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We present a theoretical framework to describe polarons from first principles within a many-body Green’s
function formalism. Starting from a general electron-phonon Hamiltonian, we derive a self-consistent Dyson
equation in which the phonon-mediated self-energy is composed by two distinct terms. One term is the Fan-
Migdal self-energy and describes dynamic electron-phonon processes, the other term is a contribution to the
self-energy originating from the static displacements of the atomic nuclei in the polaronic ground state. The
lowest-order approximation to the present theory yields the standard many-body perturbation theory approach to
electron-phonon interactions in the limit of large polarons, and the ab initio polaron equations introduced [Sio
et al., Phys. Rev. B 99, 235139 (2019); Phys. Rev. Lett. 122, 246403 (2019)] in the limit of small polarons.
A practical recipe to implement the present unifying formalism in first-principles calculations is outlined. We
apply our method to the Frohlich model, and obtain remarkably accurate polaron energies at all couplings, in
line with Feynman’s polaron theory and diagrammatic Monte Carlo calculations. We also recover the well-known
results of Frohlich and Pekar at weak and strong coupling, respectively. The present approach enables predictive
many-body calculations of polarons in real materials at all couplings.
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I. INTRODUCTION

A charge carrier propagating through a crystal may induce
distortions in the lattice through the electron-phonon interac-
tion. The quasiparticle formed by the carrier and the lattice
distortion is referred to as a polaron [1-4]. The ionic dis-
placements surrounding the carrier may lead to an increase of
its effective mass, and, in the case of strong electron-phonon
coupling, may ultimately form a potential well in which the
polaron becomes self-trapped [5,6].

A detailed characterization of polarons in materials has
been possible throughout the last decades by a combination
of an array of experimental techniques [7]. Polarons have
been proposed to play a crucial role in the exotic proper-
ties of several quantum materials, such as high-temperature
cuprate superconductors [8], colossal magnetoresistance man-
ganites [9], and halide perovskites [10]. In particular, the
low-energy satellites observed in angle-resolved photoemis-
sion spectroscopy (ARPES) experiments are considered the
hallmark of polarons in doped oxides [11-16]. It is generally
accepted that polarons govern the transport [17], optical [18],
and chemical properties of conducting oxides [19].

On the theoretical side, the study of polarons mostly fo-
cused on idealized models such as the Frohlich [4,20,21] and
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the Holstein [22,23] models, as well as the Su-Schrieffer-
Heeger model [24]. These models have provided a fertile
playground for the development and application of advanced
many-body techniques [25] such as variational path-integral
methods [26,27], diagrammatic Monte Carlo [28,29], dynam-
ical mean field theory [30,31], and renormalization-group
approaches [32]. While these methods are of great fundamen-
tal interest, they are not directly applicable to the study of
polarons in real materials.

Recent developments in density functional theory (DFT),
density functional perturbation theory (DFPT), and many-
body perturbation theory have opened promising new avenues
to study polarons in real materials from an ab initio per-
spective [33-36]. For instance, by combining first-principles
calculations with many-body Green’s function techniques,
it has been possible to reproduce the signatures of the
electron-phonon interaction in the ARPES spectra of doped
semiconductors to high accuracy [15,16,37]. However, at this
level of theory, the possibility of spatial correlations between
electrons and phonons is not taken into account [33] since it
is generally assumed that, upon electron addition or removal,
both the electron and the phonon subsystems maintain the
periodicity of the original crystalline lattice.

An alternative, heuristic approach to model the formation
of polarons from first principles consists of performing direct
DFT calculations on supercells of insulators with an added
or removed electron, and relaxing the structure to seek for
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distorted configurations which are energetically favorable
with respect to the original periodic structure [38—45].

In arecent work [34,35], Sio et al. have formalized the DFT
approach to the polaron problem, replacing supercell calcula-
tions by a set of coupled equations whose ingredients are the
electron band structures, phonon dispersions, and electron-
phonon matrix elements obtained from DFPT calculations in
the crystal unit cell. This method established the link between
model Hamiltonian and ab initio approaches to the polaron
problem, and makes it possible to study polaron formation in
materials in a systematic way.

However, the intrinsic limitations of DFT, such as the adia-
batic and classical approximations for the nuclei, are naturally
inherited by the method of Ref. [35]. As a consequence, this
approach does not capture dynamical renormalization effects
that give rise, for example, to the phonon satellites in ARPES
spectra.

In this work, we generalize the theory of Ref. [35] to a
many-body formalism beyond density functional theory. In
particular, we present a Green’s function theory of electron-
phonon interactions that captures spatial correlations between
lattice distortions and electrons in the many-body ground
state. We find that, aside from the standard Fan-Migdal self-
energy [33], one must consider an additional self-energy
contribution that arises from the nonvanishing expectation
value of the atomic displacements when the electron is
“pinned” around a lattice site.

After presenting the general formalism, we discuss approx-
imations that can be used to implement this methodology
in existing ab initio codes. This analysis allows us to es-
tablish the links between our general formalism, the DFT
polaron equations [34,35], and the Allen-Heine theory of
band-structure renormalization [46].

As a first proof of concept, we apply our methodology to
the Frohlich model, and we benchmark our proposed approx-
imations with respect to the all-coupling path-integral method
by Feynman [26] and diagrammatic Monte Carlo calculations
[28,29]. We show that our theory naturally connects the estab-
lished results at weak and strong coupling limits, and predicts
polaron energies with remarkably good accuracy throughout
the whole range of couplings. Furthermore, as a first ab ini-
tio demonstration of this method, we describe in detail the
computational procedure that we used to calculate the full
polaronic renormalization of the band gap in LiF. The main
results of this calculation and its implications in the theory of
the phonon-mediated renormalization of band structures are
discussed in the companion paper [47].

The paper is organized as follows. In Sec. II we de-
velop our general formalism. In particular, we introduce the
electron-phonon Hamiltonian in Sec. IIA. In Sec. IIB we
apply Schwinger’s functional derivative technique to obtain
an equation of motion for the electron Green’s function which
can be rewritten as a Dyson equation, and identify two sep-
arate self-energy contributions. In Sec. II C we introduce an
expression for the vertex function and a related approximation
to simplify the equations. In Sec. II D we obtain an expression
for the expectation value of the atomic displacement operator
in terms of the electron density, which allows us to make
the Dyson equation fully self-consistent. In Sec. III A we
introduce the Lehmann representation of the electron Green’s

function, which we use to derive a Schrodinger-type equa-
tion for the Dyson orbitals describing the electronic part of
the polaron quasiparticle. In Sec. III B the self-energies are
rewritten in terms of the polaron quasiparticle amplitudes, and
in Sec. IIT C we present the self-consistent many-body polaron
equations. In Sec. III D, an expression for the total energy in
the many-body ground state of the coupled electron-phonon
system is derived. In Sec. IV, we develop approximations
of the many-body equations to make the formalism useful
for practical ab initio calculations. Transparent links with
the DFT polaron equations and the standard self-energies
for electron-phonon coupling are established in Sec. IV B.
In Sec. IV C, we outline a practical recipe to implement the
lowest-order approximation to our theory in ab initio calcula-
tions. In Sec. V A, we apply our methodology to the Frohlich
model, and report benchmarks against the well-known weak
and strong coupling limits, as well as Feynman’s path-integral
solution and diagrammatic Monte Carlo results. In Sec. VB,
we outline the computational setup that we used to calculate
polarons in LiF, as reported in the companion paper [47]. In
Sec. VI we address the issue of translational invariance of
the polaronic solutions, and we explain how we can “pin” the
polaron at a given lattice site. In Sec. VII we summarize our
key findings and we anticipate possible future developments.

II. SELF-CONSISTENT GREEN’S FUNCTION
APPROACH TO POLARONS

A. Electron-phonon Hamiltonian

The starting point of our derivation is the standard Hamil-
tonian describing a coupled electron-phonon system [33]:

H=H+H,+H,

= eulipluc + Y gy (@, aq) +1/2)
nk qv

_1
N, 2D g (K, Q) 8y Ek(lqy +aTg,), (1)

k.q
mny

where g, is the single-particle eigenvalue of an electron in
the band n with crystal momentum Kk, wq, is the frequency of a
phonon in the branch v with crystal momentum ¢, and 621( /Cuk
(&fw /aqy) are the associated fermionic (bosonic) creation and
annihilation operators. The electron-phonon coupling matrix
elements are represented by g, (K, q), and N), is the number
of unit cells in the periodic Born—von Kdrmén (BvK) super-
cell. To make the following derivations more compact, we
introduce the complex normal coordinate operator [33]

/ h

A ~ At

v — v —qv/» 2
“q 2Mowq, v (g 4 d ) @

where M, is a reference mass. The operator Zq, has di-
mensions of a length. We note that Eq. (1) is an effective
Hamiltonian, where we assume that electron-electron inter-
action effects have been incorporated in the single-particle
energies &k, so that electrons can be identified as well-defined
quasiparticles in the absence of electron-phonon coupling.
Moreover, phonons are described in the harmonic approxima-
tion, only linear electron-phonon coupling is retained, and the
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phonon frequencies and the electron-phonon matrix elements
already incorporate electronic screening at a mean-field level.
In practical ab initio calculations, the electron energies are
typically obtained via DFT or GW calculations [48], and
phonon frequencies and electron-phonon matrix elements are
obtained from DFPT calculations [49]. The use of Eq. (1) to
compute most of the physical observables related to the renor-
malization of electrons due to the electron-phonon interaction,
such as for instance temperature-dependent band structures,
can be justified rigorously by starting from a more general
electron-ion Hamiltonian [33]. The study of phonon renor-
malization requires more care [33], and it is not attempted in
this work. Most model Hamiltonian approaches to the polaron
problem, such as the Frohlich [21] (see Sec. VA) or the
Holstein [22,23] model, are based on further simplifications
of Eq. (1).

