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Kondo effect in a non-Hermitian PT -symmetric Anderson model with Rashba spin-orbit coupling
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The noninteracting and non-Hermitian, parity-time (PT ) symmetric Anderson model exhibits an exceptional
point (EP) at a non-Hermitian coupling g = 1, which remains unrenormalized in the presence of interactions
[J. A. S. Lourenço et al., Phys. Rev. B 98, 085126 (2018)], where the EP was shown to coincide with the
quantum critical point for Kondo destruction. In this work, we consider a quantum dot hybridizing with
metallic leads having Rashba spin-orbit coupling (λ). We show that for a non-Hermitian hybridization, λ can
renormalize the exceptional point even in the noninteracting case, stabilizing PT symmetry beyond g = 1.
Through exact diagonalization of a zero-bandwidth, three-site model, we show that the quantum critical point
and the exceptional point bifurcate, with the critical point for Kondo destruction at gc = 1, and the exceptional
coupling being gEP > 1 for all U �= 0 and λ � 0; λ �= U/2. On the line λ = U/2, the critical point and the
EP again coincide at gc = gEP = 1. The full model with finite-bandwidth leads is investigated through the
slave-boson approach, using which we show that, in the strong-coupling regime, λ and interactions cooperate in
strongly reducing the critical point associated with Kondo destruction, below the λ = 0 value.
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I. INTRODUCTION

Conventional quantum theory postulates that every physi-
cal observable may be represented by a Hermitian operator,
since Hermiticity ensures that the eigenvalues of the corre-
sponding operators would be real. A generalization to the
existing quantum postulates can be made with considera-
tion of a parity-time (PT ) symmetric orthonormal set of
eigenstates [1,2]. These states preserve the norm and form a
complete set which also allows for an unambiguous definition
of expectation of physical observables. Physically, non-
Hermitian models represent open quantum systems [3–5].
These models can exhibit eigenvalue degeneracies at certain
values of non-Hermitian parameters, called exceptional points
(EPs), which correspond to quantum phase transitions of the
level-crossing type. Concomitantly, these points also show a
breakdown of PT symmetry. Beyond such exceptional points,
the eigenvalues develop finite imaginary parts, and the norm
of the corresponding eigenvector is not conserved. Hence,
probabilities of eigenstates oscillate with a decay factor as a
function of non-Hermitian strength. The emergence of imagi-
nary eigenvalues may be associated with a loss of bound states
and a crossover to scattering states of open quantum systems
[6–8].

Many theoretical studies of non-Hermitian Hamiltonians
have been motivated by experiments that realize such models
in open systems with balanced gain and loss [3,9–12]. Recent
experiments in cold atoms have observed level-crossing-like
transitions even though many-body interactions are present
in the system. The observations of gain and loss due to de-
pletion of atoms have been attributed to the phenomenon of
the continuous quantum Zeno effect [13–16]. Conventional
Kondo-type systems such as impurities coupled to baths have

been realized in controlled environments like atoms in har-
monic traps [17–22], where the small number of excited states
mimic magnetic impurities and the atoms in the ground state
provide the bath. In experiments where Rashba-type spin-obit
coupling is generated synthetically, induced artificial mag-
netic fields break parity and time-reversal symmetries. It is
important to note that when both of these symmetries break,
SU(2) symmetry will also be violated. Exceptional points may
also lead to exceptionally sensitive sensors [23,24] since for
an EP of order n, any perturbation of strength ε leads to a
splitting of the levels (�L) that is proportional to the nth root
of ε, which is in contrast to that of a diabolic point where
�L ∼ ε.

Open quantum systems are generally investigated through
master equation techniques with various kinds of noise terms
as discussed by Plenio and Knight [25]. Quantum criticality in
PT -symmetric effective field theories has been studied in the
sine-Gordon model [26] which has been shown to describe the
transition between a Mott insulator and a Tomonaga-Luttinger
liquid [27]. The PT -symmetry breaking transition has also
been studied in a classical system, where critical behavior,
similar to that found in quantum systems, has been observed
through numerical calculations [28]. Classical spin chains
with imaginary fields also exhibit similar phase transitions
[29]. Another work in interacting quantum many-body sys-
tems discusses a novel way of doing path integrals for such
systems to capture the Anderson localization transition with
non-Hermitian disorder [30].

