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The late-time dynamics of quantum many-body systems is organized in distinct dynamical universality classes,
characterized by their conservation laws and thus by their emergent hydrodynamic transport. Here, we study
transport in the one-dimensional Hubbard model with different masses of the two fermionic species. To this end,
we develop a quantum Boltzmann approach valid in the limit of weak interactions. We explore the crossover
from ballistic to diffusive transport, whose timescale strongly depends on the mass ratio of the two species. For
timescales accessible with matrix product operators, we find excellent agreement between these numerically ex-
act results and the quantum Boltzmann equation, even for intermediate interactions. We investigate two scenarios
which have been recently studied with ultracold-atom experiments. First, in the presence of a tilt, the quantum
Boltzmann equation predicts that transport is significantly slowed down and becomes subdiffusive, consistent
with previous studies. Second, we study transport probed by displacing a harmonic confinement potential and
find good quantitative agreement with recent experimental data [N. D. Oppong et al., arXiv:2011.12411]. Our
results demonstrate that the quantum Boltzmann equation is a useful tool to study complex nonequilibrium states
in inhomogeneous potentials, as often probed with synthetic quantum systems.
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I. INTRODUCTION

Recent progress in quantum simulation and quantum
computing technology enabled the realization and control
of nonequilibrium quantum states of matter. Sheer endless
possibilities seem to exist to realize microscopic processes
in quantum many-body systems, leading to distinct short-
time dynamics. Yet, at late times the systems’ evolution
coarse grains the quantum state. In this regime, the dy-
namics can be grouped in a few hydrodynamic universality
classes, that are solely determined by the symmetries of
the system. While the emergent hydrodynamics is generally
expected to be diffusive [1–5], recently tremendous effort
has been devoted to identify quantum systems with anoma-
lous relaxation dynamics, which can either be enhanced or
suppressed. As a consequence, different hydrodynamic uni-
versality classes have been identified. Those range from
ballistic transport in integrable models [6,7] to superdiffu-
sion in certain highly symmetric integrable models [8–10]
and superdiffusion in systems with long-range interactions
[11,12]. Moreover, subdiffusion can be found in systems
which effectively conserve the dipole moment [13–15] and
in disordered systems in the vicinity of the many-body
localization transition [16–18]. In addition to identifying the
hydrodynamic universality class, it is essential to investigate
the very practical question on which timescale hydrody-
namics emerges. Extremely rich phenomenology is expected
when multiple intrinsic scales are present. In this respect,
a class of systems featuring potentially interesting relax-
ation properties consists of a mixture of interacting particles
with different single-particle masses. For strong mass im-
balance, such heavy-light mixtures have been proposed to

realize a disorder-free dynamical type of many-body local-
ization [19–22]. However, later investigations showed that
these systems will relax in the thermodynamic limit, albeit on
very late times, due the vastly different energy scales arising
at strong mass imbalance [23–29]. Recently, this unconven-
tionally slow relaxation dynamics of the mass-imbalanced
Fermi-Hubbard model has also been experimentally observed
with ultracold ytterbium atoms in optical lattices [30].

In this work, we are motivated by the question of iden-
tifying the crossover timescale to the hydrodynamic regime,
by studying the mass-imbalanced Fermi-Hubbard model in
the weakly interacting limit, as illustrated in Fig. 1(a). In
this regime, the system evolves from an early-time ballistic
regime to late-time diffusion, characterized solely by three
conservation laws which are the energy as well as the densities
of the two fermionic species. We develop a kinetic theory
based on a quantum Boltzmann equation (QBE), which is
applicable to arbitrary highly excited states with no intrinsic
limitations on accessible timescales. We implement a numeri-
cal scheme to study dynamics of inhomogeneous systems for
arbitrary initial states and quench protocols. Aside from this,
a linearization of the QBE directly determines the diffusion
matrix by means of hydrodynamic projections [31] and a
complete characterization of the timescales that determine the
crossover from ballistic to diffusive dynamics. In particular,
we show that due to the strong mass imbalance, the heavy
particles strongly impede the transport of the light ones. De-
spite building on the assumption of weak interactions, we
show that the kinetic approach is accurate up to remarkably
high interactions, by benchmarking our results with numer-
ical tensor network simulations, which are available up to
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FIG. 1. Dynamics in the mass-imbalanced Fermi-Hubbard
model. (a) Illustration of the one-dimensional mass-imbalanced
Fermi-Hubbard model, with the onsite Hubbard interaction U and
distinct hopping amplitudes t↑ (light) and t↓ (heavy). (b) Expansion
after trap release of an initial double well at inverse temperature
β = 0.1/t↑ and for fixed mass ratio t↑/t↓ = 0.1. The kinetic theory
(solid lines) is in good agreement with numerically exact calculations
based on matrix product operators (dashed black line) for different
interaction strengths (legend).

intermediate timescales [Fig. 1(b)]. For very strong interac-
tions, deviations between exact tensor network results and
QBE can be identified, indicating that multiparticle bound
states can become relevant, as suggested, e.g., in Ref. [30],
which are not captured within our kinetic theory.

This work is structured as follows. In Sec. II we introduce
the one-dimensional mass-imbalanced Fermi-Hubbard model
and in Sec. III the QBE is presented. In Secs. IV and V we
discuss transport in the linear response regime, and the emer-
gence of diffusive hydrodynamics, respectively. In particular,
we find that it can take very long times for diffusion to arise,
scaling as thydro ∼ (t↓/t↑)2, with t↓/t↑ the mass ratio of the two
species. External potentials can crucially modify the hydrody-
namics: in Sec. VI we demonstrate that the QBE predicts the
crossover from diffusive transport with dynamical exponent
z = 2 to subdiffusive transport with z = 4 in the presence of a
tilt potential, in line with recent experimental results [15] and
the effective dipole-conserving hydrodynamics [13,14,32]. In
Sec. VII we study the response of the system to displacing
the harmonic confinement potential and find good quantitative
agreement with a recent experiment [30]. The outlook and
summary is presented in Sec. VIII, followed by Appendices
which contain the technical details.

II. THE MODEL

We study the one-dimensional Fermi-Hubbard model with
nearest-neighbor hopping, as illustrated in Fig. 1(a), which is

described by the Hamiltonian

Ĥ = −
∑
j,σ

tσ (ĉ†
j, σ ĉ j+1, σ + H.c.) + U

∑
j

n̂ j, ↑n̂ j, ↓, (1)

where ĉ†
j,σ (ĉ j,σ ) denotes the fermionic creation (annihilation)

operator at site j with spin σ ∈ {↑,↓}, tσ the species-
dependent hopping amplitude, and U the strength of the
onsite interactions. Here, we are interested in the case of
unequal hopping matrix elements for the two spin species,
and we choose the ↑ species to be the light and the ↓
species to be the heavy species, i.e., t↓/t↑ < 1. Typically,
we express all energy scales in units of t↑. The Hubbard
Hamiltonian is a natural model for ultracold atoms in optical
lattices, where interactions can be controlled via Feshbach
resonances, while state-dependent optical lattices allow for
the implementation of spin-dependent hopping amplitudes
(see, e.g., Ref. [33]). Our model therefore describes general
two-component fermionic mixtures on a lattice, where the
(pseudo)spin degree of freedom may be realized by two dif-
ferent nuclear spin projections or by other means.

Let us discuss the nature of transport that can be ex-
pected from general considerations. The SU(2) symmetric
one-dimensional Fermi-Hubbard model with balanced hop-
ping, t↑ = t↓, belongs to the class of integrable quantum
models [34]. Similarly, in the absence of interactions U = 0
the model is trivially integrable for any mass imbalance. At
integrable points, transport is generically ballistic [7,35–37].
An important exception is the highly symmetric point with
t↑ = t↓ and zero total magnetization, where superdiffusion
emerges [38]. In what follows, we always assume to be in
the regime where t↑ �= t↓ and interactions U are small. There-
fore, we weakly depart from the trivial U = 0 integrable
point, but we do not face the complications arising from
considering the highly symmetric point t↑ = t↓ (see, however,
Ref. [39]). When integrability is broken, we expect on general
grounds that diffusive transport of the residual conservation
laws (energy and particle densities) is prevalent. However,
for significant mass imbalance the emergence of diffusion
might potentially take a very long time, leading to a regime
of unconventionally slow relaxation dynamics even for weak
interactions.