As we discuss in detail in Sec. VI, an additional term is
needed in Eq. (1) to break translational symmetry and pin the
polaron at a given lattice site. In the following we omit this
term for clarity since it does not alter the final results, and we
return to it in Sec. V1.

B. Equation of motion for the electron Green’s function

The central object in our derivation is the electron Green’s
function, which is defined as

G(rt,r't') = —%(N + 1T @, )P @, )IN+1), 3)

where |N + 1) represents the many-body ground state of an
(N + 1)-electron system, T is the time-ordering operator [50],
and /4 are the electron field creation and annihilation op-
erators. In the following we consider the electron polaron for
definiteness, but our results hold unchanged for hole polarons.
The field operators can be written in the single-particle basis
used in Eq. (1),

P(r) =D Yu(r) i, )

nk

being ¥,k (r) the single-particle Bloch wave functions, so that
the Green’s function in the single-particle basis reads as

i A
Guwice (t, 1) = —#N + 1T &) &l () IN+1). (5)

In Egs. (3) and (5), |N + 1) represents the polaronic many-
body ground state, which corresponds to a single electron
added to semiconductor or insulator with filled valence bands
and empty conduction bands, correlated with its accompany-
ing phonon cloud. In the following, the angular brackets (.. .)
represent the expectation value of operators over the |N + 1)
state, unless otherwise specified. An important distinction
from previous Green’s function approaches to the polaron
problem [28,29] is that in those studies the expectation value
in the definition of Eq. (5) is taken over the ground state of
the N-electron system, i.e., the system in absence of the extra
electron. Our present choice of starting from the |N + 1) state
is useful to better connect with DFT calculations, as it will
become clear shortly. We elaborate further on this point in
Sec. VIL

The time dependence in the electron operators can be de-
scribed within the Heisenberg picture, so that their equation of

motion is given by

0 N
ihaénk(t) = [&i (1), H]

oo (1) + 2 My Wq,v
= &xCn _
k Cnk th
X E gnn’v(k —q, (I)@n'qu(l)ﬁqu(f), (6)

n'qv

where the anticommutation relations for the electron op-
erators {Cuk, &y} = Sucwie and {&uk, G} = {&),, E1p ) = 0
have been used. Combining Eqgs. (5) and (6), the following
equation of motion for the electron Green’s function is ob-
tained:

0
ih— — ek )Gk (2, 1
<l Y 8k> kok (£, 1)

I 1
=8t =) S = 2N, 7 D g (K — g, @)

n’qu
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In order to deal with the last term of Eq. (7), we proceed
with Schwinger’s functional derivative technique [51,52]. The
main idea is to add an external source term that couples to the
normal mode coordinates via

Aew(t) =Y Fyu(t) 2 (1), ®)

qv

This term will be set to zero at the end of the derivation, but it
is instrumental to obtain a set of self-consistent equations for
the electron Green’s function by taking functional derivatives
with respect to the fictitious forces Fy, (¢). Furthermore, this
term is needed to break translational symmetry and pin the
polaron around a lattice site (see Sec. VI). The Schwinger’s
functional derivative technique has proven very successful in
electronic structure theory, and is at the heart of all modern
developments in the GW method [53-55].

We rewrite Eq. (7) using the following functional iden-
tity, first derived in Ref. [52] and employed extensively in
Refs. [56,57]:

8T 01)0x (1) ...y i o, X A
SFqu (1) __ﬁ< 2 (@) 01(1)02(12) . . .)

+ %(2@0»(? OO (1) . .. ).
©)

Here, O represents a generic many-body operator. Using this
expression, Eq. (7) becomes

0
ih— — eux | Gukwie (2, 1
<l Y €k> kak (£, 1)

_1
=80t — 1) e +Np Y gurn(k — ¢, Q)

n'qv

JEMo®an (i 0 )G (t.1)
X l v n"k—q,n’k’'\l .
i SF(t) kg

(10)
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To eliminate the dependence on Fg, (¢), we first rewrite the functional derivative in the last term in terms of the inverse of the

Green’s function [58]

8Gnk n'k’ (t’ t/) / " oq. " 8Gr?’lk” 1 (t//’ tm) noogr
—————— = — [ dt"dt G (t, 1 : Gy e (87, 1), 11
T Z ke (1,8 =S ke (07,1 (11
n///k///
and then we apply the following functional chain rule [58]:

6G AT, t 6G A, 1) 6 1"
nknk( ) / ///Z nknk( ) (Zq ( )> (12)

(SF (t//) qv Zq v tm) Squ(tN)

The last term on the right-hand side can be identified with the phonon Green’s function, which is given by

2M0(,()qv 2M0(,()qfuf AL f N ’ n RN
Dyy qo(t', 1) = — W 3 (TZqw (@) — ZqvENZ2qn (@) — Zqu@)]). (13)
In fact, by using this definition inside Eq. (9), we find
8(Zq(t)) 1 1 /
= Dqy.qv (2, 1). 14
SFyu ()~ /2Mowqs \2Mowqy .0 (1

Now we define the vertex function as

1 /
Cokwicvg(t, 1, 1") = — ho 3G (1) s
nK,wK,vq\*s * » ZM() wqu (qu(t”)> )

and we write the noninteracting Green’s function as

0 ,
(GO);kl,n’k’(t! t/) = (lh& - 8nk> 8 —t )Snk,n’k/’ (16)

Using the last two relations together with Eqs. (11)—(14), we can rewrite Eq. (10) as a Dyson equation:

" 0 " "
/ "> (Gl e 1) = Zh €. 87) =

n'k"”

where the self-energies £* and ™ are defined as follows:

FM
e @ 1] Guner i (8

l/) = S(t - t/) 5nk,n’k’9 (17)

S (0,1 = Ny / di'di"y Y Y g (K K~ K )G (1, 4")

K" n”’k" vv'q

x Tk i (0 1/, ") Doy i (1), (18)

2 My wx_x' v o
e (1) = N2 Y7 =2 g, (K K = K) (i (08— 1), (19)

and the superscripts “FM” and “P” stand for Fan-Migdal
and polaronic, respectively. Note that (GO);kl,n,k,(t,t/) and
Yk.k (¢, ') have units of energy divided by time.

A diagrammatic representation of the self-energy
Eq. (18) is given in Fig. 1(a). In Sec. IVA we show how,
using a standard approximation for the vertex I', we can
identify = in Eq. (18) with the standard Fan-Migdal (FM)
self-energy [33]. This self-energy has been key to interpret
the spectral kinks and satellites observed in photoemission
experiments [11,15,37,59,60], and leads to the Allen-Heine
[46] theory of band-structure renormalization including its
nonadiabatic generalizations [61-69] upon performing the
pertinent approximations (see, e.g., Ref. [33]).

To the best of our knowledge, the self-energy XF in
Eq. (19) appeared in Refs. [57,70], but the connection to
polaron formation was not appreciated. This self-energy

M in

(

accounts for the static renormalization of electron energies
due to localization effects. In fact, as we show below, this self-
energy reproduces the Pekar solution to the Frohlich polaron
problem in the limit of strong coupling [6].

C. Vertex function

In order to obtain a closed self-consistent set of equations,
we need to express the vertex function I' in Eq. (15) in terms
of the electron Green’s function. To this aim, we first invert
the Dyson equation in Eq. (17),

—1 0\—1
G"k,n/k’(t’ t/) =(G )nk,n’k’ (t, t,) -

so that we can take the functional derivatives for each term
separately. In the remainder of this section we use numbered
indices for convenience.

Enk,n’k’ (t» t/)’ (20)
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FIG. 1. Diagrammatic representation of the self-consistent Green’s function theory of polarons. Legends for the different parts of the
diagrams are given in the lower left corner. (a) Fan-Migdal self-energy in Eq. (18). (b) Self-consistent definition of the vertex function in
Eq. (24). (c) Polaronic self-energy in Eq. (33). (d) Dyson equation (17). (e) Schematic representation of the self-consistent solution of Egs. (17),

(18), (24), and (33).

From Eq. (16), we see that §(G°)~'/8(z) = 0. The func-
tional derivatives of ¥ and ™ are obtained as follows. For
the polaronic self-energy in Eq. (19), we find

P
Sznlqunzkz (tl ) t2)

-~ = 0(t1 — 1)8(t1 — 13)8q; k,—k
8(Zquun(3)) b

-1 2M0(1) v
x N, -,/T“‘gnm(kz,qsy 1)

For the FM self-energy, we apply the chain rule as in Eq. (12),

82511{1 [ (tl’ t2) /dl4dlsz nlel naky (tl ’ t2)
6( Zq3u3 (t3) > 66}141(4 nsks (t4v tS)
n5ks

3G, k,,nsks (14, 15)

22
8(Zqy;(13)) @2

J

This expression can be simplified using G~ as in Eq. (11):

3G,k nsks (14, fs)

dtedt Giks nox (ta, 1
8(Zq3,(13)) / 6 72 ks noks (T4 T6)

neke
n7ky

G, (%6, 17)
nekg,n7k7 ’
—Gn k7,nsk (t7» tS)-
B(Zq3V3(t3)> TR

(23)

In this expression we recognize the vertex function appearing
in the integrand, in the form of Eq. (15). Combining Egs. (15)
and (20)—(23), we arrive at the following self-consistent ex-
pression for the vertex function:

1
Uiky nokovaqs (1 12, 13) = 8(t1 — 12) 8(t1 — 13) 8qs k1 —ks Np * &nymavy (K2, q3)

ST M (t1, 1)
Ky, mk, \F15 42
+ / dt4dt5dt6dt7 Z LG}MM,H@[{(, (t47 t6)Gn7k7,n5k5 (t77 tS)Fn(,ks,n7k7,V3q3 (tﬁv t79 t3) (24)
8 Gy nsks (T4, 15)

Ny k4
ns k5
Ne ks
ny k7

A diagrammatic representation of Eq. (24) is given in
Fig. 1(b).

