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Continuous ferromagnetic quantum phase transition on an anisotropic Kondo lattice
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Motivated by the recent discovery of ferromagnetic quantum criticality in the heavy fermion compound
CeRh6Ge4, we develop a numerical algorithm of infinite projected entangled pair states for the anisotropic
ferromagnetic Kondo-Heisenberg model in two dimensions and study the ferromagnetic quantum phase tran-
sitions with varying magnetic and hopping anisotropy. Our calculations reveal a continuous ferromagnetic
quantum phase transition in the large anisotropic region and first-order quantum phase transitions for smaller
anisotropy. Our results highlight the importance of magnetic anisotropy on ferromagnetic quantum criticality in
Kondo lattice systems and provide a possible explanation for the experimental observation in CeRh6Ge4 with
a quasi-one-dimensional magnetic structure. Our work opens the avenue for future studies of the rich Kondo
lattice physics using state-of-the-art tensor network approaches.
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A quantum phase transition (QPT) refers to a phase tran-
sition at zero temperature. A quantum critical point (QCP)
marks a continuous QPT and often induces exotic scaling
behaviors in physical properties at finite temperatures [1,2].
The recent discovery of a ferromagnetic (FM) QCP in the
clean heavy fermion compound CeRh6Ge4 under hydrostatic
pressure [3] has stimulated intensive interest in clarifying
its underlying mechanism. According to prevailing theories,
FM quantum phase transitions in heavy fermion systems, as
manifested in UGe2 [4] and URhAl [5], are typically first
order because of some soft modes associated with the electron
Fermi surfaces [6,7]. A continuous FM QPT had previously
been observed in YbNi4(P0.92As0.08)2 [8,9], but might be
due to disorder introduced by chemical substitution. How-
ever, this cannot explain the observation in the stoichiometric
CeRh6Ge4, which demands a novel theoretical understanding.

Very lately, it was suggested that the noncentrosymmet-
ric crystal structure and strong spin-orbit coupling (SOC)
may induce a gap in the soft modes and invalidate the ar-
gument for a first-order FM QPT [10]. But this claim was
soon disputed by a fully self-consistent nonperturbative anal-
ysis finding that backscattering processes ignored in previous
work can always contribute a nonanalytic term in the free
energy and cause a first-order transition for arbitrarily com-
plex SOC [11]. Alternatively, it was also pointed out that
magnetic anisotropy might be important [3,12], since both
CeRh6Ge4 [3] and YiNi4(P0.92As0.08)2 [8,9] have a quasi-one-
dimensional magnetic structure. The reduced dimensionality
might enhance magnetic fluctuations and tune the first-order
QPT to a continuous one [13]. Indeed, the latest calcula-
tions based on the large-N Schwinger boson approximation
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confirmed this expectation and yielded a unified phase dia-
gram showing the variation from first- to second-order QPTs
with increasing magnetic anisotropy [14]. But all these re-
sults require further scrutiny by more accurate numerical
approaches.

Tensor network variational methods have been developed
in recent years for complex quantum many-body systems
and do not suffer from the negative sign problem in quan-
tum Monte Carlo simulations [15]. For one-dimensional (1D)
or stripe lattices [16,17], the density matrix renormalization
group (DMRG) based on matrix product states [18] provides
a useful tool of reference. Its extension to 2D has led to the
finite-size projected entangled pair states (PEPS) [19] and its
infinite version iPEPS [20], which were initially designed for
spin and boson systems but also have a potential for fermionic
systems [21–23]. Their preliminary applications include the
study of stripe orders and its competing relation to the uniform
d-wave state in the doped 2D Hubbard model [24,25] and
t-J model [26,27], calculations of Fermi surfaces [28], the
finite-temperature state [29] and excitation [30,31] of the 2D
Hubbard model, and determination of the ground state of
two-band or three-flavor Hubbard models [32]. But so far,
these methods have not been applied to the Kondo lattice
systems consisting of both fermionic and spin degrees of
freedom.

In this paper, we extend iPEPS to the ferromagnetic Kondo
lattice in 2D with anisotropic magnetic interactions and hop-
ping parameters, and explore the FM ground state and its
suppression with increasing Kondo coupling. This allows us
to provide confirmative numerical evidence for the property
of the FM QPTs and establish a global phase diagram tuned
by the magnetic and hopping anisotropy. We find the transition
to be continuous for large anisotropy close to the quasi-1D
limit and first order for less anisotropy. Although our model
is not realistic for a particular material, our findings still
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FIG. 1. (a) Illustration of the anisotropic FM Kondo-Heisenberg
model studied in this paper. The orange arrows represent local spins
and the blue droplets with white arrows denote conduction electrons.
The reduced width of the solid lines along the x direction reflects
the reduced strength of the Heisenberg exchange interaction and the
hopping parameter due to lattice anisotropy. (b) Illustration of the
2 × 2 unit cell of the iPEPS ansatz with four bulk tensors: A, B, C,
D. Each has one physical bond (p) and four virtual bonds (l , u, r,
d) as noted for B. The yellow diamonds represent the four-leg SWAP

gates S used for the fermionization of iPEPS, which is introduced at
the crossing point of two legs [33,34].

