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Strongly correlated electrons in superconducting islands with fluctuating Cooper pairs
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We present a particle-number-conserving theory for many-body effects in mesoscopic superconducting
islands connected to normal electrodes, which explicitly includes quantum fluctuations of Cooper pairs in
the condensate. Beyond previous BCS mean-field descriptions, our theory can precisely treat the pairing and
Coulomb interactions over a broad range of parameters by using the numerical renormalization group method.
On increasing the ratio of pairing interactions to Coulomb interactions, the low-energy physics of the system
evolves from the spin Kondo regime to the mixed-valence regime and eventually reaches an anisotropic charge
Kondo phase, while a crossover from 1e- to 2e-periodic Coulomb blockade of transport is revealed at high
temperatures. For weak pairing, the superconducting condensate is frozen in the local spin-flip processes but
fluctuates in the virtual excitations, yielding an enhanced spin Kondo temperature. For strong pairing, massive
fluctuations of Cooper pairs are crucial for establishing charge Kondo correlations whose Kondo temperature
rapidly decreases with the pairing interaction. Surprisingly, a charge-exchange-induced local field may occur
even at the charge degenerate point, thereby destroying the charge Kondo effect. These are demonstrated in the
spectral and transport properties of the island.
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I. INTRODUCTION

Resolving the interplay of different many-body correla-
tions is an exciting challenge in strongly correlated systems.
For example, electrons in hybrid nanostructures combining
quantum dots (QDs) with bulk superconducting (SC) baths
in various geometries [1–3] are strongly correlated. After two
decades of extensive studies, these hybrid QD devices have
been shown to exhibit a good deal of remarkable emergent
phenomena [4–28] due to the competition of SC correlations,
Coulomb blockade (CB) [29], and Kondo screening [30]. In
these studies, the dynamics of the bulk SC condensate is sup-
pressed. The understanding of the competing physics, based
on the BCS mean-field theory [31] of superconductivity that
violates the number conservation, is excellent both theoreti-
cally and experimentally.

Mesoscopic superconductors are, however, not described
by the mean-field models, where significant quantum fluctu-
ations and finite charging energy in the SC condensate can
have observable consequences [32,33]. In particular, small SC
islands embedded between bulk reservoirs constitute a distinc-
tive class of quantum impurity systems, having the potential
to generate unusual electron correlations by SC pairings at
the mesoscopic scale. Such SC QD devices were fabricated
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in early experiments on mesoscopic SC grains [34–38] that
demonstrated a prominent CB of Andreev current with a
period of two electrons (2e) due to the energy asymmetry
between even and odd occupancies of the island. Tremen-
dous experimental effort [39–50] has recently been devoted
to examining this 2e-periodic phenomenon in semiconductor
nanowire QDs with proximity-induced mesoscopic supercon-
ductivity, as a premise for realizing Majorana physics [51,52].
Indeed, the 2e periodicity of CB is now equally an experi-
mental hallmark for transport through SC QDs, distinct from
the usual single-electron (1e) CB in normal QDs. There are
also very perceptive theories that address SC QDs in the CB
regime [53–56] and predict the charge Kondo effect [57–60]
arising from massive charge fluctuations by 2e in the islands.
Yet most of them rely on the BCS mean-field approximation
or Bogoliubov–de Gennes approach, thereby underestimating
the fluctuations of Cooper pairs. Moreover, the calculation of
the island ground-state energy with definite electron numbers
seems empirical, since its microscopic derivation from the
mean-field models violating the number conservation does
not exist [53,54,56,57]. The theoretical results are thus valid
only in limited parameter ranges. Given the potential signifi-
cance of related experimental observations, it is important to
build a more quantitative understanding for SC QDs. Rigor-
ous theoretical insight into strongly correlated effects arising
from the SC pairing and Coulomb interactions at the meso-
scopic scale is still lacking even without involving topological
aspects.
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In this paper, we introduce a number-conserving model
for SC QDs which is minimal but fully involves quantum
fluctuations of Cooper pairs in the SC condensate. By us-
ing the numerical renormalization group (NRG) method, our
theory gives a consistent and quantitative account for elec-
tron correlations originating from the interplay of pairing and
Coulomb interactions. Characteristic spectral and transport
features, obeying the Friedel sum rule due to the number con-
servation, are reported over the full range of interest beyond
the scope of BCS mean-field description, from the CB effect
to the Kondo effect, from the spin Kondo regime to the charge
Kondo regime, and from the 1e-periodic to the 2e-periodic
CB oscillations. Remarkably, we find a charge-exchange field
arising at the charge degeneracy and acting as an effective
magnetic field in the charge Kondo regime, which has no
counterpart in previous theories.

The remainder of the paper is organized as follows. Sec-
tion II introduces the microscopic model for SC islands
coupled to two normal leads and obtains the eigenenergies
and eigenstates of isolated islands. The low-energy effective
models derived by the Brillouin-Wigner perturbation theory
are discussed in Sec. III, where the basic scenarios of the 1e-
and 2e-periodic CB and the spin and charge Kondo physics
are demonstrated. Section IV characterizes the resulting spec-
tral density and conductance by using the NRG method.
Section V is devoted to a conclusion. Three Appendixes
include full derivation details of the spectra of isolated is-
lands (Appendix A), the Brillouin-Wigner perturbation theory
(Appendix B), and the spin and charge Kondo Hamiltonians
(Appendix C).

II. MICROSCOPIC MODEL

Specifically, the system we study consists of a small SC
island coupled to two normal electrodes, modeled by the
Hamiltonian: H = Hd + ∑

α=L,R(Hα + HT α ). The central in-
gredient is the number-conserving Hamiltonian Hd for the
island, which reads

Hd =
∑

σ

ε0d†
σ dσ + (�d†

↑d†
↓e−iφ̂ + H.c.) + EC

2
(N̂ − Vg)2.

(1)

Here, d†
σ creates an electron of spin σ =↑,↓ in the nor-

mal energy level ε0. Its occupation state is denoted by
|λ; d〉, λ = 0,↑,↓,↑↓. The second term in Hd describes
the number-conserving SC pairing, where � is the pairing
strength [61] and the operator e−iφ̂ , as originally introduced
in Refs. [62–64], annihilates a Cooper pair in the SC conden-
sate. More specifically, the condensate state, |m; s〉, m ∈ Z,
is the eigenstate of the number operator N̂p of Cooper pairs,
N̂p|m; s〉 = m|m; s〉. N̂p and the phase φ̂ obey [φ̂, N̂p] = i,
yielding e±iφ̂ |m; s〉 = |m ± 1; s〉. The last term in Hd repre-
sents the electrostatic energy, where N̂ = ∑

σ d†
σ dσ + 2N̂p is

the total number of electrons in the island, EC is the Coulomb
(charging) energy, and Vg is the dimensionless gate voltage.
Hα = ∑

k,σ εkC
†
kσα

Ckσα models the left (L) and right (R) nor-

mal leads, with C†
kσα

being the creation operator in lead α.
HT α = ∑

k,σ tα (C†
kσα

dσ + H.c.) is the dot-lead tunneling char-
acterized by the amplitude tα . It is convenient to define a

tunneling rate �α ≡ πρt2
α , with ρ being the density of lead

states.
Our model Hamiltonian (1) describes the SC-QD device

consisting of a mesoscopic SC grain [34–38] or a short prox-
imitized nanowire segment [39–50]. While the former can
host SC correlations on its own, the latter is superconducting
by proximity coupling to a mesoscopic superconductor. In
either case, the whole device is floating, and its charge is tuned
by a capacitively coupled gate voltage, giving rise to the finite
charging energy of Cooper pairs. The charge conservation of
the pairing interaction is thus necessary in order to properly
describe the charge fluctuations. Moreover, we consider only
one spin-degenerate normal state closest to the Fermi energy
in SC islands, which as shown later is sufficient to capture
the prominent 2e periodicity observed in the experiments
[34–50].