D. Atomic displacements and polaronic self-energy

The expectation value of the normal-mode operator that
appears in the polaronic self-energy X¥ can be expressed as

[33]
=N, ZeﬂqR \/ o (D (ATeap), (25)
Kap

where A7, represents the operator for the displacement of
the nucleus « in the unit cell p along the Cartesian direction «,
eca.v(q) 1s the polarization vector of the phonon branch v at
momentum ¢, M, is the mass of the nucleus «, M is a refer-
ence mass (e.g., the proton mass), and R,, is the lattice vector
of the unit cell p. Equations (17), (19), and (25) show that, if

(

in the polaron ground state the atoms are displaced from their
equilibrium sites, then there is an additional self-energy term
to be added to the standard FM self-energy contribution. In the
following, we show that the value of the atomic displacements
is determined by the ground-state electron density, which in
turn can be written self-consistently in terms of the renormal-
ized electron Green’s function G.

In order to obtain an explicit expression for (A%.y,), it is
convenient to rewrite the electron-phonon interaction term of
the Hamiltonian in Eq. (1) as [33]

Ay = [ ary 2o

Kap

Yol j 6 Aty (26)
tKDtp

where Vot(r) is the total (electronic plus ionic) electrostatic
potential in the absence of the excess electron, and 7i.(r) =
1&1-(1')1&(1') is the electron density operator. Similarly, the
phonon term of the Hamiltonian in Eq. (1) can be rewritten
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as [33]
. AL
sz_ § A7 a2 = E Ckap,/c’(x/p’ATKapArK’a’p’,
Kap 2MK at/cap Kap
o'p

(27)
where Cyyp /o 18 the matrix of the interatomic force con-
stants.

From Eqgs. (26) and (27), an equation of motion for the
displacement operator resembling Newton’s equation can be
obtained:

2

dr?

Using the commutation relations [A%,, Afvyy] =
[ﬁ/{apa ﬁk’a’p’] =0 and [Ai’/{apv ﬁlc’ot’p’] =ih (Skap,k’a’p’s where
Drap = —1H0/07Tqp, and taking the expectation value on

the polaron ground state, we are left with a second-order
nonhomogeneous differential equation for (AZ.,):

1 At A
Afkap(t) - _?[[A%K(Xp(t)a H]7H] (28)

2
CKOt Kol p A
T Bbap) == Y T (A bewy (1)
k'’ p! K
1 r 3V°t(r) o) 29)
M, D Teap et

where n(r) = (7 (r, t)) is the expectation value of the density
operator on the ground state, which is stationary. The first
line of Eq. (29) serves as the complementary homogeneous
equation, whose solution is given by a linear combination of
normal vibrational modes

(Atiom()) = Z gy em Qe TRre el (30)
where the constants ug, have to be determined by the initial
conditions. In the absence of external fields and in the thermo-
dynamic limit, these should yield a thermalized distribution of
the atomic displacements. For a finite supercell, one could use,
for example, the ZG displacements introduced in Refs. [71,72]
as an initial configuration. In a more refined treatment, these
initial thermal displacements could be obtained starting from
a formulation of the problem using the Keldysh contour ex-
tended to include a vertical leg in the complex plane [73,74].
This nonequilibrium formulation of the polaron problem is
potentially promising and should be explored in future work.
A particular solution of Eq. (29) is given by

PRAAN0)
Z KDtp K'a’p'

(ATegp) = .
K'a'p Koep

ne(T). 3D

The general solution of Eq. (29) is given by the sum of
Egs. (30) and (31). However, we note that the time average of
Eq. (30) vanishes. Furthermore, in the presence of anharmonic
phonon-phonon couplings, which are not included in our
Hamiltonian (1), the amplitude of the fluctuations in Eq. (30)
must decay with a characteristic phonon lifetime. Since we
are interested in equilibrium properties of the polaronic state,
we neglect the fluctuations in Eq. (30), and focus on the static
term in Eq. (31) as the average of the atomic displacement
operator.

The expectation value of the displacement operator in
Eq. (31) can be linked with the electron Green’s function
introduced in Sec. II B via the standard relation [56]

(fe(r)) = —ih G(rt, 1t™)
I
= —g/ doIm[G(r, r;w)], (32)

where p is the chemical potential. This relation derives di-
rectly from the definition of G in Eq. (3).

Combining Egs. (3)-(5), (19), (25), (31), and (32), we find
the following self-consistent expression for the polaronic self-
energy:

nk i (@ 1 = =5(t —I) Z gnnv(k k —k')

pn KRy hwk k’,v
X [=ifi Gyt i (6, 1]
x g8, (K’ kK —K). (33)

A diagrammatic representation of Eq. (33) is given in
Fig. 1(c), where we can recognize that the polaronic self-
energy shows a tadpole structure similar to the Hartree self-
energy term found in the electron-electron problem [70,75].

Equations (18), (24), and (33), together with the Dyson
equation given in Eq. (17) and shown in Fig. 1(d), form a
closed set of self-consistent equations, similar to the Hedin
equations in the electron-electron problem [56,76]. A graph-
ical representation of the interdependence of the different
elements is shown in Fig. 1(e).

Calculations of polarons using these equations are be-
yond the reach of current computational methods. In the
following sections we introduce standard approximations
that make this problem tractable and amenable to ab initio
calculations.

III. MANY-BODY POLARON EQUATIONS

A. Lehmann representation in the polaron problem

In this section we move from the Green’s function to Dyson
orbitals using the Lehmann representation. To begin with, we
recall that the Fourier transform of the Green’s function can
be written in the Lehmann representation as [50]

Z L@ )
liw — (&5 + in sgn(u — &)]’

G, v w) = (34)

where n — 0%, the functions f; are Dyson orbitals, and the
energies ¢, are electron addition and removal energies. We
define these quantities below. Since our reference state is
the (N+1)-electron system, our notation for the Lehmann
representation differs slightly from the conventional notation.
In Eq. (34), the electron addition and removal energies are
defined as

& = Enyas — Eny1 foreg > pu, (35)

& = Eyi1 — Ens fores < u, (36)

where Eyyjss 1S the energy corresponding to the
IN+1+£1,s) many-body eigenstate of the Hamiltonian
in Eq. (1), Ey4; is the ground-state energy of the reference
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(N +1)-particle system, and u = 3EN = The Dyson orbitals f;
are given by [56]

L) = (N+1|§@)|N+2,5) fore,>p, (37

f(®) = (N, s| (@) |N+1)

The physical interpretation of these Dyson orbitals within the
polaron problem is discussed below. Given that we are mainly
interested in occupied polaron states, we will focus on the case
& < W. A similar reasoning holds for the case g, > .

In Eq. (38), fi(r) gives the probability amplitude for the
state /7 (r)|N, s) to be contained in the reference |N + 1)
ground state. The state /7 (r)|N, s) is a quantum state (not
necessarily an eigenstate) with N + 1 electrons, which is
obtained by adding an electron at position r to the excited
eigenstate |N, s) of the N-electron system.

Now, the many-body eigenstates [N + 1) and |N, s) corre-
spond to correlated electron-phonon states. Since 1 (r) acts
purely on the electronic component of these states, for f;(r)
to be sizable, the phonon part of |N, s) has to overlap sig-
nificantly with the phonon part in the |N + 1) ground state.
Thus, if [N 4 1) corresponds to a localized polaron configu-
ration in which the atoms are displaced with respect to the
periodic lattice, the first electron addition and removal energy
&5 with a sizable Dyson amplitude corresponds to the removal
energy of the extra electron while the ions remain frozen
in the distorted structure. Other |N, s) states with different
atomic configurations still having vibrational wave functions
nonorthogonal to |N + 1) will yield finite but exponentially
small Dyson amplitudes, and will not be considered in the
following (this is best seen by considering the coherent-state
approximation of Sec. III D). The first |N, s) state yielding a
sizable f,(r) differs from the ground state of the N-electron
system due to the lattice distortion. In order to reach the
N-electron ground state, the energy released by the distorted
lattice upon relaxation must be accounted for. A schematic
representation of this process, and its relation to the polaron
formation energy (which will be discussed in Sec. III D), is
given in Fig. 2. The Dyson orbital for the lowest-energy state
of the N-particle system, say f; , (r), has a simple physical
interpretation if we approximate the exact many-body state
IN, smin) by a single Slater determinant. Indeed, in this case,
all valence electronic states must be occupied, and f; . (r)
constitutes the lowest-energy single-particle wave function in
the conduction manifold. Therefore, this Dyson orbital repre-
sents the electronic part of the polaron wave function.

for e, < . (38)