provide a possible generic mechanism for understanding first-
or second-order FM QPTs in clean heavy fermion ferromag-
nets. The resulting phase diagram agrees well with a previous
theoretical prediction based on the large-N Schwinger bo-
son approximation [14] and highlights the importance of the
quasi-1D magnetic structure on the FM QCP. Our work opens
an opportunity for future exploration of the rich physics in
Kondo lattice systems using state-of-the-art tensor network
approaches.

We start with the following 2D ferromagnetic Kondo-
Heisenberg model with anisotropic exchange interactions and
hopping parameters,

H = −t
∑

rσ

(αt c
†
rσ cr+x0,σ + c†

rσ cr+y0,σ + H.c.)

+ JK

∑

r

sr · Sr + JH

∑

r

(αHSr · Sr+x0 + Sr · Sr+y0 ),

(1)

where c†
rσ creates an electron of spin σ at position

r = (x, y), x0 = (1, 0) and y0 = (0, 1) denote two basis vec-
tors of the 2D lattice, t is the hopping amplitude along the
y axis, JK is the Kondo coupling between local spin Sr and
conduction electron spin sr = ∑

αβ c†
rα

�σαβ

2 crβ , JH < 0 denotes
the ferromagnetic Heisenberg exchange interaction between
neighboring local spins within the Kondo chains along the
y axis, and 0 � αt/H � 1 reflects the hopping or magnetic
anisotropy along the x axis due to the anisotropic lattice struc-
ture. An illustration of the model is plotted in Fig. 1(a). For
simplicity, t is set to unity as the energy unit. The conduction
electron occupation is one per site for the current model in
order to fully screen the local spins and obtain the FM QPT
at large JK. The ferromagnetic Heisenberg JH is included
explicitly in order to overcome the induced antiferromagnetic
(AFM) Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

We solve the above model using the fermionic iPEPS
[32,33] consisting of 2D unit cells with rank-5 bulk tensors
arranged periodically. To conform with geometric anisotropy
and the possible AFM correlation due to the induced RKKY
interaction, we have chosen a 2 × 2 unit cell with four differ-

ent bulk tensors as shown in Fig. 1(b). Each bulk tensor has a
physical bond p of dimension dp = 8 representing the dimen-
sion of the local Hilbert space formed by the direct product of
four electron configurations and two local spin configurations.
The dimension D of its four virtual bonds (l , u, r, d) controls
the upper limit of the entanglement among neighboring sites.
Each basis of the tensor is given a parity index p = (−1)n f ,
where n f is the fermionic particle number in that basis, so
that the anticommutation relation of electrons can be repre-
sented using SWAP gates and parity-invariant tensors with the
same leading cost as bosonic iPEPS [33,34]. The algorithm
is then optimized using a simple update [29,33] with a newly
developed energy estimator [31] and random initial or saved
iPEPS. The calculations converge as the energy achieves the
accuracy of �E = 10−12. We have also applied the fast full
update algorithm [35] and the results are qualitatively the
same [36]. The expectation values of physical properties are
evaluated using the corner transfer matrix renormalization
group (CTMRG) [27,37] with the environment bond dimen-
sion χ = D2. The results can in principle be improved with
increasing D, but the computational cost explodes as D12. For-
tunately, we find D = 12, which is the limit of our numerical
capability, can already give some convergent results for the
present model.

To focus on the overall variation of the FM QPTs, we
only show the data for JH = −1.0 and fix αt = αH = α. The
results for other parameter regions will only be discussed
briefly. The ground state of the model is FM for small JK

and paramagnetic (PM) for sufficiently large JK due to Kondo
screening. The magnetization in the FM phase can be charac-
terized by the spin correlation function along the y axis (or x
axis) in the thermodynamic limit [38],

m2
FM = lim

L→∞
1

L

L∑

y=1

〈S(0,0) · S(0,y)〉. (2)

We first obtain the two limits by optimizing some random
initial states at sufficiently small or large JK. The ground states
in between are evaluated iteratively by gradually increasing
or decreasing JK, respectively. The nature of the FM QPT is
then determined using a hysteresis calculation strategy [39] by
comparing the two results. For α = 0, the model is an array
of decoupled Kondo chains, which we have also calculated
using DMRG in an ITENSOR implementation [40] with the
length L = 100, the virtual bond dimension χ ′ = 1800, and
the truncation error 10−6.

