectively. Even though Np discretely
changes as v is changed, C remains constant and its sign
changes at 1/v = 0. This suggests that each gap is charac-
terized by the many-body Chern number C.

The validity of the generalized Stfeda formula in Eq. (9)
is nontrivial for the singlet ground states, unlike in the spin-
polarized case. In Fig. 6(c), we plot Np/m as a function of
1/v. The slope is identical to C (= %2 in this case), which
is actually consistent with Eq. (9). In fact, Eq. (9) generally
holds in the spinful systems by assuming some conditions as
derived below.
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For simplicity, we consider a translationally invariant sys-
tem as discussed in Ref. [18]. We define the magnetic
translational operators 7, and p;, for ith fermions (with statis-
tical fluxes) with spin @ =17, |, along noncontractible loops on
the torus in the x and y directions, respectively. They satisfy

Pia TipPiaTjy = €, (10)

for any «, B since the left-hand side is transformed to a local
move of the particle i around the particle j [23-25]. This
implies

(<. pjg] =0, (11)

for 8/m = n/m, meaning that the Hamiltonian specified by
twisted boundary conditions should commute with 7} and
pjg- Then defining the translation operators of center of
mass [80] in the same way of Ref. [18], we obtain at least
pm/|v|-fold degeneracy at v with 6 /7 = n/m in a family of
v = p IQH system. This reduces to

Np =Cm/v, (12)

by assuming that the ground state does not have any other
degeneracy and gives the Chern number as C = sgn{v} x p
as shown in Fig. 6(b). Taking its difference, we obtain Eq. (9).

In Figs. 6(d) and 6(e), we plot the energies as functions of
ne withn, = 0at1/v =5/2and 1/v = 0. Here the systems in
Fig. 4(b) are used. While the FQH state at v = 2/5 is nearly
independent of the boundary condition, the spectral flow at
1/v = 0 has the strong n,-dependence and the gap is closed.
This is consistent with the emergence of the Nambu-Goldston
modes of the spinful anyon superconductor.

IV. CONCLUSION

In this paper, the extended Hubbard model of anyons is
numerically analyzed. In a family of v = 1 IQH system, we
confirm the maximally polarized ground states during the
evolution of the flux-attachment. In a family of v =2 IQH
system, we show that the singlet IQH state at v = 2 is adi-
abatically connected to the v = 2/5 singlet FQH state. The
adiabatic continuity between the bosonic IQH state at v = 2
and the singlet FQH at v = 2/3 is also confirmed. These
results are consistent with the composite fermion theory with
spin [33]. The many-body Chern number not only works as
an adiabatic invariant, but also describes the discrete change
of the topological degeneracy during the evolution.

The energy gap behaves continuously even though the
degeneracy is discretely changed. Furthermore, the Chern
number is invariant during the adiabatic evolution. The pattern
of the degeneracy is rigorously determined by the Chern num-
ber as well as the filling factor and the statistical phase [18].
We expect that in adiabatic evolution, what should be de-
formed continuously is not the states themselves, but a gap
between the sets of ground-state multiplets.

An extension of this argument to systems without SU(2)
spin-rotational symmetry (e.g., the bilayer FQH effect) is
an interesting issue as a future direction. According to the
composite fermion theory for bilayer systems [37], one can

differentiate between fluxes seen by other particles with the
same spin and that seen by particles with the opposite spin.
We expect that this diversity may give even more nontrivial
adiabatic continuity beyond what the generalized Stfeda for-
mula predicts.
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APPENDIX: EMERGENT SYMMETRY OF
FOUR-PARTICLE SYSTEM

Let us consider the system with the statistical phase 6 at
the filling factor v. Since this system is mapped to that with
(—v, —0) by reversing the magnetic and the statistical fluxes,

the energy satisfies
E(,0)=E(—v, —0). (A1)

In the four-particle system, there is another constraint of
E(v,0). The eigenstates of 7, and S with S,y = S =0
are doubly degenerate [81]:

l£) = [(12) + 5 (13) + T (14)]/V/3,

with (i) = (S;S7111) +S7STILLL)/V2 and ¢ =
2m /3. They satisty

(A2)

Pyy|E) = |F),

where P34 is the exchange operator between the spins 3 and 4.
This implies the following equivalence:

(A3)

O Py ® ~ diag(l, —1}, (A4)
where ® = (|+), |—)). Equations (A3) and (A4) give
Esy=0(v, 0) = Es —o(v, 0 + s7), (AS)

with s an integer.
According to Eq. (6), a family of v = p IQH system gives
the following constraint between v and 6:

11
9:9(1))571(&——). (A6)
p v
This satisfies
20p+1
B(—v) = —0(v) + 2pth (A7)
With p = 2, we have
Es—o[—v, 0(=v)] = Eg,,—o[v, 0(v)], (A8)

where Egs. (Al) and (AS) are used. This implies that the
energy with Sioc = 0 is an even function of 1/v.
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