If one removes the operators e±φ̂ and N̂p from Eq. (1),
the pairing term will violate the number conservation, and
the model will reduce to the extensively studied system of a
QD in the SC atomic limit [2,3,5,19,20,65–67]. This limit can
be achieved by proximity-coupling the dot to an additional
SC electrode with an infinite gap and no charging energy.
As shown below, the properties of our SC QDs modeled by
Eq. (1), which explicitly involves the degrees of freedom of
Cooper pairs, are radically different from those of a QD in the
SC atomic limit.

The Hilbert space of an isolated SC QD described by
Eq. (1) is spanned by the direct products |λ, m〉 ≡ |λ; d〉 ⊗
|m; s〉. In this basis, because of the electron-number conser-
vation [Hd , N̂] = 0, the eigenenergy Eσ,ν

N (Vg) and eigenstate
|�σ,ν

N 〉 of Hd depend on the eigenvalue N of N̂ (see Ap-
pendix A for details): If N is odd,

Eσ
N (Vg) = ε0 + 1

2 EC (N − Vg)2 ≡ E0
N (Vg), (2)

and |�σ
N 〉 = |σ, N−1

2 〉; If N is even, one has (ν = ±)

E ν
N (Vg) = ε0 + 1

2 EC (N − Vg)2 + ν

√
�2 + ε2

0, (3)

and |�ν
N 〉 = l0ν |0, N

2 〉 + l2ν | ↑↓, N−2
2 〉, with l0ν = cν l2ν , l2ν =

1/
√

1 + c2
ν , cν = ν

√
1 + η2 − η, and η = ε0/�. Apparently,

the even-parity minimal energy E−
N (Vg = N ) is lower by

an amount
√

�2 + ε2
0 than the odd-parity one, Eσ

N (Vg =
N ). While similar formulas for E−

N (Vg) and Eσ
N (Vg) have

been empirically imposed in the literature [34–37,53,56,57],
our theory unambiguously reveals their microscopic origins.
Moreover, an excited state (i.e., |�+

N 〉) absent in previous
theories is created. The energy spectra calculated by Eqs. (2)
and (3) are illustrated in Fig. 1, based on which the low-energy
physics of our system can be determined.

III. LOW-ENERGY EFFECTIVE KONDO HAMILTONIANS

For weak SC pairing
√

�2 + ε2
0 < EC/2 ≡ �C [Fig. 1(a)],

the ground-state degeneracy of N and N + 1 electrons oc-
cupying the island occurs at the gate voltage Vg = 2N0 +
1 ± K ≡ Vg±, with N0 being an arbitrary integer and K =
1
2 −

√
�2 + ε2

0/EC . This can lead to the 1e-periodic CB
of single-electron tunneling [29]. In odd-parity CB valleys
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FIG. 1. Eigenenergy Eσ,ν
N of isolated SC QDs as a function of

gate voltage Vg for different numbers N of dot electrons, in the
regimes of weak [(a) �/�C = 0.2] and strong [(b) �/�C = 2] SC
correlations. Numbers in (a) indicate the value of N − 2N0 of each
parabola. Here, the d level is set at ε0 = 0.

(Vg− < Vg < Vg+), virtual excitations from the spin doublet
|�σ

2N0+1〉 to the even-parity states can constitute the spin
Kondo effect. Using the Brillouin-Wigner perturbation theory
[68] to consider virtual processes up to second order in tα , we
derive the effective spin-exchange interaction of SC QDs (see
Appendixes B and C for details),

Hs
eff =

∑
k,k′

(J0 + J2)[C†
k↑Ck′↓S− + C†

k′↓Ck↑S+

+ (C†
k↑Ck′↑ − C†

k↓Ck′↓)Sz]|N0; s〉〈N0; s|, (4)

with Ckσ = ∑
α

tα√
t2
L +t2

R

Ckσα , and the spin operators of the QD,

S+ = (S−)† = d†
↑d↓ and Sz = 1

2 (d†
↑d↑ − d†

↓d↓). The exchange
coupling Jx (x = 0, 2) reads

Jx =
∑

ν

(
δx2l2

0ν̄ + δx0l2
2ν̄

)(
t2
L + t2

R

)
E ν

2N0+x(Vg) − E0
2N0+1(Vg)

. (5)

Hs
eff describes the spin Kondo effect, resulting from spin fluc-

tuations in the d level and freezing N0 Cooper pairs in the
SC condensate. However, in virtual states |�ν

2N0+x〉 the con-
densate does fluctuate between N0 and N0 ± 1 Cooper pairs.
The second-order scaling [30] yields the Kondo temperature,
T s

K ∼ exp [ −1
2ρ(J0+J2 ) ]. At � = 0, the coupling Jx and hence the

Kondo temperature T s
K restore the values of normal QDs [30].

Note that T s
K is a monotonically increasing function of the

pairing �.
A similar spin Kondo effect was previously found in the

system of a QD in the SC atomic limit [20,65–67]. Its Kondo
temperature also increases with �, qualitatively agreeing with
ours. However, T s

K of our SC QDs is still quantitatively differ-
ent from the Kondo temperature of that system, as a result
of our number-conserving treatment of Cooper pairs. A more
important difference in the spin Kondo effect between the two

systems will be demonstrated by numerical results presented
in the next section.

For strong pairing,
√

�2 + ε2
0 > �C [Fig. 1(b)], the ground

state of the island at Vg = 2N0 + 1 has the degeneracy be-
tween adjacent even-parity states |�−

2N0
〉 and |�−

2N0+2〉, leading
to the 2e-periodic CB of Andreev reflection [36–38]. At the
degeneracy point, charge Kondo correlations may also occur
due to virtual excitations from this ground-state charge dou-
blet to the odd-parity subspace. The second-order perturbation
theory yields a pseudospin-exchange Hamiltonian (see Ap-
pendixes B and C for details),

Hc
eff = B̃Qz +

∑
k,k′

J±(C†
k↑C†

k′↓Q− + Ck′↓Ck↑Q+)

+
∑

k,k′,σ

Jz

(
C†

kσ
Ck′σ − 1

2
δkk′

)
Qz, (6)

where Q+ = (Q−)† = |�−
2N0+2〉〈�−

2N0
| and 2Qz =

|�−
2N0+2〉〈�−

2N0+2| − |�−
2N0

〉〈�−
2N0

| are the pseudospin of
the island and B̃ = (l2

0− − l2
2−)