III. BOLTZMANN KINETIC THEORY

The quantum Boltzmann kinetic theory is a well-known
approach [40,41], whose derivation is based on a Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of the mul-
tipoint correlation functions. One starts with the homogeneous
case and the observation that, in the absence of interac-
tions, steady states (not necessarily thermal) are Gaussian
and diagonal in momentum space. Therefore, they are fully
characterized by the two-point correlation function Wστ (k) =
〈ĉ†

σ (k)ĉτ (k)〉. At the symmetric point t↑ = t↓, off-diagonal
terms of Wστ are generally nonvanishing, while the mass
imbalanced case t↑ �= t↓ projects the nontrivial dynamics only
on the diagonal entries. When interactions are present, the
equations of motion for Wστ are nontrivial and proportional
to U , coupling to higher-order correlation functions. While in
principle all connected correlation functions are intertwined
through the dynamics, the weak interactions allow for a
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truncation: by further invoking a separation of timescales, one
can project the dynamics perturbatively on the instantaneous
steady state of the noninteracting model. Therefore, a set of
closed nonlinear equations is obtained for W : this is the quan-
tum Boltzmann equation (QBE) ∂tW = U 2I[W ], where I is
the collisional integral capturing the effects of interactions,
and we factorized out the interaction dependence ∝U 2. The
scaling limit [42,43] formally holds in the regime of vanishing
interactions and large times, in such a way that tU 2 is kept
constant. In practice, 1/U 2 must be compared with the typical
timescales of the noninteracting limit, set by the hopping
strengths. At this point, it is very important to distinguish the
symmetric t↑ = t↓ and asymmetric t↑ �= t↓ case: in the first
case, the unperturbed timescale is solely determined by t−1

↑
and one obtains a matrix-valued Boltzmann equation for W .
This case has been studied before [39,42–45], and we do not
consider it in our work. Whenever the masses are different, the
unperturbed timescale is given by max(t−1

↑ , t−1
↓ , |t↑ − t↓|−1)

and the Boltzmann equation is nontrivial only on the diag-
onal entries nσ (k) = Wσ,σ (k), resulting in a simplified QBE
∂tnσ = U 2 Cσ [n]. The collision integral Cσ has a rather com-
pact expression (see Appendix A, where we present a detailed
derivation of the QBE). For compactness, we write whenever
possible n = (n↑, n↓) and C = (C↑, C↓) as vectors in spin
space.

Weak spatial inhomogeneities can now be added to the
QBE within a gradient expansion. In this case, one assumes
that the length scale of the inhomogeneity is much larger than
the microscopic relaxation timescale, divided by the group
velocity of the excitations. The underlying lattice is coarse
grained into a continuum variable and the mode density is
promoted to be space dependent nσ (k) → nσ (x, k). Including
the proper gradient terms, the final inhomogeneous QBE is
obtained

∂tnσ + vσ (k) ∂xnσ + Fσ ∂knσ = U 2 Cσ [n]. (2)

Below, we also consider the addition of an inhomogeneous
potential: Ĥ → Ĥ + ∑

j,σ Vext ( j) n̂ j,σ . As a consequence, a
nontrivial force term appears with the further addition of
the Hartree contribution from the interactions Fσ = −∂xVext −
U∂x

∫ dq
2π

nσ̄ (x, q). We denote σ̄ = 1 − σ for ↑= 0 and ↓= 1,
and the velocity vσ (k) = ∂kεσ (k) is determined by the single-
particle dispersion εσ (k) = −2tσ cos(k).

The QBE is a nonlinear partial integrodifferential equa-
tion, which we numerically solve by discretization of the
real and momentum space, and with a mixed implicit-explicit
integrator (see Appendix C). Energy and lattice momen-
tum conservation (modulo 2π ) fix kinematically allowed
collisions, such that the collision integral only requires the
numerical computation of a one-dimensional integral. As
scattering only takes place between particles of different
species, incoming and outgoing particles have different dis-
persion, avoiding divergences in the collision integral which
are present in the mass-balanced case [39,46].

The derivation of the QBE builds on a proper scaling
limit when the interaction vanishes and inhomogeneities are
smooth. Therefore, it is of utmost importance to benchmark
its validity in practical scenarios. To this end, we compare the
QBE to tensor network simulations by studying the density of
the light particles n↑(x, t ) = ∫

dk n↑(x, k) after releasing the

cloud from a high-temperature thermal state in a double-well
potential in Fig. 1(b). The benchmark with matrix product
operator (MPO) simulations shows that the QBE can accu-
rately predict the dynamics, even for comparatively strong
interactions. Note that here the operator space entanglement
growth strictly limits the accessible timescales for the tensor
network simulations, and the truncation error becomes signifi-
cant at late times. We would like to emphasize that no practical
limitations on the timescales and initial temperatures exist for
the QBE.

IV. TRANSPORT IN THE LINEAR-RESPONSE REGIME

To investigate relaxation dynamics and the crossover to
diffusive transport, we study connected, unequal time density-
density correlation functions of the form

Cστ (x, t ) = 〈n̂x,σ (t )n̂0,τ 〉c, (3)

evaluated with respect to a thermal state at inverse tempera-
ture β. This correlator is directly obtained from the kinetic
theory. It is useful to perturb the initial thermal state with an
inhomogeneous chemical potential

β〈n̂r,σ (t )n̂0,τ 〉c

= δ

δμ(0)

[
1

Z Tr[eiĤt n̂σ e−iĤt e−βĤ+β
∑

j μ( j)n̂ j,τ ]

]
μ( j)=0

.

(4)

Before taking the μ derivative, the above equation describes
the time evolution of the density profile n̂r,σ (t ) evolving from
an inhomogeneous initial state. The next step is computing
this object within the QBE: since in this section we are ulti-
mately interested in linear response, we can conveniently lin-
earize the QBE around homogeneous thermal states n(x, k) =
nth(k) + δn(x, k). By construction, thermal states are sta-
tionary solutions of the QBE C[nth] = 0, such that we ob-
tain the linearization Cσ [n] = −∑

τ

∫ dq
2π

	στ (k, q)δnτ (q) +
O(δn2), with the linearized collision integral 	στ (k, q) =
−δCσ (k)/δnτ (q)|n=nth (see Appendix A for the explicit ex-
pression). On the level of the kinetic theory, the perturbation
of the initial conditions due to the inhomogeneous chemical
potential for computing Cστ (x, t ) is obtained as δnτ (x, k, t =
0) = 1

β
∂μτ

nth(k) δτ,σ δ(x).
One has to be cautious when comparing the QBE re-

sults with lattice simulations: in contrast to the microscopic
model, the kinetic equation does not have a UV cutoff.
A naive replacement of Kronecker delta with Dirac delta
would induce some transient-time artifacts that, while not
influencing the late-time behavior, would make a short-time
comparison unfeasible. To overcome this issue, we regularize
these UV effects by broadening the Dirac delta distributions
in the response functions with peaked Gaussians δ(x) →
e−x2/2w2

/
√

2πw. A similar coarsening procedure is then im-
plemented on the lattice with the same width. With that
approach, the MPO simulations can be compared reasonably
with the QBE and show excellent agreement. Accuracy of the
continuum approximation in particular requires a sufficiently
large w to eliminate oscillations resulting from the lattice, and
we set w to two lattice sites in all of our simulations.

075115-3



ZECHMANN, BASTIANELLO, AND KNAP PHYSICAL REVIEW B 106, 075115 (2022)

FIG. 2. Short-time evolution of correlations in the linear-response regime. The density-density correlation function of the light species
C↑↑(x, t ) = 〈n̂x↑(t )n̂0↑〉c is evaluated on a thermal background with infinite temperature at half-filling and zero magnetization. (a) At weak
interaction U/t↑ = 0.1 and small hopping imbalance t↓/t↑ = 0.5 ballistic propagation lasts for long time. (b) For stronger interaction U/t↑ = 1,
correlations quickly become Gaussian, compatible with diffusive transport. (c) If the mass imbalance is large t↓/t↑ = 0.05, transport is impeded
by the slow species and profiles are strongly peaked and non-Gaussian on shown timescales. Data obtained from the QBE are compared with
numerically exact matrix product operator simulations (dashed lines).