B. Self-energies in terms of the polaron quasiparticle amplitudes

Following Ref. [35], we proceed by expanding the Dyson
orbitals in a single-particle basis:

fir)y =N, ZAfk Yk (1), (39)

In the following we refer to the coefficients A}, as the po-
laron quasiparticle amplitudes. After combining Eqs. (29),
(31), (32), (34), and (39), and using the standard relations
between the electron-phonon matrix elements, interatomic
force constant matrix, and vibrational eigenmodes [33,35],
we can express the expectation values of the normal-mode

]
]
I
]
I
— N /
I
I
I
I
I

==== N+1noel-ph

Energy

AFE

\/

0 (ATeap)
Lattice distortion

FIG. 2. Schematic representation of the different energies in-
volved in the polaron formation process. The solid gray line
represents the original periodic N-electron system, and the solid
blue line represents the (N + 1)-electron system for which a dis-
torted polaron configuration is the ground state in the presence of
a pinning potential (cf. Sec. VI). The dashed gray line represents
a fictitious (N + 1)-electron system in which an electron with no
phonon-mediated renormalization has been added to the conduction
band minimum (sggM). The excitation energy from the (N + 1)-
electron ground state to the distorted N-electron state is the electron
addition or removal energy ¢;. The energy released by the relaxation
of the lattice back to the periodic configuration is represented by
Elaice.- The polaron formation energy, that is the energy gained by
the system when a delocalized electronic state becomes localized in
a polaronic state, is represented by AE.

h
_oN2 |
r 2M0a)qv

ey<L

LY AL a0

s knn'

coordinates as

<2qv) =

Using this expression inside Eq. (19), and transforming to
the frequency domain, we obtain the polaronic self-energy in
terms of the polaron quasiparticle amplitudes:

2
z:111)k,n’k’(w) = _m Z gnn’v(k/a k — k/)
P v
Es<I * " ’
g, (K’ k—K)
X AS - , mmy A , .
Z:kZm;n S (Ani)*

(41)

We proceed similarly for the FM self-energy. In view of
practical calculations, we approximate the vertex function in
Eq. (24) by retaining only the term in the first line [57,77].
This is the well-known Migdal approximation, and is a
standard procedure in the electron-phonon literature [33,78].
With this approximation, the FM self-energy in Eq. (18)
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becomes
Enk,n/k’(t’ l/) = N_ E gfnnv (k, k" — k) gm’n’v’(k/» k" — k/) Gmk”,m’k”’ (t, [/) Dk”fkv,k”’fk’v’ (l, l/), (42)
Py
K"

having used the relation g, (k', k — k') = g7, (k, k' — k) to achieve a compact expression. Along similar lines as in Eq. (41),
we write the FM self-energy in the frequency domain and in terms of the quasiparticle amplitudes, by combining Eqs. (34), (39),

and (42):
i do' Ay (Ao ) D iy o —xer (@)
EFM . - * k, K’ — Kk o k/, K" —K f et n’k n"'k ) . 43
et (©) N,%? G ) g ] ) B ey e e (43)
n v N
St
In order to proceed further, we approximate the interacting phonon Green’s function by its adiabatic counterpart [33]:
DY (w) ! ! Saq'® (44)
(@) = — Sy
ana w—wgtin o+og-—in]

This approximation is well justified and usually very accurate because the vibrational frequencies are obtained from DFPT
calculations. By inserting Eq. (44) inside Eq. (43), and performing the integral over @” by closing the contour in the upper half

of the complex plane, we find

1 *
Zrljll(v,[n’k/ (w) = v Z gf,,nv(k» Q) gmnwv(K', q) ZAfnk-Q—q (Alsn/k’+q)

N

P mm' qv s

where 6 is the Heaviside function.

O(u — &)
ho — & + hwg, — in

[ 9(8s - M)

, ., (45)
how — &5 — hwg, + in

C. Self-consistent polaron equations

The self-energies ¥ and ™

transformation to frequency domain:

obtained in the previous section can be used inside the Dyson equation (20) after a

G i (@) = (GO)l o (@) = Th (@) — Zp¥ (@), (46)
The first term in the right-hand side is obtained from Eq. (16) by using the Fourier representation of the Dirac delta function:
(GO e (@) = (hw — £1) S e - (47)

Note that (G°),! () in Eq. (47), =

nk,n

(@) in Eq. (41), and

T (@) in Eq. (45) have dimensions of energy.

We are now in a position to combine the above results into a self-consistent set of equations for the polaron quasiparticle
amplitudes. By using Eqgs. (34), (39), (41), and (45)-(47), we find that the poles of the interacting Green’s function are the

solutions of the following eigenvalue problem:

pol
z : an,n/k/

n'k’

A = &A0 (48)

where the effective polaron Hamiltonian HP°' depends on the electron addition and removal energies and quasiparticle amplitudes

as follows:
Es<H * i /
Hpol — .8 2 AS gm,mv(k ,k—k )
nk,n’k’ — €nkOnk,n'k’ — = mk’+k-k' —
sz s Fla)k,kf‘,

vk”

1 * s s *
+ ﬁ Z Z gm’nv(k’ q)gm"’l/(k/f q)Am’k+q(A'nk’+q)

P omm s

vq

The self-consistent solution of Eqgs. (48) and (49) yields the
excitation energies and the quasiparticle amplitudes of the
Dyson orbitals, and hence the polaron energies and wave func-
tions. We note that the only approximations that we have made
thus far are the Migdal approximation to the electron-phonon
vertex in Eq. (24), and the replacement of the interacting
phonon Green’s function by its noninteracting (i.e., DFPT)
counterpart in Eq. (13).

(A )" g (K k —K')

(1 — &y)
&y — &y + hawg, — in

[ O(ey — 1)

&y — &y — hwgy + in

}. (49)

Equations (48) and (49) constitute the central result of
this paper. These equations generalize the polaron equa-
tions derived in Refs. [34,35] within the context of DFPT
to a many-body Green’s function formalism for the polaron
quasiparticle amplitudes and excitation energies. Practical
strategies for solving these equations are outlined in Sec. IV.

A schematic illustration of the self-consistent procedure
required for solving Eqs. (48) and (49) is provided in Fig. 3.

075119-8



AB INITIO SELF-CONSISTENT MANY-BODY OF ...

PHYSICAL REVIEW B 106, 075119 (2022)

Enk, Wqus Imnv (k q)
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SP(An) | (™M)
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pol
> Hieno

n'k’

_ s
n/k’ - <€S‘ATLk

€new; €Old No
s s

Yes
€, fs(r), <A%nap>

FIG. 3. Schematic representation of the self-consistent procedure
required to solve the many-body polaron equations (48) and (49).

D. Total energy of the polaron ground state

In this section, we derive an expression for the total en-
ergy of the polaronic ground state in terms of the Dyson
orbitals and the eigenvalues of Eq. (48). We proceed along the
same lines as for the Galitskii-Migdal formula [79,80], except
that we consider the coupled electron-phonon Hamiltonian in
Eq. (1).

Upon acting on Eq. (6) with ¢ al (1) and taking the expec-
tation value over the ground state, we find

L0 A
lhg <le;k/ (l/)cnk(t»

1
= ek (e (e () + N, 2

X guv (K= Q8] (Nenr—q()(aqy + ' g,)). (50)

n'qu

This expression can be related to the total energy E = (H) by
taking the expectation value of the electron-phonon Hamilto-
nian in Eq. (1):

3 .
E = lim iﬁg(é,;fkr(l,)énk(t»

+ > heg (@,4q)) +1/2). (51)

The first term on the right-hand side of this expression can be
identified with the electron Green’s function from Eq. (5):

a
E = lim hzaGnk,n’k’ (t7 t,)

+ > hwgy ((@,8q0) + 1/2). (52)
qv

We transform this result into the frequency domain, and we
make use of the spectral representation of the Green’s function

[80]

"o
_E —/ do oIm[Gy x(®)]
T J-x
nk

+ ) g (@, aq0) + 1/2). (53)

qv

By further using the Lehmann representation in Eq. (34) and
the expansion of the Dyson orbitals in terms of polaron quasi-
particle amplitudes, Eq. (39), we obtain

£y</h
Z Z&‘S |Avk| +Zhqu( qv +1/2).
‘ (54)

In the second term on the right-hand side, the expectation
value of the phonon number operator must also be related to
the polaron quasiparticle amplitudes A7, . We have not found
a way to establish this relation in the most general case. How-
ever, an accurate first-principles formulation is still possible if
we make the approximation that the phonon subsystem can be
described as a superposition of coherent states.

Coherent states are minimum-uncertainty wave packets,
and in the case of the harmonic oscillator they correspond
to Gaussian wave functions, rigidly translated away from the
minimum of the potential well. The reason for considering
coherent states is that much of the earlier literature on the
Frohlich polaron model shows how coherent states constitute
a very accurate variational ansatz for determining the ground-
state energy of the polaron [81-86].