∑
k,k′ Jzδkk′ . The transverse

exchange coupling J± = J1 differs from the longitudinal
one Jz = l2−

2l0−
J−1 − ( l2−

2l0−
+ l0−

2l2−
)J1 + l0−

2l2−
J3. Here, Jy

(y = −1, 1, 3) is given by

Jy = 2l0−l2−
(
t2
L + t2

R

)
E−

02 − E0
2N0+y(Vg = 2N0 + 1)

, (7)

with E−
02 = ε0 + �C −

√
�2 + ε2

0 being the energy of the
ground-state doublet. Hc

eff describes a charge Kondo ef-
fect arising from charge fluctuations between spinless states
|�−

2N0
〉 and |�−

2N0+2〉, subject to a pseudo magnetic field B̃.
The field B̃ is induced by charge-exchange processes between
the island and leads and is finite only if both the coupling
tα and d-level ε0 are nonzero. Such an exchange field, tak-
ing place at the charge degeneracy point Vg = 2N0 + 1, has
never been revealed in previous BCS mean-field studies of
the charge Kondo effect in SC islands [57–60]. Moreover,
in our model, virtual transitions violate pseudospin rota-
tional invariance, yielding a Kondo temperature [69–71] T c

K ∼
exp ( −η

2ρJz
), with η = arctan γ

γ
and γ =

√
(J±/Jz )2 − 1. At ε0 =

0, the anisotropy reduces to J±/Jz = 1
4 ( �

�C
+ 3), increasing

linearly with the SC pairing, while the Kondo temperature T c
K

decreases rapidly.
The above physical scenario of our SC QDs in the strong-

pairing regime is in stark contrast to those of a QD in the SC
atomic limit. According to the results known in the literature
[2,3,5,19,20,65–67], for strong pairing, the ground state of a
QD in the SC atomic limit is always a BCS singlet, and there
is no 2e periodicity and no charge Kondo effect at all when
normal leads are coupled.

In the intermediate regime,
√

�2 + ε2
0 � �C , the states of

isolated SC QDs, |�−
2N0

〉, |�σ
2N0+1〉, and |�−

2N0+2〉, are degener-
ate at the gate voltage Vg = 2N0 + 1, constituting the ground
state with a fourfold degeneracy. The low-energy physics at
this point is dominated by first-order tunneling processes, and
the system is in the mixed-valence situation. The effective
model does not describe the higher-symmetric Kondo effects
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�C

�C

�C

�C

�C

FIG. 2. Zero-temperature spectral properties of d electrons in
SC islands. (a) Spectral density A(ε) vs positive energy ε > 0, for
different SC pairings, �/�C = 0 (blue), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0 (red). (b) Same as (a) but for �/�C = 1.1 (blue),
1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 (red). Inset: A(ε) in the full
range of ε. (c) Half-width at half maximum T0 of the central peak in
A(ε) as a function of �. The two solid lines are fits by two analytical
expressions of Kondo temperatures, with Ac = 0.026 86 and As =
0.027 41. (d) Suppression of the charge Kondo resonance by the d-
level ε0 (δ1 = 2ε0) and the gate voltage Vg [δ2 = 2EC (2N0 + 1 − Vg)]
deviating from the symmetric point.

as found in similar systems of a QD coupled to a Coulomb
box and normal leads [72–74].

IV. NRG RESULTS AND DISCUSSION

We now turn to characterizing the consequences of the
above arguments in local spectral density and transport prop-
erties of SC QDs. The full Hamiltonian H has been solved by
using the full density-matrix NRG method [75–81] modified
to include the degrees of freedom of Cooper pairs. For each
value of the gate voltage Vg, the total electron number N in
the island is set to fluctuate in the interval [Vg] − F � N �
[Vg] + F . We take F = 50 in order to converge the NRG
calculations for the set of model parameters: N0 = 100, �L =
�R, � ≡ 2�L = 0.007D, ε0 = 0 (unless stated otherwise),
the half Coulomb energy �C = 0.06D, and half bandwidth
D = 1. Smaller values of F would result in the violation
of relevant sum rules for the spectral function and the pe-
riodicity with the gate voltage. Our NRG calculations were
carried out by using a discretization parameter � = 1.8 and
retaining 2400 states per iteration. The data for spectral den-
sity are smoothened based on the log-Gaussian kernel with
a broadening parameter α = 0.54, while the conductance
obtained by summing over discrete data is more accurate
than the spectral density. Numerical results are presented
below.

Figure 2 presents the d-electron spectral density A(ε) =
− 1

π
Im〈〈dσ ; d†

σ 〉〉 of SC QDs at zero temperature. Here,
〈〈dσ ; d†

σ 〉〉 is the retarded Green’s function for d electrons,
and A(ε) is spin independent in the absence of an external

magnetic field. As shown in Figs. 2(a) and 2(b), the case of
gate voltage at odd values Vg = 2N0 + 1, which restores the
particle-hole symmetry A(ε) = A(−ε) (see inset), yields the
most striking spectral features. For zero SC pairing � = 0,
the SC QD reduces to a normal QD and A(ε) exhibits typi-
cal three-peak structure in the spin Kondo effect [30]. Upon
increasing �, the central spin Kondo resonance broadens due
to the enhancement of the exchange couplings Jx [Eq. (5)],
while the Hubbard sidebands split because of the splitting
of even-N levels E+

N and E−
N at finite �. Specifically, the

positions of Hubbard sidebands are determined by the energy
differences between the ground state |�σ

2N0+1〉 and the excited
states |�±

2N0
〉 and |�±

2N0+2〉 of the isolated islands. The split
Hubbard bands moving toward the Fermi energy eventually
merge with the Kondo peak as � approaches the half Coulomb
energy �C . In this mixed-valence regime, the four states of
the island, |�−

2N0
〉, |�σ

2N0+1〉, and |�−
2N0+2〉, are degenerate, and

as a result of the first-order tunneling processes, the spectral
density A(ε) features a broad resonance at ε = 0 with a width
of the order of the hybridization �. The broad resonance splits
again by further increasing the pairing energy above the half
Coulomb energy (� > �C). This drives the SC QD into the
charge Kondo regime characterized by a narrowing Kondo
resonance at the Fermi energy.

The spectral data in Figs. 2(a) and 2(b) further demon-
strate that the resonance at the Fermi energy satisfies (within
a tiny error of NRG) the unitarity condition π�A(0) = 1
of the Friedel sum rule [30] in the particle-hole-symmetric
case for arbitrary � ranging from the spin Kondo regime to
mixed-valence and charge Kondo regimes. Obeying a certain
Fermi-liquid relation is an important merit of our number-
conserving theory for SC islands. This is not the case for the
system of a QD in the SC atomic limit, where the unitarity
condition is violated [20,65–67] for any nonzero pairing even
in the spin Kondo regime.