Lourenço et al. [31] considered a real-space parity-time
symmetric model comprising a correlated impurity connected
to left and right leads through a non-Hermitian hybridization
coupling. They have employed a perturbative renormalization
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group (RG) approach to investigate the exceptional points in
the strong-coupling regime. The noninteracting exceptional
point was shown to coincide with the critical point for Kondo
destruction and also found to remain invariant under RG flow.
Nakagawa et al. [32] have considered a non-Hermitian (NH)
Kondo model that is not PT symmetric. It is an extension of
the standard Kondo model to one with complex spin exchange
couplings and the justification for these non-Hermitian terms
is given through Lindbladian dynamics. A standard two-loop
poor man’s RG yields a phase transition, as seen through
RG reversion, which occurs at a very small value of the
complex coupling, since there is no symmetry and there is a
local-moment type fixed point. These results have been further
supported through Bethe ansatz calculations.

Our interest is to explore exceptional and quantum crit-
ical points in a non-Hermitian quantum many-body system
subjected to a decohering term such as the Rashba spin-orbit
coupling (RSOC). The interplay of RSOC and interactions
has been investigated extensively in the Hermitian case us-
ing RG methods such as poor man’s scaling and numerical
renormalization group [33–37]. Other special, but Hermitian,
cases such as an impurity in graphene, nanoribbons, and
an impurity in a topological insulator have been considered
[37,38], and through a mapping onto the pseudogap An-
derson model, a quantum phase transition has been shown
to occur. The SO coupling, particularly the Rashba type,
breaks parity symmetry in conventional models represented
by an angular momentum basis. Concomitantly, this also
leads to the generation of PT -symmetric channels and hence
a Dzyaloshinskii-Moriya (DM) interaction in the effective
model of impurity subspace, which leads us to consider inter-
esting possibilities. If we consider NH coupling to these PT
channels, there is an emergent parity-time breaking DM inter-
action which may modify the exceptional points of the NH
model. In the conventional Hermitian case, closed systems
may exhibit phase transitions as a function of SO interactions
only for some special lattices like a honeycomb lattice as seen
in, e.g., Bi2Se3 and Bi2Te3. However, in NH systems, one can
expect phase transitions driven by the imaginary interaction
generically irrespective of the lattice. With the prospect of
the above possibilities, we ask the following questions: (a)
Can RSOC renormalize the exceptional point in the nonin-
teracting case? (b) What is the combined effect of interactions
and RSOC on Kondo destruction and the exceptional points?
For investigating these, we have considered a single-level
quantum dot connected to a bath which has RSOC (which is
important for realizing PT symmetry [17,39]). The model is
also motivated by recent experiments [17] where singlet and
triplet scales in open conditions have been measured.

We set up the full, non-Hermitian, single-impurity Ander-
son model, and establish PT symmetry, first in a simplified
zero-bandwidth, three-site model, and subsequently in the
full model. Using exact diagonalization, we show the emer-
gence of distinct quantum critical and exceptional points in
the three-site model. Subsequently, the full model in the
noninteracting case is solved through exact diagonalization,
Green’s functions methods, and total energy calculations. In
order to understand the effect of interactions, we utilize the
slave-boson method, and show the cooperative interplay of
non-Hermitian coupling and RSOC (λ) in inducing Kondo

destruction. We show that a finite λ protects PT symmetry
by pushing the exceptional point beyond the λ = 0 value. In
the strong-coupling regime, a quantum phase transition occurs
between a Kondo screened phase and an unscreened moment
at a critical non-Hermitian coupling gc = 1 for λ = 0. With
increasing λ, the critical coupling decreases monotonically
showing a strong renormalization of the quantum critical point
due to RSOC.