We therefore approximate the phonon subsystem of the po-
laron ground state as the following normalized superposition
of coherent states:

IN + 1) =exp |:Z (uqva

qv

—lugy| /2):||N+ 1, 0pn),  (55)

where ug, indicates the (complex) displacement of the wave
packet and |Op,) denotes the phonon vacuum. With this ap-
proximation, we have the standard property aq,|N + 1) =
ugqy|N + 1). By using this relation inside Egs. (54), (2), and
(40), and employing time-reversal symmetry to replace u™
by uq,, we can rewrite the total energy as

qv

ey<[

ZZmA P+ hogugl® +1/2),  (56)

qv
where the coherent displacements are given by

eg<[
Q)

Ugqp = _N 3”2 ZZAn’kJrq gn nV

s knn'

CHY N CY))

The last two equations provide the relation between the total
ground-state energy of an interacting electron-phonon system,
and the excitation energies and quasiparticle amplitudes of the
Dyson orbitals, within the approximation of coherent states
for the phonon subsystem. From the second term on the right-
hand side of Eq. (56), we see that |1,th|2 gives the number of
phonons qv (per BvK supercell) contributing to the polaronic
lattice distortion.
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IV. TOWARD AB INITIO CALCULATIONS

A. Approximations for practical calculations

The formalism developed in Sec. III provides a self-
consistent mathematical framework to investigate polaron
wave functions and formation energies within a first-
principles many-body approach. However, the self-consistent
solution of Egs. (48) and (49) is currently beyond reach for
real materials because it requires a summation over all the
occupied and unoccupied polaronic states in the Fan-Migdal
self-energy term, including those with finite total polaron mo-
mentum.

In view of devising a practical approach for systematic
many-body ab initio calculations of polarons, we make the
following reasoning. If we approximate the interacting many-
body ground state by a single Slater determinant, and assume
that the added electron in the (N + 1)-electron system has
a negligible effect on the lowest-N electron wave functions
and energies, the contributions of the valence states in the
N- and (N + 1)-electron systems in Eq. (54) are identical.
This approximation is physically motivated by the fact that the
addition of a single electron to a system of many electrons will
modify the electron density only slightly [35]. Furthermore,
by construction, the N-electron system is associated with a
periodic undistorted lattice, therefore, the expectation value
of the phonon number operator vanishes in (N|H|N). These
observations lead to the following simplified expression for
the formation energy of the polaron in the BvK supercell':

AE = (N + 1IHIN + 1) — (N|HIN) + &)

P
= Es,min — 88}31\/{ + Z Flwqumqvlz- (58)
qv

In this expression, SSBPM represents the many-body electron
addition energy for the periodic, undistorted lattice. For exam-
ple, this could be the quasiparticle energy of the conduction
band bottom in a GW calculation in the absence of atomic
displacements. A schematic illustration of Eq. (58) is given in
Fig. 2. The quantity Ejyyice appearing in the figure corresponds
to the last term of Eq. (58), where the coherent displacements
are given by Eq. (57).

Similarly, we obtain a compact expression for the pola-
ronic self-energy %F by replacing the first N occupied states
with unperturbed Bloch wave functions With this choice, the
quasiparticle amplitudes for these states become Dirac delta
functions, A;kz\/ﬁ,, 8s.nk» and their contribution to >P can
be neglected in Eq. (41). As a result, only the lowest-energy
Dyson orbital, which corresponds to the electronic part of
the polaron wave function (cf. Sec. Il A), contributes in the
summation in Eq. (41):

2
Zrll)k,n’k’ = _m Z gnn’v(k/» k — k/)

P mm' vk’
gjn’mv (k”’ k— k/)

(As,min)*. (59)
hiog v

s, min
XA K

m'k"+k—k’'

'The equivalent expression for the formation energy of a
hole polaron upon electron removal is AE = —(&; min — 88;\4) +

2
un fiwgy |ugy|”.

A similar reasoning can be extended to the self-energy M

in Eq. (42). We replace the interacting Green’s function G
by its noninteracting counterpart G°. This choice amounts
to assuming sharp quasiparticles, as in the standard GoW
approximation [48]. With this replacement, X™ becomes
diagonal in the single-particle basis, and simplifies to

Snk,n’k’
Erll:ll(\/,ln’k’ (a)) = T Z |gmnv(ks q)lz
P mqu

% 9(8mk+q - I‘L)
ho — &pxtq — hwg, +in

(1 — Emk+q)
hw — €pktq + hwg, — in

] (60)

This expression only depends on the phonon frequencies and
the electron-phonon matrix elements of the periodic config-
uration. Equation (60) is the standard expression used in ab
initio calculations of electron-phonon renormalization of band
structures [33].

Using the above simplifications, the many-body polaron
equations are reduced to solving the self-consistent eigenvalue
problem given by

P FM ,mi
Z {8nk8nk,n’k’ + an,n’k/ + 2:nk,n’k’(‘c"Svmin/Fl)} A;vl’rl?’m
n'k’/

= eomin A", 61)

where the self-energies are given by Egs. (59) and (60). In
the remainder of this paper, the index sy, corresponding to
the wave function and eigenvalue of the polaron in the ground
state will be omitted for ease of notation.

B. Relation to the theory of Ref. [35]

The many-body polaron equations (59)—(61) share a simi-
lar form with the DFPT polaron equations derived in Ref. [35]
[see Egs. (37) and (38) of that work]. In fact, if we neglect the
Fan-Migdal self-energy term in Eq. (61), the two sets of equa-
tions become identical within the approximations outlined in
Sec. IV A.

The main differences between the two approaches are that,
in the present case, (i) the polaron eigenvalue also incorpo-
rates the dynamical Fan-Migdal self-energy renormalization,
and (ii) the lattice distortion energy in Eq. (54) is directly
linked to the number of phonons that participate in the polaron
via the phonon number operator &;;v&q\,.

The fact that we reached a very similar set of polaron
equations as in Ref. [35] starting from a general many-body
formulation is very encouraging, and provides a rigorous
field-theoretic justification for the DFPT approach followed
in Ref. [35].

At a qualitative level, the main improvement of the present
many-body approach over the DFPT strategy of Ref. [35] is in
that our present formalism incorporates dynamical effects as
described by the FM self-energy. Therefore, in addition to the
physics of phonon-induced localization and self-trapping, the
present approach also captures the physics of phonon-induced
band-structure renormalization and polaron satellites in pho-
toemission spectra.
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C. Perturbation theory on the polaron quasiparticle
amplitudes and energies

Equations (59)—(61) constitute a nonlinear, self-consistent
eigenvalue problem. The polaron energy ¢ appears on both
sides of Eq. (61), therefore, an iterative solution is required.

This requirement can be relaxed if we proceed to evaluate
the equations in perturbation theory. Specifically, one could
solve the equations by retaining only £¥ and treating ™
within perturbation theory, or vice versa by retaining ™ and
treating X7 perturbatively. Since ¥™ does not couple differ-
ent wave vectors, the latter option would lead to a vanishing
polaronic correction and no localization, which is equivalent
to standard calculations of band renormalization in absence
of polarons. Therefore, we focus on the former option of
retaining only the polaronic self-energy and treating the FM
term perturbatively. This procedure can be implemented in
two steps:

(i) Solve Eq. (61) by considering only the polaronic self-
energy LF:

D {embmnc + S J A = eTAR . (62)

n'k’

(ii)) Add the FM contribution to the polaron energy after
replacing A,k by the solution at the previous step A%, :

1
_ P.x P P
e = A E E Ak (8nk5nk,n’k’ + an,n’k’)An’k’
P ok nK

1
+ i 3 AL =M (w). (63)
Pk

Within the simplest Rayleigh-Schrodinger perturbation the-
ory, the frequency w appearing in the last equation can either
be set the polaron eigenvalue w = ¥ /% or to the unperturbed
Bloch eigenvalue w = £°//. In Sec. V A we compare the latter
to the self-consistent solution of Eq. (61).

V. APPLICATIONS

A. Frohlich model

To validate the theory developed in Secs. II-IV, we apply
the formalism to the Frohlich model [5,6,20]. The Frohlich
model represents a standard benchmark in the study of polaron
physics, and has been investigated by a number of authors us-
ing a variety of many-body techniques [4,21,26,28,29,32,87].
The availability of highly accurate solutions such as Feyn-
man’s path-integral results [26] and diagrammatic Monte
Carlo calculations [29] makes it possible to carefully assess
the validity of our approach and of the approximations de-
scribed in Sec. IV.

In the Frohlich model, the Hamiltonian given by Eq. (1) is
simplified by considering a single-electron band with effective
mass m* and parabolic dispersions e = h2[k|?/2m*, coupled
to a dispersionless longitudinal polar optical phonon with fre-
quency wo. The coupling matrix element is given by [21,88]

2 « ©4)

i e?
glq) = — [

47 hopo 172
lq| [ 4mey Q2

In this equation, €, is the vacuum permittivity, and the dielec-
tric screening constant « is defined by 1/k = 1/€® — 1/€°,
with € and €° being the high-frequency electronic permit-
tivity and the static dielectric constant including the ionic
contribution, respectively. In this model, the Debye-Waller
self-energy vanishes [89], and the electron-phonon coupling
strength is traditionally described by a single parameter o,
referred to as the Frohlich coupling constant [25,35,90]

21 * 1
o= -]/ " 2 (65)
477,’6() h 2th0 K

There is a single Dyson orbital, which we identify with the
electronic part of the polaron wave function, f(r) = ¥ (r).
The expansion in Eq. (39) can now be performed in terms
of plane waves, and the transition to the extended crystal is
performed by considering an infinite number of unit cells in
the BvK supercell so that summations over the momentum k
become continuous integrals:

Ve
- @n)

W (r) dkA(Kk) *T. (66)

Here, r and k belong to R3, and Q is the unit-cell volume. We
require that the polaron wave function be normalized in real
space,

/dr [y =1, (67)

and this implies the normalization of its Fourier coefficients:
—— | dk JA(K)]* = 1. 68

o [ ka0 (68)