At short times, the presence of interactions and mass im-
balance leads to different regimes of relaxation dynamics. In
Fig. 2 we focus on the C↑↑(x, t ) correlator at infinite tempera-
ture. The comparison with MPOs shows excellent agreement.
For moderate mass imbalance and interactions [Fig. 2(a)],
we find ballistic propagation with pronounced peaks at the
edges of the light cone. At later times, the system eventu-
ally becomes diffusive (not shown). For stronger interactions
[Fig. 2(b)], the crossover to diffusion is almost immediate.
When significantly decreasing the mass ratio while keep-
ing interactions fixed [Fig. 2(c)], the short-time dynamics
changes: the correlation profile remains narrow and is peaked
for quite long times. This is a direct consequence of the large
difference in the particle masses. The slow heavy particles
strongly constrain the transport of the light particles and only
at very late times transport crosses over to diffusion (not
shown). This observation demonstrates that in the limit of
strong mass imbalance relaxation dynamics can take enor-
mously long, on timescales which can neither be accessed
with exact diagonalization due to systems size limitations nor
with tensor networks due to entanglement limitations.

Despite the good agreement with MPO simulations on
short timescales, nonperturbative many-body effects beyond
QBE are present for strong interactions [see Fig. 3 (for U/t↑ =
4)]. While the profiles initially agree well, at later times the
correlations decay slower in the MPO simulations than for
the QBE, which we attribute to the formation of multiparticle
bound states of heavy and light particles (doublons, trimers,
etc.) [30], that are not described by the QBE. For the remain-
der of this work, we focus on the regime in which the QBE is
applicable and study the dynamics of the system to much later
times than those accessible with the matrix product operator
approach.

To study the crossover from ballistic to diffusive transport
at late times, we now compute with the QBE the autocor-

relation function Cσ (t ) = Cσσ (0, t ) [see Fig. 4(a)]. In the
diffusive regime Cσ (t ) ∝ 1/

√
t . Hence, we quantify the tran-

sient with the instantaneous dynamical exponent −1/zσ (t ) =
dlogCσ /dlog t [see Fig. 4(b)]. Decreasing the mass ratio pro-
longs the transient regime for both species, and it takes very
long times to reach the diffusive scaling limit with dynamical
exponent z = 2. When increasing interactions at fixed mass
ratio, light and heavy particles experience an opposite trend:
while for the light particles larger interactions lead to a faster
convergence of the dynamical exponent to diffusion, z = 2,
heavy particles remain very slow due to the intricate interplay
of kinematics and scattering.

To further characterize the transport of this system, we
study the full correlation profiles in Fig. 5(a). For large mass
ratio, a Gaussian profile is attained at short times. By contrast,
for a small mass ratio t↓/t↑ � 1 it takes extremely long times

FIG. 3. Limitations of the Boltzmann theory at strong interac-
tions. We show the decay of an initially peaked correlation profile
at time (a) t = 10/t↑ and (b) t = 40/t↑ for two interaction strengths
U/t↑ = 1 (blue) and U/t↑ = 4 (red), where t↓/t↑ = 0.2. Solid lines
are obtained by solving the linearized QBE and dashed lines corre-
spond to exact matrix product operator simulations.
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FIG. 4. Slow decay of the autocorrelation function. (a) Auto-
correlation function for different mass ratios t↑/t↓ evaluated up to
late times. The correlations are computed at infinite temperature
for U/t↑ = 1 with an initial Gaussian profile of w = 2. (b) Flow
of the scaling exponent of the autocorrelation function zσ (t ) =
−[d logCσ /d log t ]−1 for different values of t↑/t↓ at fixed inter-
actions U/t↑ = 1 (upper panels) and different U at fixed mass
imbalance t↑/t↑ = 0.1 (lower panels). The left and right columns
correspond to the ↑ and ↓ species, respectively.

to establish a Gaussian correlation profile, indicated by the ab-
sence of the scaling collapse. As a consequence, for this mass
ratio the transport has not reached the diffusive regime even
on thousands of hopping scales. The non-Gaussian shape of
the distribution function can be understood from the extreme
limit of infinitely massive heavy particles t↓ = 0. In this limit,
a light particle scattering with a heavy one can, within the
quantum Boltzmann equation, at most swap the sign of the
momentum as a consequence of energy-momentum conser-
vation. This results in a block-diagonal linearized collision
integral 	σ,σ (k, q) coupling k modes only to q = ±k. As a
consequence, the linearized Boltzmann equation decouples in
blocks of paired momenta (k,−k): each of these blocks at
late time experiences diffusive behavior, with a momentum-
dependent diffusion constant. The total correlation function
will thus be obtained as a weighted sum of Gaussian profiles
with momentum-dependent variance, set by the k-dependent
diffusion constants, which results in the non-Gaussian profile.
For small mass ratios, different momentum sectors couple
weakly. As a consequence, ultimately a Gaussian correlation

FIG. 5. Correlation profiles. (a) Rescaled correlation pro-
files

√
tC↑↑(x/

√
t, t ) for several times between tt↑ = 102 . . . 103,

where a collapse indicates diffusive scaling. (b) Spatial vari-
ance d
2/dt = 2D(t ) for light (left column) and heavy (right
column) particles; the late-time saturation value corresponds
to twice the diffusion constant. (c) A finite excess kurtosis
κ̃ (4) = κ (4)/
2 quantifies the non-Gaussianity of the correlation
profiles.

profile will be attained, however, due to the weak coupling
of the modes the non-Gaussian shape of the distribution will
remain to be present for very long times, as shown in the right
panel of Fig. 5(a).

To further characterize the distribution, we study the scal-
ing of the second and fourth cumulants of the correlation
profile. The derivative of the variance d
2 /dt is com-
pared for different mass ratios in Fig. 5(b), and surprisingly
we find a fast saturation of the diffusion constant 2D =
limt→∞ d
2 /dt for all mass rations. The non-Gaussianity of
a distribution function can be characterized by the excess kur-
tosis, i.e., the standardized fourth cumulant κ̃ (4) = κ (4)/
2,
which is zero for Gaussians. In contrast to the width of the dis-
tribution, the excess kurtosis deviates from zero for extremely
long times highlighting the non-Gaussianity of the distribution
[see Fig. 5(c)]. In summary, for all considered mass ratios
the scaling of the variance is compatible with diffusion on a
comparatively short timescale, but the full correlations retain
untypical, fat-tailed profiles for very long times. Therefore,
for large mass ratios it takes extremely long to fully establish
diffusive transport for both species. In the next section, we
study these timescales in detail.
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FIG. 6. Scaling of the spectral gap of the linearized collision
operator. The gap determines the onset of diffusion at thydro ∼ 1/�,
indicating the scale when all nonconserved charges are decayed.
(a) Inverse gap as a function of the mass ratio at infinite temperature.
The left (right) inset illustrates the quadratic divergence of thydro in
vicinity of t↓/t↑ = 0 (t↓/t↑ = 1). (b) Temperature dependence of the
inverse gap 1/� for different mass ratios. Note that kinks occurring
in both panels correspond to crossings of the lowest eigenvalues
of 	.

V. DIFFUSIVE SCALE

At late time, the conservation laws of the noninteracting
limit are destroyed by interactions. Eventually, the system
enters the proper diffusive limit governed by the residual con-
servation laws, which are the energy and the particle density of
the two species. Therefore, the late time dynamics is expected
to be governed by coupled diffusive equations of the form

∂tδqα − ∂2
x

∑
α′

Dα,α′δqα′ = 0, (5)

where δq1,2,3 denotes the local expectation values of the resid-
ual conserved charges (↑-spin and ↓-spin particle and energy
densities, respectively). The QBE approach both determines
the 3 × 3 diffusion matrix and the diffusive timescales. We
start by studying the latter, which are readily connected with
the spectrum of the linearized collision operator 	. Indeed,
nonzero eigenvalues correspond to decaying modes, arising
from collisions, and the real part of the eigenvalue is the
inverse of the decay time. Thus, the spectral gap � mea-
sures when the hydrodynamic regime is entered, thydro ∼ 1/�

[Fig. 6(a)]. For intermediate mass imbalance we find 1/� to
be of O(1). However, the gap � closes near t↓/t↑ = 0 and
t↓/t↑ = 1, leading to divergent thydro. This is expected, as in
both limits infinitely many conservation laws are present due
to integrability. In both cases we find a quadratic divergence
thydro ∼ (t↓/t↑)−2 and thydro ∼ (1 − t↓/t↑)−2, respectively, and

this matches our previous observation of a long ballistic-to-
diffusive crossover in these regimes.