The paper is organized as follows: The following sec-
tion introduces the model and formalism. Section III intro-
duces a simplified three-site, zero-bandwidth model using
which PT symmetry is analyzed and exceptional points are
found in closed form. Through exact diagonalization of the
interacting three-site model in Fock space, we show the bi-
furcation of the exceptional point and the quantum critical
point. We present the results and discussion for the full, finite-
bandwidth leads model in Sec. IV, and conclude in the final
section with a short discussion and open questions.

II. MODEL AND FORMALISM

As mentioned in the introduction, we have chosen to work
with a single-impurity Anderson model (SIAM) comprising a
single nondegenerate level quantum dot system connected to
an electron reservoir, for which the Hamiltonian, H , is given
in standard notation as

HSIAM = H0 + Hd + Hhyb, (1)

where the two-dimensional conduction band reservoir may be
represented by H0 = ∑

kσ εkc†
kσ ckσ

and the isolated quantum
dot is given by Hd = ∑

σ εd d†
σ dσ + Und↑nd↓. The hybridiza-

tion term is given by Hhyb = ∑
kσ Vkσ (c†

kσ
dσ + H.c.).

The presence of spin-orbit coupling in a two-dimensional
conduction electron bath has been considered previously
by several groups [34–37]. In this work, we have investi-
gated the interplay of Rashba-type spin-orbit coupling (SOC)
with the presence of non-Hermitian but PT -symmetric terms
in the Hamiltonian. Defining ψk = (ck↑ ck↓)T , the SOC term
is given by

HRSO = λ
∑

k

ψ
†
k (k × �σ )zψk = λ

∑
k

k(eiθk c†
k↑ck↓ + H.c.),

(2)

where k = |k| and θk = tan−1[−kx/(−ky)]. The action of the
parity operator is

P : σxψk ⇒ ck↑ → ck↓, (3)

and using the above, we see that HRSO is not invariant under
parity transformation.

The conduction band terms, namely H0 and HRSO, may
be combined [34], which leads to the emergence of chiral
conduction bands. This is accomplished using an angular
momentum expansion for the conduction band operators, fol-
lowed by a unitary transformation as

ckσ = ckx kyσ = 1√
2πk

∞∑
m=−∞

ckmσ exp(−imθk ), (4)
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where k = |k|. The inverse transform is defined as ckmσ =√
k

2π

∫ 2π

0 dθkckσ eimθk . Substituting the above expansion [34]
[Eq. (4)] into the Hamiltonian, and assuming an isotropic
dispersion, which depends only on k = |k|, such that εk = εk ,
the H0 becomes

H0 =
∑
kσ

εkc†
kσ ckσ

=
∑
kmσ

ε̃kc†
kmσ

ckmσ
, (5)

where ε̃k = εk/k. Further, with the same transformation, the
RSO term transforms to:

HRSO = λ
∑
km

(c†
k,m↑ck m+1↓ + H.c.). (6)

In Appendix A, we develop a non-Hermitian Anderson model
Hamiltonian by combining the above terms and a few ex-
tra terms invoking Lindbladian dynamics, and the resulting
Hamiltonian has the following form:

H =
∑
khη

ε̃khc†
khη

ckhη
+

∑
kηh

Xkηh(c†
kηhdh + H.c.)

+ εd

∑
h

ndh + Und+nd−, (7)

where h is a “chiral” quantum number and can be thought
of as a pseudospin index, and η ∈ {L, R} is the channel in-
dex, which is, in fact, the jm = m + σ index in the angular
momentum representation. The hybridization coefficients are
XkLh = √

2|Xk|eiφk and XkRh = −hX ∗
kLh. The model obtained

in the rotated basis above has the interpretation of a dot con-
nected to two leads, and appears very similar to the real-space
model considered by Lourenço et al. [31]. The main difference
is that the real-space model had non-Hermitian coupling to
just two sites that were directly connected to the dot. In our
case, the hybridization elements, Xkη, being complex, render
the Hamiltonian non-Hermitian when φk �= 0, π and for all k.