Using Egs. (66) and (68) inside Eq. (61), we obtain

Q ’ ’
£ = oo /dkA(k)/dk [ekS(k—k)

+ Pk, k) + T™M(k; ) 8(k — k’)}A(k’). (69)

Using Eq. (59), the polaronic self-energy appearing in this
expression becomes

297 gk —K)P

P N o
YP(k, K) = Gy

/ dK"Agrsx—wAf. (70)
ha)LQ

The FM self-energy in Eq. (60) can be evaluated exactly [90]
and is given by

h 3/2
EFM(k;s) — _(x(w—LO) arcsin ( 8—k .
N \lfla)]_o—&‘-l—é‘k]

(1)
To calculate the energy and wave function of the lowest
polaron state, we use a variational approach. For simplicity,
following Refs. [25,35], for the electronic part we employ a
normalized exponential trial wave function:

1
y(rir,) = /n—r; exp [—[r[/rp], (72)
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FIG. 4. Variational ansatz for the electronic component of the
polaron wave function in the Frohlich model. (a) Wave-function
plot for a few values of the variational parameter r,, which corre-
sponds to the polaron radius, from Eq. (72). gy is the Bohr radius.
(b) Reciprocal-space coefficients of the wave functions shown in (a),
from Eq. (73).

where 7, can be identified as the polaron radius. The Fourier
transform of this function is

A(k; 8 yrrg ! 73

W) =8\ o a1 73
Equations (72) and (73) show that the more localized the wave
function is in real space (small r,), the more extended are its
coefficients in Fourier space, and vice versa. In Fig. 4, we
show the exponential trial wave function for different values
of the polaron radius r,, together with the corresponding
Fourier transforms.

We now use Eq. (73) in Eq. (69), and evaluate the integrals

for each of the three terms within square brackets. The first
term is the average of the kinetic energy:

2 [ ey 5 ey —
2r)3 Sy )=

_— 74
2m* rl% 74
and is identical to what is found in the Landau-Pekar model
[25,35]. The expectation value of the term containing % in

Eq. (69) corresponds to the Coulomb energy in the Landau-
Pekar model, and is given by [25,35]

(B =——--c—. (75)

From Egs. (69) and (73), we see that the expectation value of
the FM self-energy results from the radial integral:

FM Q = .2 v FM
(2™ = an ) 471/0 dk|A(k;rp)|” 7V (k). (76)
Let us analyze the asymptotic limits of this integral. In the
limit of a strongly localized polaron (r, — 0), A(k) tends to
a constant value, but (k) is significant only near k = 0
[cf. Eq. (71)]. Owing to the normalization of the Fourier
coefficients, the integral vanishes in this limit. In the limit of
an extended polaron (r, — 00), the A(k) coefficients become
a Dirac delta function centered at k = 0, therefore, the integral
coincides with the value of the FM self-energy at k = 0,
(™M) = —afiw; o (having set & = 0).

Equations (74)—(76) allow us to evaluate the polaron eigen-
value as a function of the polaron radius £(r,). To determine
the total formation energy, we also need to consider the lattice

relaxation energy, i.e., the last term in Eq. (58). The evaluation
of this term yields

. Q3
/ AT (@) = Q) / ¢

x / dk / dK' (Axq)"Ax Axq(Ar)'

e 151
= - 77
dmeg k 161,

lg(@)?
horo

Putting together the above results, we obtain the following
expression for the total energy of the Frohlich polaron as a
function of the radius 7,:

h 5 & 1
m*rf, 16 4r ok 1
28723 poo SEM(f
Q p/ a* : )4’
o (1+122)

AE(r,) = 7

+

(78)

where ©™ is given by Eq. (71). This total energy coincides

with the energy of the Landau-Pekar model if we neglect the
integral on the right-hand side [see, for example, Eq. (10)
of Ref. [35]]. We note that the polaron formation energy
within the Frohlich model has been called E in previous
work because the delocalized state with no electron-phonon
interaction has zero total energy by definition.

In Fig. 5 we analyze the total energy as a function of the po-
laron radius r,. In this example, the physical parameters have
been chosen to match those for the electron polaron in LiF
[35], namely, m* = 0.88 m,, fiw o = 77 meV, € = 10.62,
and €* = 2.04, giving a coupling constant of o = 4.94. Fig-
ure 5(a) illustrates the contribution to the polaron energy from
each term in Eq. (78). The first term on the right-hand side of
Eq. (78) is the kinetic energy (dotted line). This term is pos-
itive and thus favors delocalization. The second term on the
right-hand side of Eq. (78) is the Coulomb attraction energy
between the electron and the lattice distortion (dashed-dotted
line). This term is negative and thus favors localization. The
last term in Eq. (78) is the FM self-energy contribution. It is
negative and thus it also favors localization, but it varies more
smoothly with the radius. As discussed above, this term tends
to vanish at small radius, and approaches the value —afhiwro
at large radius.

Figure 5(b) shows the dependence of the total energy of the
polaron on the radius (blue line). The minimum of this energy
is marked by a cross and indicates the variational solution. For
the sake of comparison, we also show the total-energy curve
for the Landau-Pekar model (red line) [35]. In this model
there is no FM contribution. We see that the FM contribution
modifies the shape of the energy surface of the Landau-Pekar
model, and shifts the minimum towards a larger radius and a
lower ground-state energy.

Now we analyze the dependence of the variational polaron
energy on the coupling constant . To this aim, we generate
curves like those in Fig. 5(b) for a range of parameters «,
and we determine the minimum in each case. The results are
reported in Fig. 6.

In Fig. 6(a), the red line represents the Landau-Pekar
ground-state polaron formation energy. Within the exponen-
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FIG. 5. Ground-state polaron energy as a function of the polaron radius r,, within the Frohlich model for o = 4.94. (a) r, dependence
of the different terms contributing to the total energy in Eq. (78), namely, the kinetic energy (dotted), the Coulomb energy composed by the
Landau-Pekar and the lattice energy (dotted-dashed), and the Fan-Migdal self-energy contribution (dashed). (b) Total energy as a function
of the polaron radius r,. The red solid line represents the Landau-Pekar result [35], where only the kinetic and the Coulomb energies are
considered. The blue solid line represents the total energy including the FM contribution, as in Eq. (78). The energy minima are highlighted

by the solid crosses.

tial ansatz used in Eq. (72), this energy is given by AE'Y =
—(50/5 12)ahiwr o [35]. The blue line represents the FM self-
energy evaluated within Rayleigh-Schrodinger perturbation
theory, and is given by AEFMRS — _gfiw; o [90]. The gray
line represents the result obtained by Feynman’s path-integral
method [26,91,92], and the black circles are diagrammatic
Monte Carlo results [28,29,93]. This comparison shows that
Feynman’s results are essentially as accurate as the diagram-
matic Monte Carlo data, therefore, in the following we use
Feynman’s result as the “exact” solution for the purpose of
comparison.

In Fig. 6(b) we show the relative errors of the Landau-
Pekar (LP) energy and the Fan-Migdal energy (in the
Rayleigh-Schrodinger approximation, FM-RS) with respect

(2)

to Feynman’s result as filled areas, following the same color
convention as in Fig. 6(a). It is clear that both approaches devi-
ate significantly from Feynman’s result throughout the entire
coupling range, with errors in the energy as large as 100%.
The LP result gives the correct trend at strong couplings, but
it underestimates the polaron energy at weak couplings. In
contrast, the FM-RS result correctly captures the linear depen-
dence of the energy at weak couplings, but it underestimates
the polaron energy at strong couplings.

In Figs. 6(c) and 6(d) we compare the total energy of the
polaron calculated using Eq. (78) with the Feynman theory.
We compare two different levels of approximation. First, we
compute the polaron ground-state energy by requiring self-
consistency in the energy entering the FM self-energy, as in

05— 04
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FIG. 6. Total energy of the ground state of the Frohlich polaron as a function of the coupling strength «. (a) Fan-Migdal solution in
Rayleigh-Schrodinger perturbation theory (FM-RS, blue line), Landau-Pekar solution (LP, red line), Feynman’s variational path-integral
solution (gray line) [26,91,92], and diagrammatic Monte Carlo results (DMC, black circles) [28,29,93]. (b) Relative deviation between FM-RS
and LP energies with respect to Feynman'’s result, following the same color scheme as in (a). (c) Ground-state energy of the Frohlich polaron
evaluated using the present Green’s function approach. The light green line represents the self-consistent solution, the dark-green line represents
the perturbative calculation. The relative errors of each approximation with respect to Feynman’s result are shown in (d).
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Eq. (61). We will denote the ground-state energy obtained in
this way by AES!. Second, we consider the perturbative ap-
proach discussed in Sec. IV C. Within the Frohlich model, this
translates to the following two-step process for each coupling
constant o:

(i) We determine the polaron radius that minimizes the
Landau-Pekar total energy. With the exponential ansatz of
Eq. (72), this radius is 7, min = 16xm.aq/5m* [35].