In Fig. 6(b) we show the temperature dependence of 1/�.
For high temperatures β � 2 the behavior is consistent with
the infinite-temperature case, but at low temperatures the trend
is reversed: smaller mass imbalance leads to a larger thydro,
diverging exponentially as β → ∞. This can be understood
from the emergence of the universal low-temperature descrip-
tion in terms of a Tomonaga-Luttinger liquid (with marginal
perturbations) [47], which is integrable and supports ballistic
transport. At finite but small temperature, diffusion is due
to excitations nearby the Fermi edges and the phase space
undergoing nontrivial scattering vanishes exponentially in β.
It should be stressed that divergent timescales thydro predicted
by the QBE should be taken with care since the Boltzmann
approach captures only the first nontrivial perturbative correc-
tions in U . In proximity of these singular limits, corrections
beyond QBE may become important and can modify the dif-
fusive timescale. Nonetheless, the divergence of thydro within
QBE is a good indicator for the extremely long times needed
for diffusion to emerge.

We now evaluate the diffusion matrix Dα,β . Following
Ref. [31] (see also Appendix B), the diffusion matrix can be
extracted from the QBE by integrating out the dynamics of the
decaying charges and projecting on the residual conservation
laws

Dα,α′ = [A (P	P)−1 A]α,α′ (6)

with the diagonal operator Aστ (k, q) = vσ (k) δ(q − k)δστ

[vσ (k) is the group velocity] and P a projector on the de-
caying modes. Therefore, P	P is invertible by construction.
Interestingly, we find that for half-filling and zero magne-
tization, the diffusion matrix becomes diagonal, decoupling
the hydrodynamics modes, and in Fig. 7 we focus on this
point. With decreasing but still finite t↓/t↑, the ↑ density and
the energy density diffusion constants saturate to a constant
value, while the diffusion constant of the ↓ density decays as
expected. With increasing mass ratio all diffusion constants
increase monotonically: as we already commented, close to
mass balance the gap of the collision integral � closes and the
diffusion matrix diverges since at mass balance and for zero
magnetization the Fermi-Hubbard model is known to exhibit
superdiffusive transport [38].

In Fig. 7(b) we analyze the temperature dependence of the
diffusion constants. With decreasing temperature we find an
increasingly stronger dependence on t↓/t↑. For a fixed mass
ratio the diffusion constants show a pronounced temperature
dependence. At high temperature, it follows an expansion of
the form D = D0(1 + c2β

2) [48], with the infinite temperature
value D0, and c2 a constant that depends on microscopics.
For low temperature we find a nonmonotonic dependence of
D↑↑ on β, where the diffusion constant starts to decrease with
decreasing temperature.

VI. SUBDIFFUSIVE TRANSPORT IN LINEAR
POTENTIALS

Generally, transport properties can be modified by exter-
nal potentials. In this section we focus on a linear potential
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FIG. 7. Tunable diffusion constants. (a) Diffusion constants Dαα

as a function of the mass ratio t↓/t↑ for U/t↑ = 1 at infinite tem-
perature. (b) Temperature dependence of the diffusion constants.
In the left panel the infinite temperature limit (solid) is compared
to βt↑ = 1, 2 (dotted, dashed). In the right panel, the temperature
dependence is plotted for t↓/t↑ = 0.5.

Vext (x) = −Fx. Noninteracting particles on a lattice in a linear
potential experience Wannier-Stark localization, and perform
Bloch oscillations [49]. Interactions can significantly affect
this simple picture. For example, a recent experimental study
of a two-dimensional Fermi-Hubbard model in a linear poten-
tial [15] shows a crossover from diffusive transport at short
wavelengths (k � F/t↑) to subdiffusive dynamics at long
wavelengths (k � F/t↑). In such systems with a tilted po-
tential the coarse-grained charge dynamics is governed by an
emergent hydrodynamic description equivalent to the hydro-
dynamics of dipole-moment conserving systems, leading to a
subdiffusive mode with dynamical exponent z = 4 [13–15]. In
the limit of strong tilts, the system can even exhibit a dynami-
cal form of localization, known as Hilbert space fragmentation
[50,51] on prethermal timescales [51–54].

By considering weak enough tilts and interactions strength,
and thus by avoiding Hilbert space fragmentation, we can de-
rive the subdiffusive hydrodynamics directly from our QBE.
Moreover, we can study the crossover from diffusion at short
length scales to subdiffusion at long length scales. We notice
that finite-temperature homogeneous thermal states are not
stationary in the presence of a tilted potential, hence, any
initial state will relax to the infinite-temperature ensemble.
Therefore, we start by considering weak inhomogeneities on
infinite-temperature states.

As a first step we generalize the diffusive equations (5)
to the presence of the tilted potential, which can be per-
formed with the methods of hydrodynamic projections (see

Appendix B for details)

∂tδqα −
∑
α′

[(∂x − F
)D(∂x + F
†)]α,α′ δqα′ = 0, (7)

where the matrix 
 is defined as 
i, j = δi,3(δ j,1 + δ j,2).
The F -dependent shift in the diffusive equation arises be-
cause the kinetic energy q3 is no longer conserved. Instead,
the total energy etot(x) = q3(x) − Fx(q1 + q2) is conserved,
which includes in addition to the kinetic energy also
tilt contributions. To analyze the diffusive equations (7)
we go to Fourier space and determine the eigenval-
ues γn(k) of the operator as obtained from the zeros
of det[γn(k) − (ik + F
)D(ik − F
†)]. As (ik + F
)−1 =
1
ik (1 − F

ik 
), the eigenvalue equation can be recast in the
more convenient form det[k−2γn(k)(1 − F

ik 
)(1 + F
ik 
†) −

D] = 0. For F/k � t↑ to leading order γn(k) solves
det[k−4F 2γn(k)

† − D] � 0, resulting in a subdiffusive
mode γ0(k) ∝ k4:

γ0(k) = k4

2F 2[D−1]3,3
, k/F � 1/t↑. (8)

In the opposite regime k/F � 1/t↑, conventional diffusion
is restored with modes γn(k) = k2λn, where λn are the three
eigenvalues of the diffusion matrix. We emphasize that the
crossover is solely determined by the ratio k/F .

The normal modes of the effective hydrodynamic equa-
tion (7) computed from the linearized collision integral are
shown in Fig. 8(a). The interactions and the mass ratio are
fixed far from special integrable points: we choose U/t↑ = 1.0
and t↓/t↑ = 0.5. In the presence of the tilt, the three diffusive
modes cross over for k � F/t↑ to the predicted subdiffusive
mode, Eq. (8), arising from the coupling of energy and charge,
a quasihydrodynamic mode [13,15], and a conventional diffu-
sive mode, not present in the hydrodynamic model for a single
species. We also verified that for an N species mixture, there
are N − 1 residual diffusive normal modes. With the inhomo-
geneous QBE we probe typical initial states that couple to the
subdiffusive mode and are employed in experimental realiza-
tions [15]. As illustrated in Fig. 8(b), a sinusoidal perturbation
for the light particles is imprinted on the initial state n↑(x) ∼
cos(kx) with a homogeneous background of heavy particles.
The amplitude A(t ) of the wave decays exponentially with
a wave-number-dependent decay rate γ (k). Probing a wide
range of wave vectors and tilts shows excellent agreement
with Eq. (7) for the crossover of the slowest normal mode to
subdiffusion, shown as markers in Fig. 8(a).