Before we investigate the full model in Eq. (7), we have
considered a three-site, zero-bandwidth model that has a struc-
ture very similar to Eq. (7). We will see that the symmetry
class, exceptional points, etc., can be obtained easily and
exactly, and hence are very instructive. Furthermore, a gen-
eralization of the symmetry analysis to the full model will be
straightforward.

III. THREE-SITE, ZERO-BANDWIDTH MODEL
IN THE CHIRAL BASIS

Consider a simplification of the above model [Eq. (7)],
where the leads are replaced by single sites with two orbitals
each,

H =
∑
hη

εhc†
hη

chη
+

∑
ηh

Xηh(c†
ηhdh + H.c.)

+ εd

∑
h

ndh + Und+nd−, (8)

where εh = ε + hλ, XLh = Veiφ , XRh = −hX ∗
Lh, and V is a real

number (V ∈ R). The exceptional points may be found in
terms of φ or a coupling g defined as the ratio of the imaginary
part to the real part of the hybridization, which is simply
g = tan φ. Using ψ = (cL+cR+d+d−cL−cR−)T , we can write

the above Hamiltonian as

H = ψ†Hψ + Und+nd−, (9)

where

H =

⎛
⎜⎜⎜⎜⎜⎝

ε+ 0 XL+ 0 0 0
0 ε+ XR+ 0 0 0

XL+ XR+ εd 0 0 0
0 0 0 εd XL− XR−
0 0 0 XL− ε− 0
0 0 0 XR− 0 ε−

⎞
⎟⎟⎟⎟⎟⎠. (10)

This matrix is block-diagonal, since the chiral channels do not
mix in the absence of interaction, i.e., for U = 0. It is also
non-Hermitian, but symmetric, i.e., H† �= H, but HT = H.
Now, we explore the noninteracting case first, before moving
on to U �= 0.

A. Noninteracting case: U = 0

Keeping Xηh general, we want to find conditions so that the
eigenvalues are real. The eigenvalues of the above Hamilto-
nian (�), for the special case of ε = εd = 0 and U = 0, are
given by

� = ±λ,�2 − (±λ)� − (
X 2

L± + X 2
R±

) = 0. (11)

Thus the condition that determines real eigenvalues is

cos 2φ � − λ2

8V 2
, (12)

which reduces to φ � π/4 in the absence of RSOC, while if
λ �= 0, the condition is as given above, so RSOC stabilizes
PT symmetry by increasing the range of φ to beyond π/4.
And if λ � 2

√
2V , PT symmetry cannot be broken for any

φ. Thus, for λ � 2
√

2V , the exceptional point is given by

φEP = π/4 + 1

2
sin−1 λ2

8V 2
, (13)

or equivalently in terms of g, the EP is given by

gEP = tan φEP =
√

1 + λ2/8V 2

1 − λ2/8V 2
. (14)

So, the minimal condition necessary for real eigenvalues is
X 2

Rh + X 2
Lh ∈ R for h = ±. From an inspection of the Hamil-

tonian, a mapping that yields H → H† is

ψ =

⎛
⎜⎜⎜⎜⎜⎝

cL+
cR+
d+
d−
cL−
cR−

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

−cR+
−cL+

d+
d−
cR−
cL−

⎞
⎟⎟⎟⎟⎟⎠. (15)

This implies that the matrix representation of the metric oper-
ator, η, that should yield this transformation should be

η =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, (16)
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such that η2 = 1, and thus η† = η−1 = η, which is unitary.
Indeed, we find that

ηHη−1 = H†, (17)

implying that H is pseudo-Hermitian. Since H is also sym-
metric, i.e., HT = H, the pseudo-Hermiticity is identical to
PT symmetry [40]. We can also make a statement about
the left (�L) and right eigenvectors (�R), as follows. Since
H�αR = Eα�αR, where Eα is the αth eigenvalue, and given
the property (17), we can see that

H†(η�αR) = E (η�αR), (18)

and hence the left eigenvector corresponding to the complex
conjugate eigenvalue E∗

α would be �αL = η�αR. We can also
construct the metric operator in the second quantized form, as

η̂ = ψ†η ψ = −(c†
R+cL+ + H.c.) + (c†

R−cL− + H.c.)