(i) We calculate the total formation energy of the polaron
by adding the FM contribution evaluated at the noninteracting
energy as a perturbation:

50
AEG" = — Eazhwm

o0
+47 / dk |AK; 7y min)|> Z™ (ks = 0). (79)
0

The result of these two approaches is shown in Fig. 6(c)
as light green and dark green lines, respectively. The results
by Feynman are shown as the dashed gray line. The filled
areas in Fig. 6(d) represent the relative errors with respect to
Feynman’s result, with the same color code as in Fig. 6(c).
This comparison indicates that our formalism correctly de-
scribes the polaron energy throughout the entire range of
couplings, irrespective of the level of approximation adopted
in the evaluation of the ground-state energy. Interestingly, the
deviation of the perturbative approach with respect to Feyn-
man’s results never exceeds 10%. This success suggests that
the perturbative procedure is particularly suitable for studying
polarons, and can be generalized to ab initio calculations.
The variational ansatz employed in Eq. (72) could be
improved further [6,25,94], therefore, we expect that with
some refinements we should be able to achieve an even better
agreement with Feynman’s theory. Since no other theoretical
approach has succeeded to match Feynman’s calculations at
all couplings [4], the present results are very encouraging,
especially because the present approach can be used for ab
initio calculations of real materials, as we show in Sec. V B.

B. Ab initio calculations in LiF

As a first fully ab initio calculation using the methodology
presented in this work, we compute the polaronic band-gap
renormalization of LiF from first principles. To this aim, we
consider the simplest approximation to our theory, as de-
scribed in Sec. IV C. In this section we provide the details
of the computational procedure, while the main results and
implications are discussed in the companion paper [47].

All calculations are performed using the QUANTUM
ESPRESSO software suite [95]. Ground-state DFT calculations
are performed within the Perdew-Burke-Ernzerhof general-
ized gradient approximation [96], using optimized norm-
conserving Vanderbilt (ONCV) pseudopotentials [97,98] and
plane waves with a kinetic energy cutoff of 100 Ry. Our
optimized lattice parameter is a = 4.06 A. Phonon frequen-
cies and electron-phonon matrix elements are computed
within density functional perturbation theory [49]. Coarse
momentum grids of 12 x 12 x 12 k and q points are used
for the ground-state electron and lattice dynamics calcula-
tions, respectively. Electron energies, phonon frequencies, and
electron-phonon matrix elements are interpolated to dense

grids by means of Wannier-Fourier interpolation [99-101], as
implemented in the WANNIER90 [102] and EPW [103] codes.
The method presented in Ref. [88] is used to deal with the
long-range part of the electron-phonon matrix element for
polar materials.

In order to converge both the band and momentum sums
needed to compute the FM self-energy in Eq. (60) we pro-
ceed as follows. Following Refs. [64,104], we divide the
band sum into two subspaces: (i) a lower subspace formed
by the valence band manifold and the first four conduction
bands (~15 eV above the conduction band bottom), where
the momentum integration is carried out explicitly, and (ii) an
upper subspace formed by the rest of the conduction bands,
where the phonon frequency in the denominator of Eq. (60)
is neglected and the band summation is transformed into
the solution of a Sternheimer equation [64]. For the solution
of the Sternheimer equation and the calculation of the up-
per subspace contribution, we employ the implementation of
Ref. [104] within the PHONON code. The lower subspace con-
tribution is calculated with EPW. A slightly modified version
of the code is used to evaluate the FM self-energy at the nonin-
teracting polaron energy for all k points, which corresponds to
the Kohn-Sham energies of the band extrema. The momentum
integrals are converged by interpolating all quantities into fine
96 x 96 x 96 q-point grids for each =M.

Equations (59) and (62) are solved iteratively using the
implementation of Refs. [34,35] within EPW. We initialize
the A,k coefficients using a Gaussian line shape centered at
the band edge. We note that, similar to a DFT optimization,
different initializations could potentially lead to multiple local
minima. We validate the robustness of our results by start-
ing the iterative procedure with different Gaussian widths, as
well as with random distributions of the A, coefficients, for
which equivalent self-consistent solutions are obtained within
the convergence threshold in all cases. The lattice energy
is evaluated using Eqgs. (57) and (58). We use increasingly
denser k-point grids, and we take the isolated polaron limit by
extrapolating to infinite supercell size (infinitely dense k-point
grid) [35].

To assess the validity of the approximation that the change
in the total density is negligible upon electron addition and
removal (see Sec. IV A) in the worst-case scenario, we per-
form direct DFT calculations on a 3 x 3 x 3 supercell of
LiF with an electron removed (hole polaron). To mitigate
the self-interaction error, we use the Heyd-Scuseria-Ernzerhof
(HSE) [105] hybrid functional with an exact exchange fraction
parameter of agxx = 0.37. The atomic positions are relaxed
so that forces on each ion are below 1073 Ry/bohr. Figure 7(a)
shows the relaxed atomic configuration, together with the
wave function of the first unoccupied Kohn-Sham state. The
total energy of the relaxed configuration is lower than the total
energy obtained for the original periodic configuration with
the hole, confirming that the polaronic configuration is more
stable. For comparison, in Fig. 7(b) we show the hole polaron
wave function and atomic displacements obtained by the so-
lution of Egs. (59) and (62), which is practically identical to
the result shown in Fig. 7(a). This result validates a posteriori
our initial assumption.

Figures 8(a) and 8(b) show our results for the electron
and hole polaron energies in LiF, respectively. The light blue

075119-14



AB INITIO SELF-CONSISTENT MANY-BODY OF ...

PHYSICAL REVIEW B 106, 075119 (2022)

a) (b) .
DFT (HSE) supercell Polaron equations

b | L&

I
— — —_— el
"C% = —0) —T—\F '
‘ It ‘
‘ ‘
‘ | ‘
b A
xT/ S
|
| J
— — - —
= <

FIG. 7. Comparison between the hole polaron wave function in
LiF obtained by (a) direct DFT (HSE) supercell calculation with a
removed electron and (b) the solution of the polaron equations in
Egs. (59) and (62).

triangles represent the polaron eigenvalues ¥ as a function
of the inverse supercell size, and dark blue crosses represent
the corresponding lattice energy in each case. The dashed
lines are used to extrapolate these quantities to infinite su-
percell size. We obtain ¢” — e&5,, = —0.898 eV and Ejyyice =
0.652 eV for the electron polaron, and e¥ — eX5\ = 4.672 eV
and Ejgice = 2.775 eV for the hole polaron, in good agree-
ment with the results reported in Ref. [35].

To obtain the total polaron eigenvalue ¢ from Eq. (63)
we need to evaluate the average of the FM self-energy over
the quasiparticle amplitudes A,x obtained above. We ac-
complish this by performing a Wannier interpolation of the
FM self-energy, similar to the Wannier interpolation of the
GW self-energy corrections to the band structure [106]. This
procedure consists of five steps: (i) we calculate the FM
self-energy in Eq. (60) on a coarse 8 x 8 x 8 k-point grid;
(ii) we add the self-energy to the bare Kohn-Sham eigenvalues
on the coarse mesh; (iii) we perform a Wannier interpolation
of the bare and the corrected eigenvalues to a fine mesh; (iv)
we obtain the interpolated self-energy on the fine mesh from
the difference between the bare and the corrected eigenvalues;
(v) we evaluate the summation corresponding to the second
term on the right-hand side of Eq. (63). Following this proce-
dure, the total computational cost of calculating the full pola-
ronic renormalization of band gaps is approximately given by
(i) the cost of performing an adiabatic electron and hole
polaron calculation as in Ref. [35], plus (ii) the cost of per-
forming a standard Allen-Heine (AH) based band-structure
renormalization calculation on a relatively coarse Kk-point
mesh on the Brillouin zone.

We note that since our Hamiltonian in Eq. (1) only consid-
ers electron-phonon interactions to linear order in the atomic
displacements, our self-energy does not include the standard
Debye-Waller (DW) contribution [33,46], and this term must
be added separately to be consistent with previous work. To
evaluate this contribution, we use the method presented in
Ref. [104] as implemented in the PHonon package on a coarse
Brillouin-zone mesh, and add the result to the FM self-energy
before proceeding with the interpolation procedure described
above. The dispersions of the Fan-Migdal and Debye-Waller
self-energies for the valence and conduction bands of LiF are
shown in Ref. [47].

In Figs. 8(c) and 8(d) we analyze the convergence of the
Fan-Migdal and Debye-Waller contributions to the polaron
energy with the Brillouin-zone grid for the electron and the
hole polaron, respectively. As we discuss in Ref. [47], in the
case of the large electron polaron the quasiparticle amplitudes
are localized around the conduction band bottom, so that
relatively dense k meshes are needed to converge the average
of the FM+DW self-energy within 1 meV. In contrast, in the
case of the small hole polaron, the quasiparticle amplitudes
are distributed across the entire Brillouin zone, so that coarser
meshes are sufficient to achieve convergence. The converged
values for the FM+DW self-energy contribution to the po-
laron eigenvalue are —0.35 and 0.30 eV for the electron and
the hole polaron, respectively.

By combining the above contributions, we find formation
energies of —0.60 and —2.20 eV for the electron and the hole
polaron, respectively. Note that the formation energy for the
hole polaron is negative, but the associated renormalization of
the ionization energy and thus of the band gap is positive. This
brings the total polaronic renormalization of the band gap to
—2.8 eV. This value is considerably larger than that obtained
within the Allen-Heine theory (—1.2 eV), where the Fan-
Migdal and Debye-Waller self-energies are evaluated at the
band edges, without taking into account the quasiparticle am-
plitudes. This result demonstrates that polaronic localization
can have a significant effect on the band-gap renormalization
of solids. We elaborate more on this point in the companion
paper [47].

VI. LOCALIZATION AND TRANSLATIONAL
INVARIANCE

For completeness, in this final section we address one for-
mal question that arises in the polaron literature, and which
pertains to the nature of the localization of a polaron in real
space [81,84,85].