While the peak height is always unitary as guaranteed
by relevant sum rules, the half-width T0 of the central peak
in our spectral density A(ε) of SC islands exhibits a non-
monotonic dependence on the SC pairing � as shown in
Fig. 2(c). Figure 2(c) illustrates discrete T0(�) as a func-
tion of �, where fits to the analytical expressions of the
spin T s

K and charge T c
K Kondo temperatures are also pre-

sented. We use T s
K = As exp[ −1

2ρ(J0+J2 ) ] and T c
K = Ac exp( −η

2ρJz
)

for the weak (� < �C) and strong (� > �C) supercon-
ductivities, respectively. Only the prefactors As and Ac are
fitting parameters. It can be seen from Fig. 2(c) that the
agreement is excellent, confirming the Kondo nature of the
central peak in A(ε). In the mixed-valence region (� ∼
�C), charge fluctuations are not Coulomb blockaded be-
cause of the dominant first-order tunnelings, giving rise to
T0(� = �C ) � 0.54�.

Our charge Kondo effect differs from that in the negative-U
Anderson impurity [19,20,82–86], where Kondo correlations
are attributed to charge fluctuations between zero and double
occupancies of the d level. In our SC QDs, the pseudospin rep-
resents the two many-body ground states |�−

2N0
〉 and |�−

2N0+2〉
of the island. Although each state contains also the zero-
occupancy-to-double-occupancy fluctuations in the d level,
such fluctuations do not contribute to the charge Kondo
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FIG. 3. (a)–(f) Conductance G as a function of the gate voltage
Vg at zero temperature T = 0 [(a)–(c)] and high temperature T = 2�

[(d)–(f)], for several values of the SC pairing �. Inset of (c): Zoom
into the resonance at Vg = 2N0 + 1. (g) and (h) Conductance as a
function of the temperature T scaled by � and T0, respectively, for
different �. The vertical dotted line in (g) indicates the position of
T = 2�. In (h), two blue vertical dotted lines mark the positions of
T = 2� (left) and E∗ (right) for �/�C = 1.5, with E∗ the excitation
energy (see text). Two red vertical dotted lines represent the same but
for �/�C = 1.8.

effect. In order to demonstrate this, we plot in Fig. 2(d) the
suppression and displacement of the charge Kondo resonance
by shifting the d-level ε0 or the gate voltage Vg from the
symmetric point. For nonzero ε0, although isolated SC islands
always retain the charge degeneracy as long as Vg = 2N0 + 1,
the exchange field B̃ induced by the dot-lead tunnelings can
split the ground-state doublet, resulting in E−

2N0+2 − E−
2N0

= B̃
[see Eq. (6)]. On the other hand, the energy difference be-
tween zero and double occupancies of the d level is δ1 = 2ε0.
Figure 2(d) shows that the position of the suppressed Kondo
peak is not at ε � δ1. Instead, it is given by ε � B̃ � δ1.
For Vg deviating from 2N0 + 1, one has E−

2N0+2 − E−
2N0

=
2EC (2N0 + 1 − Vg) ≡ δ2 calculated by Eq. (3). The resulting
suppressed Kondo peak appears at ε � δ2, as also shown in
Fig. 2(d). These observations indicate that our charge Kondo
resonance in the d-electron spectral density does indeed
arise from Cooper-pair fluctuations between the island states
|�−

2N0
〉 and |�−

2N0+2〉, not from simple fluctuations in the d
level.

We present in Fig. 3 the conductance G through SC QDs in
the linear response regime [87],

G = −2e2

h
π�

∫ D

−D
A(ε)

∂ f (ε)

∂ε
dε, (8)

with f (ε) being the Fermi distribution function, as a function
of the gate voltage Vg and the temperature T . For weak pairing
(� < �C), the zero-temperature conductance has prominent
broad spin Kondo plateaus of unitary transmission centered

at odd values of Vg [Fig. 3(a)], while at high T , the plateaus
collapse and the conductance exhibits the 1e-periodic CB
oscillation with peaks occurring at the even-odd degeneracy
points [Fig. 3(d)]. These transport features resemble those of
normal QDs [88–91]. The effect of a finite � in this regime at
zero (high) temperature is to narrow the width of the Kondo
plateaus (odd CB valleys). When the pairing energy increases
to the mixed-valence region (� � �C), the narrowing at all
temperatures leads to a single conductance peak formed at odd
values of Vg, giving rise to the celebrated 2e periodicity of CB
[Figs. 3(b) and 3(e)] [40]. Here, the transport at the 2e CB
peaks is mediated by resonant Andreev and single-electron
tunnelings, which at zero temperature can reach the unitary
limit due to the large degeneracy of island states discussed
above. The zero-temperature width of conductance CB peaks
in the gate voltage is W � �/2EC . Accordingly, the CB peaks
at finite T follow a temperature smearing scaled also by the
dot-lead coupling � [Fig. 3(g)].

For strong pairing (� > �C), the overall conductance
feature of SC QDs is still the 2e-periodic CB oscillation
[Figs. 3(c) and 3(f)], but now the even-even degeneracy at
odd values of Vg can support only the second-order Andreev
tunnelings. At temperatures below the Kondo scale T < T0,
the coherent superposition of massive Andreev processes can
constitute the charge Kondo effect, leading to the unitary
transmission as T → 0 [Fig. 3(c)]. The width W of the charge
Kondo CB peaks in the gate voltage is determined by the
Kondo temperature, W � T0/2EC [inset of Fig. 3(c)]. As the
temperature increases, the conductance peak fades out fol-
lowing a universal Kondo scaling that is distinct from the
T smearing in the mixed-valence regime [Fig. 3(h)]. Inter-
estingly, when the temperature rises to the first excitation
energy, E∗ ≡ E0

2N0+1 − E−
02, of the island, a small peak ap-

pears in the conductance vs T , as shown in Fig. 3(h). The
underlying physics of this phenomenon is the opening of an
additional transport channel for the single-electron tunnelings.
Since 2e-periodic CB peaks such as those shown in Figs. 3(b),
3(e), and 3(f) are now routinely measured in experiments on
SC islands [39–50], we believe that at sufficiently low tem-
perature, such experiments can also observe the 2e-periodic
charge Kondo peaks as in Fig. 3(c) by fine-tuning the gate
voltage.

V. CONCLUSION

In summary, we have studied the spectral and transport
properties of SC QDs based on a minimal model that con-
serves the particle number and explicitly takes account of
Cooper-pair fluctuations. A merit of the model is that it
allows us to accurately treat the SC pairing and Coulomb
interactions on an equal footing by using the powerful NRG
method. Rigorous results on many-body effects have thus
been obtained over the full parameter space from the spin
Kondo regime to mixed-valence and charge Kondo regimes.
In particular, the number conservation inherent in the the-
ory guarantees that the resulting spectral density obeys the
Friedel sum rule, and our theory gives a faithful description
of the 2e-periodic CB phenomena observed in SC islands. For
strong SC pairing, we find an unexpected charge-exchange
field arising from the dot-lead tunneling, which may suppress
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the charge Kondo effect even at the charge degenerate point.
Our work can serve as a starting point for precisely exploring
electron correlations in more complex SC islands, such as
proximitized nanowire segments [51,52], where the presence
of several energy levels, spin-orbit coupling, and topological
superconductivity may produce more fascinating emergent
phenomena.
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APPENDIX A: ISOLATED SUPERCONDUCTING QUANTUM DOTS

The number-conserving Hamiltonian of an isolated superconducting island (quantum dot) reads