+ (d†
+d+ + d†

−d−). (19)

For the Hamiltonian to be pseudo-Hermitian, it is easy to see
from Eq. (17) that the condition to be satisfied is

[H + H†, η̂] = 0, (20)

and indeed we see that this condition is satisfied as shown
below:

[H, η̂] = (XL+ + XR+)((c†
L+ + c†

R+)d+ − H.c.)

+ (XL− − XR−)((c†
L− − c†

R−)d− − H.c.). (21)

With the above result, we see that the condition for pseudo-
Hermiticity [Eq. (20)] is satisfied since

Re(2XLh + XR+ − XR− ) = 0. (22)

Thus, with the combination of pseudo-Hermiticity and sym-
metric form, we establish PT symmetry.

B. Interacting case: U > 0

We perform exact diagonalization of the three-site model
for U �= 0 [Eq. (8)] in the Fock space to get an insight into the
combined effect of U , λ, and non-Hermiticity on the phase
diagram. The exceptional point is found as usual from the
emergence of a nonzero imaginary part in the eigenvalues of
the Hamiltonian, while a quantum phase transition would be
signaled by a crossing of the real-valued ground state and the
first excited state eigenvalues.

We have seen in the noninteracting case [refer to Eq. (12)]
that the spin-orbit coupling stabilizes PT symmetry, in the
sense that φEP increases from π/4 at λ = 0 to π/2 at λc =
2
√

2V beyond which the exceptional point does not arise,
implying that the PT symmetry does not break. As mentioned
before, the non-Hermitian coupling at the exceptional point
defined as gEP = tan(φEP ) increases from 1 to ∞. Now, we can
investigate the exceptional points in the presence of U and λ.

The top panel of Fig. 1 shows the inverse exceptional
coupling, i.e., g−1

EP = cot(φEP ), as a function of λ for various
U values, while the bottom panel shows the same as a func-
tion of U for various λ values. We see that for U = 0, the
exceptional points shift to higher values (φEP > π/4 or g > 1)
upon increasing λ, which is consistent with that found in the
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FIG. 1. The inverse exceptional coupling, g−1
EP = cot(φEP ) as a

function of (top panel) λ for various U values and (bottom panel)
U for various λ values.

noninteracting case. The effect of finite interactions is to en-
hance the critical λ beyond which PT symmetry is violated.
Eventually for large U , the PT symmetry is unbroken up to a
critical λ. Interestingly, we notice that at λ = U/2, the excep-
tional point reverts back to φEP = π/4, which is just the same
as the noninteracting value, thus negating the effect of λ and U
completely. The implication is that, for a fixed U , if λ = U/2,
the exceptional point is the same as that in the noninteracting
and zero SOC case, and is hence unrenormalized. The bottom
panel shows a similar behavior as the top panel, with the roles
of U and λ reversed, and again the λ = U/2 points are seen to
be special unrenormalized points. In Fig. 2, we have shown
the eight lowest eigenvalues as a function of φ for U = 4.0,
εd = −U/2, λ = 1.2, in the PT -symmetry unbroken regime.
The ground state, being adiabatically continuous with the
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FIG. 2. The lowest eight eigenvalues as a function of the non-
Hermiticity parameter, φ, for U = 4.0, λ = 1.2, and εd = −U/2.
The cyan dot shows the first crossing of the ground state and the
first excited state, and is thus identified as the quantum critical point.

Hermitian case (φ = 0), is identified as the Kondo screened
phase. This is also confirmed by examining the ground state
eigenvector in the Fock space. The first crossing of the ground
state and the first excited state eigenvalue, identified as the
quantum critical point of the many-body level crossing type,
remains at φ = π/4 or g = 1 for all U �= 0 and any λ. We
have confirmed through an eigenstate analysis also that the
quantum critical point represents a transition from a Kondo
screened singlet phase to a local moment phase.