VII. FAR FROM EQUILIBRIUM AND EXPERIMENTAL
IMPLICATIONS

The inhomogeneous QBE can be a useful tool to study
the dynamics induced by involved experimental preparation
schemes. To demonstrate this, we model recent experiments
on the relaxation dynamics of the mass-imbalanced Fermi-
Hubbard model realized by ultracold ytterbium atoms in an
optical lattice [30]. In this section, we use the full inhomoge-
neous QBE to study the nonequilibrium protocol realized in
the experiment [30].

In the experiment, an anisotropic three-dimensional opti-
cal lattice realizes an ensemble of one-dimensional systems,
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FIG. 8. Subdiffusive transport in a linear potential. (a) Decay-
ing hydrodynamic modes γn(k) obtained for t↓/t↑ = 0.5 at infinite
temperature. The black dashed line corresponds to the analytic
asymptotics, Eq. (8), for the subdiffusive mode. Solid lines are
extracted from linearizing the hydrodynamic equations, and sym-
bols are obtained from solving the inhomogeneous QBE for various
density wave initial conditions. (b) Left panel: Decay of a density
wave n↑(x) ∼ cos(kx) for t↓/t↑ = 0.5, U/t↑ = 1.0 at infinite tem-
perature in a linear potential Vext (x) = −Fx at different times t = 0
(blue), t = 100/t↑ (gray), and t = 500/t↑ (pink). Right panel: The
amplitude A(t ) for a wide range of wave vectors k. The markers in
(a) are obtained from the decay constants for a range of different tilts
F/t↑ ∈ [0.01, 0.1] and wave vectors k ∈ [π/100, π/10].

which are loaded with ultracold ytterbium atoms harmon-
ically confined by the potential Vext = κ/2 (x − x0)2. Mass
imbalance is realized via a state-dependent optical lattice, ex-
ploiting the different polarizability of the ground state and the
long-lived excited clock state of ytterbium. Onsite Hubbard
interactions can be controlled with an orbital Feshbach reso-
nance. The system is driven out of equilibrium by displacing
the trap minimum gradually over a distance of ≈20 lattice
sites with a velocity of ≈0.5 lattice sites per tunneling time
1/t↑. The dynamics of the light species is then monitored by
in situ absorption imaging for different times t , whereby the
density of the atoms n↑(x, t ) is integrated over many tubes
with varying atom numbers.

Studying transport in such a setup is challenging, as the
preparation scheme is involved and the harmonic trap influ-
ences transport. At the edges of the trap, in particular, the
tilt can be strong enough to completely depart from a hy-
drodynamic approximation. This is particularly relevant for
the heavy atoms since the local potential at the edges of the
trap is large compared to the hopping t↓, and transport can
be significantly slowed down, or can be even in a regime
of Wannier-Stark localization. For this reason the protocol

FIG. 9. Comparison of the inhomogeneous QBE with experi-
mental results of Ref. [30]. Recent experiments studied the relaxation
dynamics of a heavy-light mixture of ytterbium atoms prepared in an
optical lattice with harmonic confinement [30]. After a slow transla-
tion of the trap minimum by ≈20 lattice sites, the dynamics of the
light species is monitored for a time t . Experimental data are com-
pared with the inhomogeneous QBE. In the upper row normalized
density profiles at different points in time are shown, while the lower
panel shows δn↑, Eq. (9), which quantifies the residual dynamics.
We show data for interaction strength U/t↑ = −2.0 and mass ratio
t↓/t↑ = 0.3.

is restricted to small displacements and low fillings, where
sufficiently many heavy particles are mobile. The residual
dynamics is quantified by

δn↑(t ) =
{∫

dx ρ↑(x, t )[ρ↑(x, t ) − ρ↑(x, 0)]2

}1/2

, (9)

where the ρ↑(x, t ) = n↑(x, t )/
∫

dx n↑(x, t ) denotes the nor-
malized particle density. The observable δn↑(t ) captures
deviations from the initial state while suppressing experimen-
tal noise.

We test our QBE against the experimental realization by
approximately replicating the experimental sequence numer-
ically. To account for the ensemble of different system sizes,
we compute the weighted average of several tube sizes N↑ =
N↓ = 5, . . . , 30 according to the experimentally estimated
distribution [30]. While the experimental Hubbard parameters
can be precisely estimated, the temperature of the initial state
is much more challenging to characterize. Hence, we treat it
as a fitting parameter fixed by comparing the experimental
density profile to our numerical initial state and obtain T/t↑ ≈
4.5. In Fig. 9 we show profiles of the light species and the
density deviations δn↑(t ) over the experimentally accessible
times. The mass ratio is t↓/t↑ ≈ 0.3, and interactions are tuned
to U/t↑ ≈ −2.0.

The QBE predictions show good quantitative agreement
with the experiment. We attribute deviations, mainly visible
in the central structure, to experimental noise, the finite reso-
lution of the absorption imaging, and uncertainty in our exact
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knowledge of the initial state. However, the bulk motion of
the atomic cloud, quantified by δn↑(t ), is captured remarkably
well. From this we conclude that for these parameters the sys-
tem is in the kinetic regime, and the QBE faithfully describes
how mass imbalance constrains the dynamics of the system.
For larger interactions U/t↑ ≈ −10, which are also studied in
the experiment of Ref. [30] to demonstrate anomalously slow
relaxation, our perturbative QBE is not applicable.

VIII. CONCLUSION AND OUTLOOK

We developed a kinetic theory for the mass-imbalanced
Fermi-Hubbard model in form of the quantum Boltzmann
equation and studied transport using this framework. By lin-
earizing the quantum Boltzmann equation we computed the
decay of spatiotemporal correlations within linear response
and identified a very slow crossover from the ballistic to the
diffusive hydrodynamic regime. From the linearized equa-
tions we obtain the diffusion matrix and the timescale of
emergent hydrodynamics, which strongly depend on the mass
ratio giving rise to anomalously slow dynamics.

Within this approach, inhomogeneous potentials can be
studied as well. Based on the Boltzmann equation, we de-
rive the subdiffusive hydrodynamics with dynamical exponent
z = 4 for weakly tilted Hubbard chains compatible with an
earlier experiment [15] and fracton hydrodynamics [13,14].
Furthermore, we employ the inhomogeneous quantum Boltz-
mann equation to study the relaxation dynamics of a recent
experimental implementation of the mass-imbalanced Fermi-
Hubbard model. We found good agreement between the
experiments and the results obtained from the quantum Boltz-
mann equation. This demonstrates that the kinetic Boltzmann
theory is a useful approach to study dynamics of nonequi-
librium states generated by complex preparation schemes in
inhomogeneous potentials, which are often realized in ex-
periments with ultracold atoms, or other synthetic quantum
systems. Here, we focused on a one-dimensional, two-
component mixture of fermions. In principle, the formalism
can be straightforwardly generalized to higher dimensions,
however, the increasing phase space for collisions leads to
technical challenges. Generalizations of the technique to mul-
ticomponent mixtures and bosonic systems are in principle
straightforward and a promising route for future work.

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [56].
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APPENDIX A: DERIVATION OF THE BOLTZMANN
EQUATION

This Appendix outlines the derivation of the quantum ki-
netic theory for the mass-imbalanced Fermi-Hubbard model.
We consider the Fermi-Hubbard model on the infinite chain
and cast the interaction terms of the Hamiltonian in a sym-
metric form

Ĥ = −
∑
j,σ

tσ (ĉ†
j, σ ĉ j+1, σ + H.c.)