Hd =
∑

σ=↑,↓
εσ d†

σ dσ + �d†
↑d†

↓e−iφ̂ + �eiφ̂d↓d↑ + 1

2
EC (N̂ − Vg)2. (A1)

Since Hd commutes with N̂ , we can focus on the subspaces characterized by the total electron number N . Here, we assume
N > 0 (i.e, excluding the N = 0 subspace). If N is odd, the basis set of the subspace is | ↑, N−1

2 〉 and | ↓, N−1
2 〉. Note that

Hd

∣∣∣∣↑,
N − 1

2

〉
=

[
ε↑ + 1

2
EC (N − Vg)2

]∣∣∣∣↑,
N − 1

2

〉
, (A2)

Hd

∣∣∣∣↓,
N − 1

2

〉
=

[
ε↓ + 1

2
EC (N − Vg)2

]∣∣∣∣↓,
N − 1

2

〉
. (A3)

The matrix form of Hd is

Hd =
(

ε↑ + 1
2 EC (N − Vg)2 0

0 ε↓ + 1
2 EC (N − Vg)2

)
. (A4)

We denote the eigenenergies and eigenstates of the Hamiltonian in this odd subspace as

Eσ
N (Vg) = εσ + 1

2 EC (N − Vg)2, (A5)

|�σ
N 〉 =

∣∣∣∣σ,
N − 1

2

〉
. (A6)

In addition, the following formulas for d↑ and d↓ are useful for calculating their matrix elements, which will be used in the NRG
procedure:

d↑

∣∣∣∣↑,
N − 1

2

〉
=

∣∣∣∣0,
N − 1

2

〉
, d↑

∣∣∣∣↓,
N − 1

2

〉
= 0, (A7)

d↓

∣∣∣∣↑,
N − 1

2

〉
= 0, d↓

∣∣∣∣↓,
N − 1

2

〉
=

∣∣∣∣0,
N − 1

2

〉
. (A8)

If N is even, the basis set of the subspace is |0, N
2 〉 and | ↑↓, N−2

2 〉. Note that

Hd

∣∣∣0,
N

2

〉
= 1

2
EC (N − Vg)2

∣∣∣0,
N

2

〉
+ �

∣∣∣∣↑↓,
N − 2

2

〉
, (A9)

Hd

∣∣∣∣↑↓,
N − 2

2

〉
= �

∣∣∣0,
N

2

〉
+

[
2ε0 + 1

2
EC (N − Vg)2

]∣∣∣∣↑↓,
N − 2

2

〉
, (A10)

with ε0 ≡ 1
2 (ε↑ + ε↓). The matrix form of Hd is thus

Hd =
(

1
2 EC (N − Vg)2 �

� 2ε0 + 1
2 EC (N − Vg)2

)
. (A11)

Its eigenenergies and eigenstates can be readily obtained as (ν = ±)

E ν
N (Vg) = ε0 + 1

2 EC (N − Vg)2 + ν

√
�2 + ε2

0, (A12)

∣∣�ν
N

〉 = l0ν

∣∣∣0,
N

2

〉
+ l2ν

∣∣∣∣↑↓,
N − 2

2

〉
, (A13)
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where

l0ν ≡ cν√
1 + c2

ν

, l2ν ≡ 1√
1 + c2

ν

, cν ≡
ν

√
�2 + ε2

0 − ε0

�
. (A14)

These coefficients satisfy
∑

ν l2
0ν = ∑

ν l2
2ν = ∑

ν νl0ν l2ν̄ = 1. Finally, the following formulas for d↑ and d↓ are useful for
calculating their matrix elements, which will be also used in the NRG procedure:

d↑
∣∣∣0,

N

2

〉
= 0, d↑

∣∣∣∣↑↓,
N − 2

2

〉
=

∣∣∣∣↓,
N − 2

2

〉
, (A15)

d↓
∣∣∣0,

N

2

〉
= 0, d↓

∣∣∣∣↑↓,
N − 2

2

〉
= −

∣∣∣∣↑,
N − 2

2

〉
. (A16)

APPENDIX B: THE BRILLOUIN-WIGNER PERTURBATION THEORY

We consider now a system Hamiltonian H that can be divided into two parts: H = H0 + HT . Suppose that H0 is exactly
solvable and its eigenenergies and eigenstates are Ei and |i〉, respectively, i.e.,

H0|i〉 = Ei|i〉, i = 1, 2, . . . , m. (B1)

Our purpose is to derive an effective Hamiltonian Heff in the subspace span{|1〉, |2〉, . . . , |m〉}, i.e., to project H into the subspace
up to second order in HT , following Ref. [68]. The projection operator is P̂ = ∑m

i=1 |i〉〈i|. Supposing that |�〉 and E are the
eigenstate and eigenenergy of the total Hamiltonian H , the effective Hamiltonian satisfies

Heff|ψ〉 = E |ψ〉, |ψ〉 ≡ P̂|�〉. (B2)

Starting from the Schrödinger equation

H |�〉 = (H0 + HT )|�〉 = E |�〉, (B3)

we formally get

|�〉 = (E − H0)−1HT |�〉 = (E − H0)−1(1 − P̂)HT |�〉 + (E − H0)−1
m∑

i=1

|i〉〈i|HT |�〉

= G(E )HT |�〉 +
m∑

i=1

(E − Ei )
−1|i〉〈i|HT |�〉, (B4)

where we have defined G(E ) ≡ (E − H0)−1(1 − P̂). On substituting

〈i|HT |�〉 = 〈i|(H − H0)|�〉 = (E − Ei )〈i|�〉 (B5)

into Eq. (B4), one finds

|�〉 = G(E )HT |�〉 + |ψ〉. (B6)

Equation (B6) can be iteratively solved, yielding

|�〉 = |ψ〉 + G(E )HT |ψ〉 + [G(E )HT ]2|ψ〉 + [G(E )HT ]3|ψ〉 + · · · =
∞∑

n=0

[G(E )HT ]n|ψ〉. (B7)

Applying the operator P̂HT to Eq. (B7) gives

P̂HT |�〉 =
∞∑

n=0

P̂HT [G(E )HT ]n|ψ〉. (B8)

The left-hand side of Eq. (B8) can be further calculated by using P̂2 = P̂ and P̂H0 = H0P̂, as follows:

P̂HT |�〉 = P̂H |�〉 − P̂2H0|�〉 = E |ψ〉 − P̂H0|ψ〉. (B9)

Substituting Eq. (B9) into Eq. (B8) and noting that P̂|ψ〉 = |ψ〉, we then arrive at the Schrödinger equation in the subspace
spanned by the eigenstates of H0, [

P̂H0P̂ +
∞∑

n=0

P̂HT [G(E )HT ]nP̂

]
|ψ〉 = E |ψ〉. (B10)
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Therefore the effective Hamiltonian is

Heff = P̂H0P̂ +
∞∑

n=0

P̂HT [G(E )HT ]nP̂

≈ P̂H0P̂ + P̂HT P̂ + P̂HT G(E )HT P̂

= P̂H0P̂ + P̂HT P̂ + P̂HT (E − H0)−1(1 − P̂)HT P̂

= P̂H0P̂ + P̂HT P̂ + P̂HT (E − H0)−1HT P̂ − P̂HT (E − H0)−1P̂HT P̂, (B11)

up to second order in HT .