Figure 2 compares the iPEPS results for two extreme cases,
namely, the isotropic limit (α = 1.0) and the quasi-1D limit
(α = 0.01). The red and blue symbols represent the results
from increasing and decreasing JK, respectively. The quasi-1D
results are compared with DMRG calculations on the Kondo
chain and find reasonable consistency. A hysteresis is clearly
seen in the order parameter m2

FM for α = 1.0 but missing for
α = 0.01, suggesting a first-order transition in the isotropic
model and a continuous one in the quasi-1D limit. This is
further supported by the evolution of the ground state energy
Eg, which overlaps between increasing and decreasing JK

for α = 0.01 but shows a clear difference in the hysteresis
region for α = 1.0. The energy curves for α = 0.01 are also
consistent with the DMRG one. For α = 1.0, the true transi-
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FIG. 2. Comparison of the FM QPTs in the isotropic (α = 1)
and quasi-1D (α = 0.01) limits based on the JK dependence of (a),
(b) m2

FM, the FM order parameter defined in Eq. (2), (c), (d) Eg,
the ground state energy per site, (e), (f) the derivative ∂Eg/∂JK =
〈si · Si〉, and (g), (h) the second derivative ∂2Eg/∂J2

K. The red solid
and blue dashed lines represent two different routes of calculations in
the hysteresis strategy with gradually increasing (IK) and decreasing
(DK) JK, respectively. The yellow solid or dotted lines are DMRG
results on the 1D Kondo chain for comparison. The purple and
cyan dashed-dotted vertical lines mark the continuous or first-order
(energy crossing) transition point, respectively. The virtual bond
dimension of iPEPS is set to D = 12.

tion point is typically assigned to the crossing point of two
energy curves, which, quite interestingly, coincides with the
right boundary of the QPT here.

Theoretically, the order of a QPT can be classified by
the discontinuity in the derivatives of the free energy or, at
zero temperature, the ground state energy, with respect to
the tuning parameter. For the Kondo lattice model, one has
∂Eg/∂JK = 〈si · Si〉, which represents the Kondo screening
between local spins and conduction electrons [41]. Thus, the
order of the QPT also reflects a jump or continuous change
of the Kondo screening across the transition. In Figs. 2(e) and
2(f), we see in the first derivative a similar hysteresis and jump
for α = 1 and continuous change for α = 0.01, confirming
that the FM QPT is first order for the isotropic model and
continuous in the quasi-1D case. For α = 0.01, Fig. 2(g)
further reveals a discontinuity (divergence) in the second
derivative ∂2Eg/∂J2

K at the QCP, implying that the transition is
second order.

FIG. 3. Evolution of m2
FM-JK curves for (a) α = 0.01 and

(b) α = 1.0 with varying iPEPS virtual bond dimensions D = 8,
10, 12. The DMRG results (black dashed-dotted line) on the Kondo
chain are also shown in (a) for comparison. The inset of (b) plots the
extrapolated lower (upper) hysteresis boundary JL

K (JU
K ) as D−6 for

α = 1.0.

One may have noticed that DMRG calculations for the
Kondo chain (α = 0) yield a slightly larger critical JK than
the iPEPS for α = 0.01. Apart from the small variation in α,
we also attribute such a difference to the error arising from
the finite virtual bond dimension D = 12 used in our iPEPS
calculations. This, unfortunately, already reaches the limit of
our computational capability for the Kondo-Heisenberg model
with a local physical dimension dp = 8. To have a better idea
of the overall tendency of the critical JK with varying bond
dimension D, we compare in Fig. 3(a) the m2

FM curves for
D = 8, 10, 12. The results are qualitatively the same, with
only the QCP moving slightly towards higher values of JK

and approaching the DMRG prediction with increasing D. We
thus conclude that, to the best of our numerical capability,
the iPEPS results are consistent with DMRG and the FM
QPT is continuous in the quasi-1D FM Kondo lattice. For
comparison, Fig. 3(b) also shows the results of D = 8, 10, 12
for α = 1.0. Interestingly, while the upper boundary remains
almost unchanged, the lower phase boundary moves rapidly
towards a larger JK with increasing D. Their overall varia-
tions are summarized in the inset and plotted against D−6.
The difference between the two boundaries is significantly
reduced for larger D, indicating a much narrower hysteresis
region for the exact solutions in the limit of infinite bond
dimension. Nevertheless, one still finds a finite difference in
their extrapolated values and the nature of the first-order FM
QPT is qualitatively unchanged for α = 1.0.