+ U
∑
j,{si}

Is1,s2,s3,s4 ĉ†
j,s1

ĉ†
j,s2

ĉ j,s3
ĉ j,s4

, (A1)

by introducing the interaction vertex

Is1,s2,s3,s4 = 1
2

(
δs1,s4δs2,s3 − δs1,s3δs2,s4

)
, (A2)

which is antisymmetric under the exchange of the spin indices
s1 ↔ s2 and s3 ↔ s4, and symmetric under the simultaneous
exchange of the pairs (s1, s2) ↔ (s3, s4). The Hamiltonian can
be translated to momentum space with the Fourier transform
of the Fermi operators ĉσ (k) = ∑

j eik j ĉ j,σ , which yields

Ĥ =
∑

σ

∫
dk

2π
εσ (k) ĉ†

σ (k)ĉσ (k) + U
∑
{sn}

Is1,s2,s3,s4

×
∫

dk4

(2π )3 δ2π (k) ĉ†
s1

(k1)ĉ†
s2

(k2)ĉs3
(k3)ĉs4

(k4), (A3)

where the momentum integrals are over the Brillouin zone
B = [−π, π ] with dk4 = dk1 dk2 dk3 dk4 and the free dis-
persion εσ (k) = −2tσ cos(k). We introduced the abbreviation
k = k1 + k2 − k3 − k4 for the momentum transfer, where
momentum is conserved only up to 2π due to Umklapp scat-
tering, indicated by δ2π (k) = δ(k mod 2π ).

1. Collision operator

For systems with weak spatial and temporal inhomo-
geneity, we seek to go to a kinetic description for the
space-time-dependent mode density describing the quasimo-
mentum distribution, referred to as Wigner function. The
locally homogeneous system is characterized by the two-point
correlation function Wστ (k) = 〈ĉ†

σ (k)ĉτ (k)〉, which is matrix
valued due to the presence of the two spin species [39]. From
the Heisenberg equation of motion, the evolution of the two-
point correlator obeys

i∂tWσσ ′ (k, t ) = −[εσ (k) − εσ ′ (k)]Wσσ ′ (k, t ) + U × [. . . ].

(A4)

The dispersion relations of the two species are different.
Hence, the off-diagonal entries of W contain free contribu-
tions, which oscillate on a timescale t ∼ |t↑ − t↓|−1 � U −1,
within the assumed scaling limit. Consequently, on kinetic
timescales off-diagonal terms in W decay due to dephasing
and only the diagonal correlations nσ (k) = Wσσ (k) matter.
For the equation of motion of the two-point correlator’s
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FIG. 10. Diagrammatic notation for multipoint correlation functions. (a) The interaction tensor Is1,s2,s3,s4 defined in Eq. (A2). (b) The
two-point Wστ , four-point 〈C (4)

{sn}(kn)〉, and six-point 〈C (6)
{sn}(kn)〉 correlation functions. Leg indices are abbreviated by ξn = (sn, kn) and the legs’

positions are relevant (note the different conventions for I and C). For the correlators, incoming legs connect to creation and outgoing legs to
annihilation operators. (c) The diagram corresponding to the right-hand side of Eq. (A5), without the Hermitian conjugate term. Contracting
two legs amounts to integrating the momentum over k ∈ B and summing the spin index over s ∈ {↑,↓}. For each interaction tensor, a global
factor of U must be included.

diagonal entries, we obtain

i∂tnσ (t ) = U
∫

dk 4

(2π )2 δ2π (k) δ(k1 − k)
∑
{sn}

Is1,s2,s3,s4

× δs1σ

{〈
ĉ†

s1
(k1)ĉ†

s2
(k2)ĉs3

(k3)ĉs4
(k4)

〉 + H.c.},
(A5)

which in turn depends on the four-point correlation function.
For Hubbard interactions the equation of motion for any N-
point correlator will generally contain up to (N + 2)-point
correlators. Recursively integrating these equations of motion
results in a perturbative Dyson expansion in powers of U
[42,43]. Here, we merely outline the calculations necessary
to obtain the second-order approximation. In homogeneous
settings, we can focus on the connected part of the four-point
correlation function, as the Gaussian part does only give an
irrelevant background contribution.

Let us abbreviate the multipoint correlators of or-
der N by 〈C(N )

{sn} ({kn})〉 ≡ 〈C(N )〉. The equation of motion
for the connected four-point correlator is then of the
form

i∂t 〈C(4)〉c = −ε〈C(4)〉c + U F[〈C(4)〉, 〈C(6)〉]c, (A6)

where ε = εs1 (k1) + εs2 (k2) − εs3 (k3) − εs4 (k4) denotes the
energy transfer and F is a functional of the multipoint cor-
relators similar to Eq. (A5). Notice that in the second term
we can split the correlators into their Gaussian and connected
parts UF[W ]c + OU 2, where the connected parts fulfill again
a similar equation of motion leading to an additional order of
U . Hence, truncating these multipoint correlators at Gaussian
level leaves us with an overall O(U 2) due to the factor of U in
Eq. (A5), while neglecting corrections of O(U 3).

Within this perturbative expansion, we integrate the equa-
tion of motion for 〈C(4)〉c within the approximation that F [W ]c
remains approximately constant on the timescale of the free
evolution, dictated by ε.

Within this perturbative expansion, the equa-
tion of motion for the connected four-point correlator
i∂t 〈C(4)〉c = −ε〈C(4)〉c + U F[W ]c can be formally

integrated [46]

〈C(4)〉c(t ) = U
∫ t

0
dt ′ eiε(t−t ′ )t F[W ]c

= U
∫ U

0
dt ′ eiε(t−t ′ )t F[W ]c

+ UF[W ]c

∫ t

U
dt ′ eiε(t−t ′ )t . (A7)

In the second line the integral is separated into the two
timescales t < U and t > U . In the kinetic scaling limit,
we simultaneously take U → 0 and t → ∞, while keep-
ing U 2t finite. The first integral vanishes in this limit and
for the second integral we assume the mode density to
only vary slowly on the kinetic timescale, hence, F can be
pulled in front of the internal. By regularizing the remain-
ing integral with

∫ ∞
0 dt e±iωt = limη→0+ ±i

ω±iη = ± iP ( 1
ω

) +
πδ(ω) =: �±(ω), we obtain for the four-point correlator

〈C(4)〉c = −U �+(ε) F[W ]c. (A8)

As the equation of motion for the four-point correlator
contains six-point correlators, computing F[W ] in practice
becomes quite cumbersome. To this end, we make use of a
diagrammatic notation to efficiently handle the bookkeeping.
In Fig. 10 the diagrammatic representations for the collision
vertex and the multipoint correlators are shown. The equa-
tion of motion for the two-point correlator translates to the
diagram in Fig. 10(c), where a factor of U is associated to the
interaction tensor and we need to add the Hermitian conjugate.
Similarly, the diagrams corresponding to the right-hand side
of Eq. (A6) are depicted in Fig. 11.

At the level of six-point correlations we introduce the
Gaussian approximation to truncate the Dyson expansion to
second order in U . Hence, we repeatedly apply Wick theorem
and identify the connected contributions, depicted in Fig. 12.
At this point, we keep the matrix nature of W , as it does not
add any complications. Discarding the off-diagonal entries
later is simple and will lead to a concise expression for the
collision operator.

The equation of motion for the four-point correlator can
subsequently be solved in the kinetic limit, as illustrated
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FIG. 11. Interaction terms in the equation of motion for the
four-point correlator. These diagrams correspond to the functional
F [〈C (4)|, 〉〈C (6)|]〉 in Eq. (A6), which we want to approximate in the
kinetic limit to second order in U .

by Eq. (A8). As the W matrices conserve momentum, we
can define I± = �± × I , and obtain the four-point correla-
tion function from the diagrams shown in Fig. 12. Finally,
plugging this result into the diagram in Fig 10(c) yields the
expression for the collision operator, depicted in Fig. 13. In
principle, one could at this point convert the result back to
algebraic notation. However, in contrast to the mass-balanced
case, where the collision operator can be written in a concise
form in terms of products and traces of the W matrix [39,42],
for unequal masses the resulting expression cannot be brought
to such a form.

In the case of mass imbalance and thus assuming the de-
phasing of off-diagonal terms in W , the collision operator
simplifies significantly:

Cσ [n↑, n↓] = 2U 2
∫

dk4

2π
δ2π (k) δ(ε) δ(k1 − k)

× {nσ (k3)nσ̄ (k4)[nσ (k1) − nσ̄ (k2) − 1]

− nσ (k1)nσ̄ (k2)[nσ (k3) − nσ̄ (k4) − 1]}. (A9)

Here we made use of �+(ε) + �−(ε) = 2πδ(ε), hence,
the principal value does not contribute, and energy is con-
served. The resulting kinetic theory of the homogeneous

FIG. 12. Connected part of the interaction contributions to the
four-point correlator in Gaussian approximation. Here, the shown
diagrams represent the connected part of the functional F [W ]c.
We obtained the diagrams in two steps: First, we approximate
higher-order correlators by their Gaussian part, truncating the series
expansion to second order in U ; second, we identify all connected
diagrams appearing in this approximation.

model is described by the Boltzmann equation ∂tnσ (k) =
Cσ [n↑, n↓](k). We note that, as a consistency check, it is easy
to verify the number of particles and energy are exactly con-
served for the stationary points describing thermal ensembles.