APPENDIX C: DERIVATION OF THE SPIN AND CHARGE KONDO HAMILTONIANS

A superconducting quantum dot attached to the left (α = L) and right (α = R) normal metallic electrodes is described by the
Hamiltonian

H = Hd +
∑
k,σ,α

εkC
†
kσα

Ckσα +
∑
k,σ,α

tα (C†
kσα

dσ + d†
σCkσα ), (C1)

with Hd given by Eq. (A1). Here, the left and right leads can be combined into a single effective lead coupled to the island.

Specifically, we perform a canonical transformation (t0 ≡
√

t2
L + t2

R )

Ckσe = tL
t0

CkσL + tR
t0

CkσR, Ckσo = tR
t0

CkσL − tL
t0

CkσR, (C2)

CkσL = tL
t0

Ckσe + tR
t0

Ckσo, CkσR = tR
t0

Ckσe − tL
t0

Ckσo, (C3)

such that the resulting Hamiltonian contains only the e mode of lead states, while the o mode is completely decoupled. After
dropping the index e of the effective lead, the Hamiltonian reads

H = H0 + HT , (C4)

where H0 = Hd + He, HT = H+
T + H−

T , and

He =
∑
k,σ

εkC
†
kσ

Ckσ , H+
T =

∑
k,σ

t0d†
σCkσ , H−

T =
∑
k,σ

t0C
†
kσ

dσ . (C5)

In the following, we shall derive, by using the Brillouin-Wigner perturbation theory up to second order in the tunneling term HT ,
the spin and charge Kondo models from the Hamiltonian (C4). These Kondo effects take place when the gate voltage Vg is tuned
near an odd integer 2N0 + 1. Here, N0 is an arbitrary integer ensuring that the total number N of electrons in the island always
satisfies N > 0.

1. The spin Kondo effect

We assume ε↑ = ε↓ = ε0 in the absence of external magnetic fields. When
√

�2 + ε2
0 < EC

2 and

2N0 + 1

2
+ 1

EC

√
�2 + ε2

0 < Vg < 2N0 + 3

2
− 1

EC

√
�2 + ε2

0, (C6)

the two degenerate ground states of H0 are

|�↑
2N0+1〉 = | ↑, N0〉, |�↓

2N0+1〉 = | ↓, N0〉, (C7)

with the ground-state energy

Eσ
2N0+1(Vg) = ε0 + 1

2 EC (2N0 + 1 − Vg)2 ≡ E0(Vg). (C8)

The Fermi-sea state and energy of the effective lead are implicitly involved. The projection operator for the subspace spanned
by | ↑, N0〉 and | ↓, N0〉 is

P̂ =
∑

σ

|σ, N0〉〈σ, N0| =
∑

σ

(N̂σ − N̂↑N̂↓)|N0; s〉〈N0; s| = (N̂d − 2N̂↑N̂↓)|N0; s〉〈N0; s|, (C9)

where N̂d = ∑
σ=↑,↓ N̂σ and Nσ = d†

σ dσ are number operators of d electrons. Defining the spin operator S of the island as

S+ = d†
↑d↓, S− = d†

↓d↑, Sz = 1
2 (d†

↑d↑ − d†
↓d↓), (C10)
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we are going to derive an effective spin Kondo Hamiltonian Heff in this N = 2N0 + 1 subspace. The first term of the effective
Hamiltonian Heff [Eq. (B11)] is

P̂H0P̂ = HeP̂ + Hd P̂ = HeP̂ + E0(Vg)P̂. (C11)

The second and fourth terms of Heff [Eq. (B11)] are zero:

P̂HT P̂ = 0, −P̂HT (E − H0)−1P̂HT P̂ = 0. (C12)

To derive the third term of Heff [Eq. (B11)], one needs to first calculate

H−
T |σ, N0〉 =

∑
k, σ ′

t0C
†
kσ ′dσ ′ |σ, N0〉 =

∑
k

t0C
†
kσ

|0, N0〉, (C13)

H+
T |σ, N0〉 =

∑
k, σ ′

t0d†
σ ′Ckσ ′ |σ, N0〉 =

∑
k

σ t0Ckσ |↑↓, N0〉. (C14)

Since |0, N0〉 and | ↑↓, N0〉 are not eigenstates of H0, they should be expanded by eigenstates in the N = 2N0 and N = 2N0 + 2
subspaces, respectively,

|0, N0〉 = l2−|�+
2N0

〉 − l2+|�−
2N0

〉, (C15)

| ↑↓, N0〉 = −l0−|�+
2N0+2〉 + l0+|�−

2N0+2〉. (C16)

One thus arrives at

H−
T |σ, N0〉 =

∑
k,ν

νl2ν̄t0C
†
kσ

∣∣�ν
2N0

〉
, (C17)

H+
T |σ, N0〉 =

∑
k,ν

σ ν̄l0ν̄t0Ckσ

∣∣�ν
2N0+2

〉
(C18)

and

〈σ, N0|H+
T =

∑
k,ν

νl2ν̄t0
〈
�ν

2N0

∣∣Ckσ , (C19)

〈σ, N0|H−
T =

∑
k,ν

σ ν̄l0ν̄t0
〈
�ν

2N0+2

∣∣C†
kσ

, (C20)

[E0(Vg) − H0]−1H−
T |σ, N0〉 =

∑
k,ν

νl2ν̄t0
E0(Vg) − E ν

2N0
(Vg) − εk

C†
kσ

∣∣�ν
2N0

〉

=
∑
k,ν

νl2ν̄t0
E0(Vg) − E ν

2N0
(Vg)

C†
kσ

∣∣�ν
2N0

〉
, (C21)

[E0(Vg) − H0]−1H+
T |σ, N0〉 =

∑
k,ν

σ ν̄l0ν̄t0
E0(Vg) − E ν

2N0+2(Vg) + εk
Ckσ

∣∣�ν
2N0+2

〉

=
∑
k,ν

σ ν̄l0ν̄t0
E0(Vg) − E ν

2N0+2(Vg)
Ckσ

∣∣�ν
2N0+2

〉
. (C22)

The second lines of Eqs. (C21) and (C22) have applied the constraint εk � 0 because at low temperatures only conduction
electrons near the Fermi energy (εF = 0) in the effective lead can be exchange scattered by the superconducting quantum dot. A
combination of Eqs. (C19)–(C22) yields

〈σ, N0|H+
T [E0(Vg) − H0]−1H−

T |σ ′, N0〉 = −
∑
k,k′

J0CkσC†
k′σ ′ , (C23)

〈σ, N0|H−
T [E0(Vg) − H0]−1H+

T |σ ′, N0〉 = −
∑
k,k′

J2σσ ′C†
kσ

Ck′σ ′ , (C24)

where

J0 ≡
∑

ν

l2
2ν̄t2

0

E ν
2N0

(Vg) − E0(Vg)
=

∑
ν

l2
2ν̄t2

0(
Vg − 2N0 − 1

2

)
EC + ν

√
�2 + ε2

0

, (C25)