Having established the order of the FM QPTs in the
isotropic and quasi-1D cases, we now give more details on
its evolution between the two limits. Figure 4 shows the
calculated m2

FM as a function of JK for several intermediate
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FIG. 4. Comparison of m2
FM-JK curves for α = 1.0, 0.4, 0.15,

0.05, 0.03, 0.01. The red solid and blue dashed lines represent the
results for increasing (IK) and decreasing (DK) JK, respectively. The
virtual bond dimension is set to D = 10 to reduce the computational
cost. The dashed-dotted vertical lines mark the continuous or first-
order (energy crossing) transition point for each α, respectively.

values of α. With decreasing α, the hysteresis region of the
first-order QPT is gradually reduced for 1 � α � 0.15 and
eventually becomes indiscernible within our numerical error
for α < 0.05. Figure 5 summarizes the overall phase diagram
of the ground state on the α-JK plane. The FM transition
is continuous for sufficiently small α in the quasi-1D limit
and first order for α beyond a critical value αc � 0.05. The

FIG. 5. The overall phase diagram on the α-JK plane for the
anisotropic FM Kondo lattice model. The purple solid line represents
the continuous (second-order) QPT for large anisotropy. The shaded
area marks the hysteresis region for the first-order QPT. The blue and
red dashed lines denote its boundaries and the cyan solid line marks
the energy crossing point of two coexisting phases. The inset shows
an enlarged view for α � 0.2.

value of JK at the transition decreases for smaller α. This
is somewhat expected since a smaller α means a weaker
ferromagnetic coupling between the Kondo chains. Hence, a
smaller Kondo coupling is enough to induce sufficient quan-
tum fluctuations to destroy the FM alignment. It should be
noted that since the width of the hysteresis region of the
first-order transition is expected to be reduced in the limit
of infinite bond dimension D in our iPEPS calculations, the
phase diagram presented in Fig. 5 should only be considered
as correct in a qualitative sense. The results may be improved
in the future by using more accurate full updates [20,33,35]
or variation updates [42–44], or increasing the virtual bond
dimension with the help of symmetries [45–48]. Nevertheless,
our conclusion is consistent with previous results based on the
large-N Schwinger boson approximation [14] and provides
additional support for the anisotropy to be a possible general
mechanism in causing FM quantum criticality in Kondo lattice
systems.

So far, we have assumed the same anisotropy αt = αH = α

for the hopping parameter and the magnetic interaction. It
has been argued previously that the Luttinger liquid prop-
erty might cause the continuous FM QPT in the 1D limit
because the soft modes driving the first-order transition are no
longer present [7]. On the other hand, the large-N Schwinger
boson calculations predicted a FM QCP with an anisotropic
magnetic interaction (αH 	 1) and isotropic electron Fermi
surfaces (αt = 1) [14]. It is therefore interesting to clarify the
role of the dimensionality of the electron degree of freedom.
So we have also performed calculations by tuning αt and αH

separately. For fixed αH = 1, we find that reducing αt from 1.0
to 0.01 has no qualitative influence on the first-order FM QPT
(not shown). Hence, the 1D property of the electron degree of
freedom alone cannot suppress the first-order transition, and
the magnetic anisotropy is crucial for realizing the FM QCP.
If we fix αt = 1 and change αH from 1.0 to a small value (e.g.,
0.01), AFM correlations are found to gradually develop along
the x axis because of the induced AFM RKKY interaction
which eventually overcomes the small FM Jx

H = αHJH. The
FM long-range order is then replaced by a stripe AFM order
with FM spin alignment along the y axis and AFM alignment
along the x axis. We have first an FM-AFM transition before
the AFM order is suppressed continuously to a PM upon
further increasing JK. One may also tune JH while keeping
αt = αH = 1.0. Then the induced AFM RKKY interaction
can become dominant along both axes for small JH, so we
have first a Néel-type AFM order. In both cases, we do not
have a direct FM-PM transition.

In conclusion, we have developed an iPEPS algorithm
for the anisotropic Kondo lattice model and investigated the
possibility of FM quantum criticality in two dimensions.
Our calculations confirm the existence of a continuous FM
QPT in quasi-1D systems with large hopping and magnetic
anisotropy. It should be noted that spin anisotropy, the crystal
field effect, and multiple conduction bands [49] may also play
a role in realistic materials, which is beyond our model calcu-
lations and require more specific material study. Nevertheless,
our work highlights the importance of magnetic anisotropy for
understanding FM quantum criticality and provides numerical
confirmation of a possible generic mechanism for its presence
in Kondo lattice systems. More elaborations along this line are
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needed to establish a microscopic theory of the FM quantum
criticality. Our methods may be further extended to study
other exotic physics such as spin-triplet superconductivity or
the combined effects of lattice geometry, spin-orbit coupling
[10,11], spin anisotropy [3], and even disorder [50] on the 2D
Kondo lattice.
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2017YFA0303103), the National Natural Science Foundation
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and the Strategic Priority Research Program of the Chinese
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