2. Collision manifold

The collision integral determining the kinetic description
of our model is remarkably simple and only a single integral
needs to be evaluated, enabling numerical studies of fully
inhomogeneous settings. Kinematically allowed collisions are
defined by the collision manifold δ2π (k)δ(ε)δ(k1 − k). For
J > 0 the set of solutions to {k mod 2π = 0 ∧ ε = 0} has
two branches. There is the trivial solution k1 = k3 ∧ k2 = k4,
corresponding to elastic scattering and the collision integral
vanishes on this contour. Additionally, a nontrivial collision
channel is present, and a closed-form expression for the
collision contour can be obtained. While k1 is fixed by the
external momentum, we can choose to fix k4 from momentum
conservation and k3 from energy conservation, i.e., we have
δ2π (k) = δ[k4 − f (k1, k2)] and

δ(ε) = δ[k3 − g(k1, k2)]

|vσ (k3) − vσ̄ (k4)| . (A10)

Here f (k, q) = [k + q − g(k, q)] mod 2π , and from some al-
gebra we obtain for the solution

g(k, q) = 2 arctan

(
t↓/t↑ sin(q + k/2) − sin(k/2)

t↓/t↑ cos(q + k/2) + cos(k/2)

)
.

(A11)
We note that the Jacobian can lead to singularities in the

collision integral (see, for example, the the mass-balanced
case [39]). However, in our case different dispersions for ↑
and ↓ species avoid singular points, but nevertheless discon-
tinuities in the integrand lead to nonanalytic points of the
collision integral for t↓/t↑| sin(k)| � 1, located at the four
momenta

k = ± arcsin(t↓/t↑), k = ±π ∓ arcsin(t↓/t↑). (A12)

We note that each singular point is approached from one side
with a square-root behavior with respect to k, corresponding to
a divergent slope. Such functions can be subtle for numerical
integration schemes in principle. We split the integrals at these
nonanalytic points, but no other regularization is required.

3. Linearized collision operator

To study transport in the linear-response regime
we linearize the QBE around a homogeneous thermal
state nσ (k, x, t ) = nth(k) + δnσ (k, x, t ), with nth

σ (k) =
[eβ[εσ (k)−μσ ] + 1]

−1
. By definition the collision operator

vanishes for Cσ [nth
↑ , nth

↓ ](k) = 0, so we can expand to first
order

Cσ (k) = −
∫

dq

2π

∑
τ∈{↑,↓}

	σ,τ (k, q) δnτ (q) + O(δn2),

(A13)
where 	σ,τ (k, q) = −δCσ (k)/δnτ (q)|n=nth denotes the lin-
earized collision integral, obtained as variational derivative
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FIG. 13. Collision operator in kinetic scaling limit. In Gaussian approximation, the equation for the collision operator is integrated by
going to the kinetic limit, where we defined the modified interaction vertex I+ = �+ × I .

evaluated on the thermal state. We obtain the expression

	σ,τ (k, q) = −2U 2
∫

dk4

2π
δ2π (k) δ(ε) δ(k1 − k) nth

σ (k1)nth
σ̄ (k2)nth

σ (k3)nth
σ̄ (k4)

× {
δσ,τ

[
δ(k1 − q)

[
nth

σ (k1)
]−2([

nth
σ̄ (k2)

]−1 − 1
) − δ(k3 − q)

[
nth

σ (k3)
]−2([

nth
σ̄ (k4)

]−1 − 1
)]

+ δσ̄ ,τ

[
δ(k2 − q)

[
nth

σ̄ (k2)
]−2([

nth
σ (k1)

]−1 − 1
) − δ(k4 − q)

[
nth

σ̄ (k4)
]−2(

[nth
σ (k3)]

−1 − 1
)]}

, (A14)

and we simply write the action of the operator with the ma-
trix product in spin space as Clin(k) = − ∫ dq

2π
	(k, q)δn(q) =

−(	δn)(k). Assuming a homogeneous background state and
no external potential, the linearization of the other terms of
the Boltzmann equation is straightforward, leading to the lin-
earized Boltzmann equation

∂tδnσ + ∂x(Aδnσ ) − (
∂kn

th
σ

)
Fσ = −	δnσ , (A15)

with the diagonal operator Aστ (k, q) = vσ (k) δ(q − k)δστ ,
and the Hartree contribution Fσ = U ∂x

∫ dq
2π

δnσ̄ (q).

APPENDIX B: HYDRODYNAMIC DESCRIPTION FROM
THE METHOD OF PROJECTIONS

In this Appendix, we revisit the method of projections
to extract the diffusion matrix from the QBE, following
Ref. [31]. In the first subsection, we consider the homoge-
neous case. The case of a tilted potential is then discussed in
the second subsection.

1. Homogeneous system

In the absence of interactions, the system has in-
finitely many local conserved charges in the form qn(x) =∫

dk
2π

〈hn(k), n(k, x)〉, where 〈h, n〉 = ∑
σ hσnσ . Once inter-

actions are considered, the collision integral reduces the
list of conserved quantities to particle number hσ (k) =
δσ,↑/↓, and energy hσ (k) = εσ (k). Since we linearize close
to equilibrium, we notice that the Hartree term in Eq. (2)
can be neglected. Furthermore, we change the basis k ∈
B → {hn}∞n=0, which yields the kinetic equation ∂tδqn +∑

m Am,n∂xδqm = −∑
m 	m,nδqm, where both A and 	 are

expressed in the charge basis.
The residual conserved charges correspond to the

zero modes of 	, where the left eigenvectors are

again given by v1,2
σ (k) = δσ,↑/↓ and v3

σ (k) = εσ (k) for
particle number and energy, respectively. Similarly,
right eigenvectors are associated with thermal fixed
points. Hence, expanding nth(μσ + δμσ ) and nth(β + δβ )
gives rise to the (unnormalized) right eigenvectors
w1,2

σ (k) = {1 + cosh[βεσ (k) − μσ ]}−1δσ,↑/↓ and w3
σ (k) =

{1 + cosh[βεσ (k) − μσ ]}−1εσ (k). We define P the projector
on the subspace of the decaying charges and P⊥ = 1 − P
its complement, hence, P⊥(k) = ∑

n vn(k) ⊗ vn(k). In
the charge basis, we can split the Boltzmann equation in
conserved and decaying modes

∂tδqα +
∑

m

Aα,m∂xδqm = 0, (B1a)

∂tδqn +
∑

m

An,m∂xδqm = −
∑

m

	n,mδqm, (B1b)

where greek indices correspond to conserved charges and
Latin indices to decaying ones. By inverting Eq. (B1b) and
separating out the conserved charges

δqn = −
∑

α

(	−1∂t + 	−1A∂x )n,α δqα

−
∑
m �=α

(	−1∂t + 	−1A∂x )n,m δqm, (B2)

we can iteratively express the decaying charges in terms of
the conserved charges, and consider only the gradients to the
lowest order [31]

δqn =
∑

α,m>0

(−1)m[(	−1∂t + 	−1A∂x )
m

]n,αδqα

≈ −
∑

α

(	−1A)n,α∂xδqα. (B3)
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Note that matrix products are restricted to the subspace of
decaying modes, such as

∑
l �=α (	−1)n,l Al,m. Plugging back

into Eq. (B1a) yields the diffusion equation

∂tδqα − ∂2
x

∑
α′

[A(P	P)−1A]α,α′δqα′ = 0, (B4)

which couples the conserved modes via the 3 × 3 diffusion
matrix Dα,α′ = [A (P	P)−1 A]α,α′ .