J2 ≡
∑

ν

l2
0ν̄t2

0

E ν
2N0+2(Vg) − E0(Vg)

=
∑

ν

l2
0ν̄t2

0(
2N0 + 3

2 − Vg
)
EC + ν

√
�2 + ε2

0

. (C26)
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The third term of Heff [Eq. (B11)] can then be calculated as

P̂HT (E − H0)−1HT P̂ ≈ P̂HT [E0(Vg) − H0]−1HT P̂

= P̂H+
T [E0(Vg) − H0]−1H−

T P̂ + P̂H−
T [E0(Vg) − H0]−1H+

T P̂

=
∑
σ, σ ′

|σ, N0〉〈σ, N0|H+
T [E0(Vg) − H0]−1H−

T |σ ′, N0〉〈σ ′, N0|

+
∑
σ, σ ′

|σ, N0〉〈σ, N0|H−
T

[
E0(Vg) − H0

]−1
H+

T |σ ′, N0〉〈σ ′, N0|

= −
∑

k,σ,k′,σ ′
J0CkσC†

k′σ ′ |σ, N0〉〈σ ′, N0|

−
∑

k,σ,k′,σ ′
J2σσ ′C†

kσ
Ck′σ ′ |σ, N0〉〈σ ′, N0|. (C27)

We continue to calculate

−
∑

k,σ,k′,σ ′
J0CkσC†

k′σ ′ |σ, N0〉〈σ ′, N0| = −
∑

k,σ,k′,σ ′
J0CkσC†

k′σ ′
(
d†

σ dσ ′ − δσσ ′N̂↑N̂↓
)|N0; s〉〈N0; s|

=
∑
k,k′

J0

[
C†

k↑Ck′↓S− + C†
k′↓Ck↑S+

+(
C†

k↑Ck′↑ − C†
k↓Ck′↓

)
Sz

]
|N0; s〉〈N0; s|

+
∑

k,k′,σ

1

2
J0C

†
kσ

Ck′σ P̂ −
∑

k

J0P̂ (C28)

and

−
∑

k,σ,k′,σ ′
J2σσ ′C†

kσ
Ck′σ ′ |σ, N0〉〈σ ′, N0| = −

∑
k,σ,k′,σ ′

J2σσ ′C†
kσ

Ck′σ ′
(
d†

σ dσ ′ − δσσ ′N̂↑N̂↓
)|N0; s〉〈N0; s|

=
∑
k,k′

J2

[
C†

k↑Ck′↓S− + C†
k′↓Ck↑S+

+(C†
k↑Ck′↑ − C†

k↓Ck′↓)Sz

]
|N0; s〉〈N0; s|

−
∑

k,k′,σ

1

2
J2C

†
kσ

Ck′σ P̂. (C29)

Combining the above two equations with the lead Hamiltonian HeP̂ and discarding the constant terms, the effective
Hamiltonian reads

Heff =
∑
k,k′

(J0 + J2)[C†
k↑Ck′↓S− + C†

k′↓Ck↑S+ + (C†
k↑Ck′↑ − C†

k↓Ck′↓)Sz]|N0; s〉〈N0; s|

+
∑

k,k′,σ

1

2
(J0 − J2)C†

kσ
Ck′σ P̂ +

∑
k,σ

εkC
†
kσ

Ckσ P̂. (C30)

This effective Hamiltonian describes the isotropic spin Kondo effect in the N = 2N0 + 1 subspace. Note that for ε0 = 0 and
Vg = 2N0 + 1, one has J0 = J2, which eliminates the potential scattering term in Heff. The first line of Eq. (C30) gives Eq. (4) in
the main text.

2. The charge Kondo effect

For
√

�2 + ε2
0 > EC

2 and Vg = 2N0 + 1 ≡ Vg0, the two degenerate ground states and the ground-state energy of H0 are

|�−
2N0

〉 = l0−|0, N0〉 + l2−|↑↓, N0 − 1〉, (C31)

|�−
2N0+2〉 = l0−|0, N0 + 1〉 + l2−|↑↓, N0〉, (C32)

E−
2N0

(Vg0) = E−
2N0+2(Vg0) = ε0 + 1

2 EC −
√

�2 + ε2
0 ≡ E0. (C33)

The Fermi-sea state and energy of the effective electrode are implicitly involved. By rewriting the two ground states in a more
succinct form (η = 0, 1),

|�−
2N0+2η〉 = l0−|0, N0 + η〉 + l2−|↑↓, N0 + η − 1〉, (C34)
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the projection operator onto the ground-state subspace is thus

P̂ =
∑

η

|�−
2N0+2η〉〈�−

2N0+2η|. (C35)

Moreover, the states |�−
2N0

〉 and |�−
2N0+2〉 represent two different charge states of the superconducting quantum dot, based on

which we can define its pseudospin operator Q as

Q+ = |�−
2N0+2〉〈�−

2N0
|, (C36)

Q− = |�−
2N0

〉〈�−
2N0+2|, (C37)

Qz = 1
2 (|�−

2N0+2〉〈�−
2N0+2| − |�−

2N0
〉〈�−

2N0
|). (C38)

In the subspace spanned by |�−
2N0

〉 and |�−
2N0+2〉, the first term of the effective Hamiltonian Heff [Eq. (B11)] is

P̂H0P̂ = HeP̂ + Hd P̂ = HeP̂ + E0P̂. (C39)

The second and fourth terms of Heff [Eq. (B11)] are zero:

P̂HT P̂ = 0, −P̂HT (E − H0)−1P̂HT P̂ = 0. (C40)

In order to derive the third term of Heff [Eq. (B11)], one needs to first calculate

H−
T |�−

2N0+2η〉 =
∑
k,σ

l2−t0C
†
kσ

dσ |↑↓, N0 + η − 1〉 =
∑
k,σ

σ l2−t0C
†
kσ

|σ , N0 + η − 1〉, (C41)

H+
T |�−

2N0+2η〉 =
∑
k,σ

l0−t0d†
σCkσ |0, N0 + η〉 = −

∑
k,σ

l0−t0Ckσ |σ, N0 + η〉 (C42)

and then

〈�−
2N0+2η|H+

T =
∑
k,σ

σ l2−t0〈σ , N0 + η − 1|Ckσ , (C43)

〈�−
2N0+2η|H−

T = −
∑
k,σ

l0−t0〈σ, N0 + η|C†
kσ

, (C44)

(E0 − H0)−1H−
T |�−

2N0+2η〉 =
∑
k,σ

σ l2−t0
E0 − Eσ

2N0+2η−1(Vg0) − εk
C†

kσ
|σ , N0 + η − 1〉

=
∑
k,σ

σ l2−t0
E0 − E0

2N0+2η−1(Vg0)
C†

kσ
|σ , N0 + η − 1〉, (C45)

(E0 − H0)−1H+
T |�−

2N0+2η〉 = −
∑
k,σ

l0−t0
E0 − Eσ

2N0+2η+1(Vg0) + εk
Ckσ |σ, N0 + η〉

= −
∑
k,σ

l0−t0
E0 − E0

2N0+2η+1(Vg0)
Ckσ |σ, N0 + η〉. (C46)