The question is on how to reconcile the spatial localiza-
tion of the polaron with the translational invariance of the
Hamiltonian in Eq. (1): Since H commutes with the the lattice
translation operator, the ground state must also be an eigen-
state of the translation. This issue has already been discussed
in prior literature [81], therefore, we only touch upon those
aspects that are relevant to this work.

To clarify the relation between translational invariance and
localization, we use the textbook example of the hydrogen
atom as a proxy for an interacting electron-phonon system.
In this proxy, the proton replaces the concentration of ionic
charge resulting from the formation of the polaron. The gen-
eral expression for the eigenfunction of the hydrogen atom
Hamiltonian [107] is

1 MY, + my,r
Wy (r,, rp) = W exp |:lk : —M:| wnlm(re - I‘p),
(30)

where r, and r, are the position of the electron and the
proton, respectively, m, and m,, their respective masses, ¥,
is the hydrogenic eigenstate in the standard notation, and V
is the volume of the box where the atom is contained. Since
the Hamiltonian of this atom commutes with the translation
operator Tk that acts simultaneously on r, and r,, Wy is also

Me + my
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FIG. 8. Analysis of the various contributions to the polaron formation energy in the lowest-order approximation, Egs. (58), (62), and (63).
(a) Polaron eigenvalue (light blue triangles) and lattice energy (dark blue crosses) as a function of the supercell size for the electron polaron
in LiF. The supercell size is given as L™!, where L? is the supercell volume. The numbers next to the data points indicate the number of
unit cells in each direction of the homogeneous Born—von Karman supercell or, equivalently, the number of k points in each direction of the
homogeneous mesh of the Brillouin zone. The dashed lines correspond to the extrapolation of each contribution to the infinite supercell size.
(b) Same as (a) but for the hole polaron in LiF. (c) Expectation value of the FM+DW self-energy over the polaron quasiparticle amplitudes for
the electron polaron in LiF, as a function of the number of k points in each direction of the homogeneous mesh of the Brillouin zone. (d) Same

as (c) but for the hole polaron in LiF.

a translation eigenstate:

Tr Wi (r., 1)) = exp(—ik - R) Wi(r, 1)), 81)

as well as an eigenstate of the total momentum with eigen-
value 7ik. From these relations we see that the coupled
electron-proton state is completely delocalized. In particular,
if we look for the probability n(r,) of finding the electron
irrespective of the location of the proton, we have

n(r,) = f e | Wi (k. 1) = — 82)

v
therefore, the electron is fully delocalized over the box that
contains the atom. On the other hand, if we consider the
conditional probability P(r,|r, = ry) of finding the electron
when the proton is located at ry, we find

1
P(r,|r, = ro) = |Wk(r,, 1o)|* = ¥ [Vnim (e — ro)l*, (83)

which is localized around ry. Similar considerations hold
for excitons within the Bethe-Salpeter formalism [53]. The
situation for polarons is analogous to the above example of
the hydrogen atom: electrons and atomic displacements are
localized with respect to each other, but the many-body wave
function is delocalized in the sense of Eq. (81).

In the same way as it is convenient to study the hydrogen
atom by using a center-of-mass reference frame, or equiva-
lently by “pinning” the center of mass at the origin of the

reference frame, in our approach we pin the polaron at a
fixed location in space. In Sec. V A this is implicitly achieved
by centering the variational ansatz at r = 0 [cf. Eq. (72)],
and in Sec. VB it is achieved by initializing the polaron
wave function using a wave packet at the center of the BvK
supercell.

The use of polaron pinning is not mere technical expedient,
it is rather a necessity. Indeed, one limitation of the single-
particle Green’s function G is that it only contains electronic
variables, therefore, the Dyson orbitals f,(r) appearing in
Eq. (34) only depend on the electronic coordinates, unlike
many-body wave functions such as the one in Eq. (80).

There are several possible avenues to overcome this lim-
itation: (i) One could abandon the standard single-particle
Green’s function formalism, and replace it with Green’s func-
tions for both electrons and phonons. This choice carries two
limitations: first, the complexity of these Green’s functions
grows combinatorially with the number of phonon modes;
second, this choice would defeat our purpose of develop-
ing a unifying formalism that connects polaron calculations
and many-body calculations of band-structure renormaliza-
tion. (ii)) One could work directly with many-body wave
functions of electrons and phonons. This is essentially the
approach taken by Pekar and coworkers in Refs. [84,85],
and is amenable to incorporating translational invariance. The
drawback of this approach is that it is a wave-function method,
hence, it faces the same exponential wall that hinders direct

075119-16



AB INITIO SELF-CONSISTENT MANY-BODY OF ...

PHYSICAL REVIEW B 106, 075119 (2022)

solutions of the many-body Schrodinger equation for interact-
ing electrons. (iii) One could formally break the translational
invariance of the Hamiltonian in Eq. (1) by introducing a
small perturbation. Such a perturbation could be the po-
tential of an impurity or the confining potential of a finite
crystal.

In the latter case (iii), the electron and the lattice distortion
are pinned, and the symmetry-breaking perturbation can be
set to zero at the end of the calculation. This approach is
equivalent to retaining small but nonzero fictitious forces in
Schwinger’s functional derivation, Eq. (8). In this work, when
we refer to polaron localization in real space, we implicitly
consider that such a small perturbation is present in the Hamil-
tonian as an additional term in Eq. (1), so that translational
invariance is slightly broken, localization survives, and the
energetics of the polaron is not affected.

VII. SUMMARY AND OUTLOOK

In summary, we have presented an ab initio Green’s
function theory of polarons, which unifies the perturbative
weak-coupling approach and the adiabatic strong-coupling
approach to the polaron problem. Starting from a general
electron-phonon Hamiltonian, we have derived a Dyson equa-
tion for the electron Green’s function, accounting for possible
static displacements of the atomic nuclei in the ground state
of the system with an excess electron or hole. In addition
to the conventional Fan-Midgal dynamical self-energy, we
identified a self-energy contribution which results from static
lattice distortions in the polaron state. After presenting the
general formalism, we have outlined several approximations
that enable practical implementations of the theory in current
ab initio software. This analysis establishes unambiguously
the links between our formalism, density functional calcu-
lations of polarons [34,35], and the Allen-Heine theory of
band-structure renormalization [46].

In order to benchmark our method, we have studied the
ground-state energy of the Frohlich polaron, and found that
our approach is in very good agreement with Feynman’s
path-integral solution and with diagrammatic Monte Carlo
calculations, at all coupling strengths. As a first ab initio
calculation using this method, we have computed the pola-
ronic band-gap renormalization in LiF. The main results and
implications of our ab initio calculations are discussed in the
companion paper [47].

The agreement between our theory and previous diagram-
matic Monte Carlo calculations for the Frohlich model might
appear surprising. In fact, these previous calculations involve
summations over a very large number of electron-phonon
self-energy diagrams [28,29,93], while only two self-energies
are considered in this work. The main difference between our
approach and the diagrammatic Monte Carlo method is that
in our case the sum over all electron-phonon diagrams is re-
placed by a set of self-consistent equations defining the exact
interacting Green’s function. This strategy allows us to de-
scribe localization effects, which become dominant at strong
coupling, via the self-consistent polaronic self-energy given in
Eq. (33). The remaining nonadiabatic electron-phonon inter-
actions are encoded in the FM self-energy given in Eq. (18),
whose lowest-order approximation is enough to capture the

renormalization of large polarons at weak coupling. Higher-
order diagrams could be included via the vertex function T,
but on the basis of the results presented in this work we expect
their contribution to be small. It is possible that the inclusion
of vertex corrections will further reduce the slight deviation
between our present results and diagrammatic Monte Carlo
calculations.

The success of our self-consistent many-body approach is
reminiscent of Hedin’s GW equations for the electron-electron
problem [56,76]. By converting the infinite sum of diagrams
for the bare Coulomb interaction into a set of self-consistent
equations, it was found that the electron-electron self-energy
could be expanded in terms of the screened Coulomb interac-
tion, and this strategy proved highly successful over the past
four decades [48,53-55]. In the same spirit, in this work we
employed the functional derivative technique of Schwinger to
replace a summation over infinite electron-phonon diagrams
into the self-consistent solution of a set of equations for the
electron Green’s function and the interaction self-energies.
This strategy allowed us to show that adiabatic localization
and dynamical many-body effects are not separate and incon-
sistent ways to look at the electron-phonon problem. Rather,
both contributions are a complementary aspect of the same
problem, and need to be taken into account on the same
footing.

Many improvements upon the present method are possible.
For example, in this work we mostly focused on perturbative
solutions of the self-consistent many-body polaron equations;
in the future it will be interesting to test full-blown self-
consistent schemes for better accuracy. Furthermore, in this
work we only focus on the polaron ground state, but the
formalism contains information about excited states as well;
work on polaron excitations would be useful to investigate
finite-temperature properties and the response of polarons to
external fields. Another interesting development would be to
calculate the renormalization of the phonon Green’s function
on the same footing as the electron Green’s function, which
would require upgrading the starting point in Eq. (1) to a
more general electron-ion Hamiltonian [33,108]. This further
step would allow us to investigate the signature of polarons
in vibrational spectroscopy via the change in the phonon
frequencies [109]. Lastly, systematic calculations using the
present approach for a broad library of materials will be
needed to assess the significance of polaronic effects, and
their role in the phonon-induced renormalization of the band
structure of solids.

We hope that this work will be useful as a starting point to
investigate polarons in real materials from the point of view
of ab initio many-body methods.
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