2. Effect of a tilted potential

We now generalize the previous analysis to the case where
a tilted potential V (x) = −Fx is present, deriving the hydro-
dynamics used in Sec. VI. When a tilted potential is activated,
infinite-temperature states are the only homogeneous steady
state of the Boltzmann equation. Therefore, we linearize
charge fluctuations around this state. We can straightforwardly
repeat the same procedure as before, with the caveat that
Eqs. (B1) now account for the presence of the external force
and thus become

∂tδqα +
∑

m

Aα,m∂xδqm + F
∑

m

Bα,mqm = 0, (B5a)

∂tδqn +
∑

m

An,m∂xδqm + F
∑

m

Bn,mqm = −
∑

m

	n,mδqm.

(B5b)

The Bj, j′ operator originates from the gradient of the poten-
tial in Eq. (2). In the momentum basis, we have Bστ (k, q) =
δστ δ(k − q) ∂q. By repeating the same analysis as before, but
considering also the deformation of the equations induced by
the weak potential, one obtains the modified diffusion equa-
tion

∂tδqα −
∑
α′

[(A∂x + FB)(P	P)−1(A∂x + FB)]α,α′δqα′ = 0,

(B6)
which we now further simplify. While A and B are different
operators, a simple relation can be established in the basis of
the charges. In particular, B1, j = B2, j = 0 holds for every j
and for the energy index a simple relation with A holds B3, j =
−(A1, j + A2, j ). This immediately follows from comparing the
matrix elements

B3, j =
∑

σ

∫
dk

2π
εσ (k)∂kh j (k)

= −
∑

σ

∫
dk

2π
∂kεσ (k)h j (k) = −(A1, j + A2, j ), (B7)

where above we integrate by parts and used the definition of
the group velocity vσ (k) = ∂kεσ (k).

Using Eq. (B7), together with the fact that B is anti-
symmetric, we can replace P⊥BP = −
P⊥AP and PBP⊥ =
PAP⊥
†, where 
α,α′ = δα,3(δα′,1 + δα′,2). Using this iden-
tity in Eq. (B6) and the diffusion constant implicitly defined
in (B4) finally yields the hydrodynamic equation (7).

APPENDIX C: NUMERICAL METHODS

The simple structure of the collision integral allows
for a numerical solution of the inhomogeneous nonlinear

kinetic theory, described by Eq. (2). For this purpose we
discretize the partial differential equation in real space and
momentum space on a uniform grid {kn = −π + l�k}Nk

l=0 ×
{xm = m�x}Nx

m=0, with spacing �k = 2π/Nk and �x = L/Nx,
such that (nσ )l,m = nσ (kl , xm), and we simplify the notation
again by n = (n↑, n↓)T . Hence, at each step in time the mode
density is approximated by an Nk × Nx real matrix for each
spin species. Such a discretization, known as method of lines
[57], reduces our problem to an ordinary integrodifferential
equation, where space and momentum derivatives are approx-
imated by finite differences. We use the second-order cen-
tral discretization ∂xnl,m = [nl,m+1 − nl,m−1]/2�x + O(�x2),
and similar for the momentum derivative. For both real and
momentum space we impose periodic boundary conditions.
In principle, other boundary conditions may be used in real
space without any technical complications.

Our Boltzmann equation is in the form of a continuity
equation for the mode density describing convective motion in
phase space. As expected for such a problem, we find poor nu-
merical stability with explicit solvers. The use of fully implicit
schemes, such as the commonly employed Cranck-Nicolson
method [58], requires a prohibitively large number of evalu-
ations of the collision integral, as the implicit equation must
be solved at every time step. For this reason, we use a mixed
implicit-explicit method [59], where the collision integral is
treated explicitly and the convective terms implicitly, such that
we can separate

∂tn = f [n] + g[n], (C1)

with f [n] = −v ∂xn − F ∂kn and g[n] = U 2 C[n]. Specifi-
cally, we discretize the time domain nn = n(tn) = n(n �t )
for some appropriate time step, and use the Crank-Nicolson-
Adams-Bashforth scheme [59]

1

�t
(nn+1 − nn) = 1

2
( f [nn+1] + f [nn])

+ 3

2
g[nn] − 1

2
g[nn−1], (C2)

which is exact to second order in the time step �t . It ap-
plies Crank-Nicolson to the implicit part and the two-stage
Adams-Bashforth to the explicit part. The algebraic equa-
tion in the implicit step can be solved for nn+1 via fixed-point
interactions. Note that f [n] is a nonlinear functional in n

due to the self-consistent dependence of the Hartree term
on n and, furthermore, that root finding with the Newton-
Raphson algorithm would require computing the Jacobian of
size (2NxNk ) × (2NxNk ), which is both expensive and memory
consuming. Hence, we define the map

�[n] = nn + �t

2
( f [n] + f [nn] + 3 g[nn] − g[nn−1]), (C3)

for which the new value is a fixed point �[nn+1] = nn+1,
and iterate nn+1

( j+1) = �[nn+1
( j) ] until convergence is reached for

some given accuracy threshold ||nn+1
( j+1) − nn+1

( j) || < δFP. For

the initial value a forward Euler step nn+1
(0) = nn + �t ( f [nn] +

g[nn]) is used as a first estimate.
At each time step, the collision integral needs to be evalu-

ated once on the space-momentum grid, and we use standard
Gauss-Legendre quadrature to accurately compute it. Note
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that for J| sin(k)| � 1 the integrand has up to two disconti-
nuities, and in this case we split up the integration domain
appropriately. Our algorithm proves stable for a wide range of
parameters and external potential. We typically use Nk, Nk ∼
200 and �t = 0.02–0.1 and δFP = 10−12.

APPENDIX D: TENSOR NETWORK SIMULATIONS

By means of tensor network simulations we calculate dy-
namical correlation functions of the form 〈q̂ j q̂ j′ (t )〉, evaluated
on a background equilibrium state 〈Ô〉 = Tr[Ô ρ̂], where q̂ j

is the local density of a conserved charge. For simplicity,
we focus on infinite temperature ρ̂ = 1⊗L/N , with L the
system size and N = 4L the Hilbert space dimension. We
can efficiently represent the initially local operator q̂ j as a
matrix product operator (MPO) in form of a product operator
only acting nontrivial at the jth lattice site. The unitary time
evolution in the Heisenberg picture i∂t q̂ j = i[Ĥ, q̂ j] can be
computed with standard tensor network methods. For this
purpose, the MPO is represented as a matrix product state
(MPS) in a doubled Hilbert space by combining the physical
legs. For such a vectorized operator |q̂ j〉 the time evolution
∂t |q̂ j〉 = L|q̂ j〉 is governed by the Liouvillian superoperator

L = Ĥ ⊗ 1 − 1 ⊗ Ĥ , and is solved by |q̂ j〉 = eiLt |q̂ j〉.
We calculate the time evolution by Trotterization of the
time-evolution superoperator with the well-established time-
evolving block decimation (TEBD) algorithm [60,61]. Our
implementation is based on the TENPY package [55]. Due to
translational invariance it is sufficient to carry out the com-
putation once for the central site |q̂L/2(t )〉 and subsequently
obtain the full correlation profile at each time step by applying
q̂ j and computing the trace.

Similarly, the time evolution of the system under a quench
Ĥ → Ĥ ′ can be computed. For this purpose, we obtain the
density matrix at finite temperature ρ̂ = e−βĤ /Z , which sub-
sequently can be evolved under a quenched Hamiltonian Ĥ ′.
We use the vectorization as a purification of the density
matrix |ρ̂〉 to obtain an MPS representation. Starting from
the maximally mixed infinite-temperature state ρ̂ = 1⊗L/N
imaginary-time evolution up to β/2 yields the thermal state,
and the von Neumann equation is solved by real-time evolu-
tion with the Liouvillian |q̂ j〉 = e−iL′t |q̂ j〉. Both calculations
are efficiently carried out with TEBD, and we can thereafter
evaluate observables, such as the particle density. Gener-
ally, the maximal evolution time is limited by the growing
operator-space entanglement, where we fix the maximal bond
dimension to χmax = 512.
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Abanin, T. Prosen, and Z. Papić, Slow dynamics in translation-
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