The second lines of Eqs. (C45) and (C46) have used εk � 0, and for an odd number N of electrons in the island,

Eσ
N (Vg) = ε0 + 1

2
EC (N − Vg)2 ≡ E0

N (Vg), (C47)

in the absence of external magnetic fields. Combining Eqs. (C43)–(C46) yields

〈�−
2N0+2η|H−

T (E0 − H0)−1H−
T |�−

2N0+2η′ 〉 = δη0δη′1J1

∑
k,k′

C†
k↑C†

k′↓, (C48)

〈�−
2N0+2η|H+

T (E0 − H0)−1H+
T |�−

2N0+2η′ 〉 = δη1δη′0J1

∑
k,k′

Ck′↓Ck↑, (C49)

〈�−
2N0+2η|H−

T (E0 − H0)−1H+
T |�−

2N0+2η′ 〉 = δηη′
l0−

2l2−
J2η+1

∑
k,k′,σ

C†
kσ

Ck′σ , (C50)

〈�−
2N0+2η|H+

T (E0 − H0)−1H−
T |�−

2N0+2η′ 〉 = δηη′
l2−

2l0−
J2η−1

∑
k,k′,σ

(δkk′ − C†
kσ

Ck′σ ), (C51)
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where (y = −1, 1, 3)

Jy ≡ 2l0−l2−t2
0

E0 − E0
2N0+y(Vg0)

= 4l0−l2−t2
0

(2y − y2)EC − 2
√

�2 + ε2
0

. (C52)

Thus the third term of Heff [Eq. (B11)] can be calculated as follows:

P̂HT (E − H0)−1HT P̂ ≈ P̂HT (E0 − H0)−1HT P̂

=
∑
η,η′

|�−
2N0+2η〉〈�−

2N0+2η|H−
T (E0 − H0)−1H−

T |�−
2N0+2η′ 〉〈�−

2N0+2η′ |

+
∑
η,η′

|�−
2N0+2η〉〈�−

2N0+2η|H+
T (E0 − H0)−1H+

T |�−
2N0+2η′ 〉〈�−

2N0+2η′ |

+
∑
η,η′

|�−
2N0+2η〉〈�−

2N0+2η|H−
T (E0 − H0)−1H+

T |�−
2N0+2η′ 〉〈�−

2N0+2η′ |

+
∑
η,η′

|�−
2N0+2η〉〈�−

2N0+2η|H+
T (E0 − H0)−1H−

T |�−
2N0+2η′ 〉〈�−

2N0+2η′ |

=
∑
k,k′

J1C
†
k↑C†

k′↓Q− +
∑
k,k′

J1Ck′↓Ck↑Q+

+
∑

k,k′,σ

∑
η

(
l0−

2l2−
J2η+1 − l2−

2l0−
J2η−1

)(
C†

kσ
Ck′σ − 1

2
δkk′

)
|�−

2N0+2η〉〈�−
2N0+2η|

+
∑
k,k′

∑
η

(
l0−

2l2−
J2η+1 + l2−

2l0−
J2η−1

)
δkk′ |�−

2N0+2η〉〈�−
2N0+2η|. (C53)

We proceed to recast the last two lines of Eq. (C53) in terms of Qz and P̂,∑
k,k′,σ

∑
η

(
l0−

2l2−
J2η+1 − l2−

2l0−
J2η−1

)(
C†

kσ
Ck′σ − 1

2
δkk′

)
|�−

2N0+2η〉〈�−
2N0+2η|

=
∑

k,k′,σ

[
l2−

2l0−
J−1 −

(
l2−

2l0−
+ l0−

2l2−

)
J1 + l0−

2l2−
J3

](
C†

kσ
Ck′σ − 1

2
δkk′

)
Qz

+
∑

k,k′,σ

[
− l2−

4l0−
J−1 −

(
l2−

4l0−
− l0−

4l2−

)
J1 + l0−

4l2−
J3

](
C†

kσ
Ck′σ − 1

2
δkk′

)
P̂ (C54)

and ∑
k,k′

∑
η

(
l0−

2l2−
J2η+1 + l2−

2l0−
J2η−1

)
δkk′ |�−

2N0+2η〉〈�−
2N0+2η|

=
∑
k,k′

[
− l2−

2l0−
J−1 +

(
l2−

2l0−
− l0−

2l2−

)
J1 + l0−

2l2−
J3

]
δkk′Qz

+
∑
k,k′

[
l2−

4l0−
J−1 +

(
l2−

4l0−
+ l0−

4l2−

)
J1 + l0−

4l2−
J3

]
δkk′ P̂. (C55)

Collecting all contributing terms and discarding the constant ones, we finally obtain the effective Hamiltonian

Heff =
∑
k,k′

J±
(
C†

k↑C†
k′↓Q− + Ck′↓Ck↑Q+) +

∑
k,k′,σ

Jz

(
C†

kσ
Ck′σ − 1

2
δkk′

)
Qz

+ B̃Qz +
∑

k,k′,σ

VC†
kσ

Ck′σ P̂ +
∑
k,σ

εkC
†
kσ

Ckσ P̂, (C56)

where

J± ≡ J1 = 4l0−l2−t2
0

EC − 2
√

�2 + ε2
0

, (C57)
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Jz ≡ l2−
2l0−

J−1 −
(

l2−
2l0−

+ l0−
2l2−

)
J1 + l0−

2l2−
J3 = 2t2

0

2
√

�2 + ε2
0 − EC

− 2t2
0

3EC + 2
√

�2 + ε2
0

, (C58)

B̃ ≡
∑
k,k′

[
− l2−

2l0−
J−1 +

(
l2−

2l0−
− l0−

2l2−

)
J1 + l0−

2l2−
J3

]
δkk′ = (

l2
0− − l2

2−
) ∑

k,k′
Jzδkk′ , (C59)

V ≡ − l2−
4l0−

J−1 −
(

l2−
4l0−

− l0−
4l2−

)
J1 + l0−

4l2−
J3 = (

l2
2− − l2

0−
)⎛⎝ t2

0

2
√

�2 + ε2
0 − EC

+ t2
0

3EC + 2
√

�2 + ε2
0

⎞
⎠. (C60)

This effective Hamiltonian describes the charge Kondo effect in the subspace spanned by the degenerate states |�−
2N0

〉 and
|�−

2N0+2〉 at Vg = Vg0. Some comments are necessary. (i) The charge Kondo effect is anisotropic because the transverse exchange
interaction J± and the longitudinal one Jz are different. (ii) For an isolated island at Vg = Vg0, the pseudospin-up state |�−

2N0+2〉
and the pseudospin-down state |�−

2N0
〉 are always degenerate for arbitrary values of the d-level energy ε0. (iii) The presence of

dot-lead coupling t0 can induce an effective local magnetic field B̃, which lifts out the degeneracy and suppresses the charge
Kondo effect. However, the exchange field B̃ vanishes at ε0 = 0 because of l2

0− = l2
2−. (iv) The trivial scattering potential V also

vanishes at ε0 = 0. The first three terms of Eq. (C56) give Eq. (6) in the main text.
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241107(R) (2011).
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