The exceptional point phase diagram in the U -λ plane is
shown in Fig. 3. The color represents inverse exceptional cou-
pling, g−1

EP . The extent of renormalization of the exceptional
point due to interactions and SOC is indicated by the darkness
of the color. As mentioned above, the solid circles represent
the line λ = U/2, where the exceptional point is completely
unrenormalized with respect to λ = U = 0. Finally, in the
U -λ plane, the Kondo destruction critical point for all U �= 0
and any λ coincides with the exceptional point for λ = U/2,
while the exceptional point gets strongly renormalized away
from this line, and does not even exist for U/λ 
 1 and
U/λ � 1.

IV. FULL MODEL: RESULTS AND DISCUSSION

Taking cues from the solution of the three-site model,
we can now explore the eigenvalues, and the symme-
try of the full model, i.e., Eq. (7). Again, using ψk =
(ckL+ ckR+ d+ d− ckL− ckR−)T , we can write the
Hamiltonian of Eq. (7) as

H =
∑

k

ψ
†
k Hkψk + εd

∑
h

ndh + Und+nd−, (23)

FIG. 3. The exceptional-point phase diagram for the three-site
model in the interacting regime is shown. The color bar shows the
inverse exceptional coupling. The solid circles represent the line
λ = U/2, on which the exceptional point remains at φ = π/4 or
g = 1. Everywhere else the exceptional point is strongly renormal-
ized by interactions and SOC. In the dark regions (low U , high λ and
high U , low λ), the inverse exceptional coupling vanishes, implying
gEP → ∞, and hence PT symmetry is never violated.

where

Hk =

⎛
⎜⎜⎜⎜⎜⎝

εkL+ 0 XkL+ 0 0 0
0 εkR+ XkR+ 0 0 0

XkL+ XkR+ 0 0 0 0
0 0 0 0 XkL− XkR−
0 0 0 XkL− εkL− 0
0 0 0 XkR− 0 εkR−

⎞
⎟⎟⎟⎟⎟⎠.

(24)
We observe from the form of the matrix above that the metric
operator can be generalized from the case of the three-site
model as

η̂ =
∑

k

ψ
†
k η ψk

=
∑

k

[−(c†
kR+ckL+ + H.c.) + (c†

kR−ckL− + H.c.)]

+ (d†
+d+ + d†

−d−), (25)

which will again yield

[H + H†, η̂] = 0, (26)

thus showing that the Hamiltonian is pseudo-Hermitian even
for U �= 0, and since H = HT , we can identify the symmetry
as being equivalent to PT symmetry.

A. Exact diagonalization of the noninteracting model

For U = 0, εkLh = εkRh, and the hybridization elements
assumed to be k-independent, the characteristic polynomial
that yields the eigenvalues is found to be

(εd − �) −
∑

k

(
X 2

Lh + X 2
Rh

)
εkh − �

= 0 for h = ±. (27)
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FIG. 4. Phase diagram in the φ-λ plane is shown for the non-
interacting case (U = 0). The solid circles represent exceptional
points, where certain real eigenvalues coalesce and complex conju-
gate eigenvalues emerge.

Thus the possibility of real eigenvalues exists if (X 2
Lh + X 2

Rh) ∈
R. However, Eq. (27) is not suitable (numerically) to find
all the eigenvalues, especially if some of these are complex;
hence we create the Hamiltonian matrix for the two chiral
channels separately (since they do not mix for U = 0) using
Eq. (23) and the basis ψh = (ck1Lh ck1Rh . . . ckN Lh ckN Rh dh)T .
Using a uniformly spread sequence of N εk values between
−D to D, we get a Hamiltonian matrix of size N + 1. We
then directly diagonalize the Hamiltonian matrix using nu-
merical diagonalization methods (HTDQLS [41]) for general
complex symmetric, but non-Hermitian, matrices. In practice,
we have used D = 1 and have tested our results for various
sizes of the Hamiltonian matrices, and the results reported
here (Fig. 4) are for N = 100 values of εk . The phase diagram
for U = 0 in the φ-λ plane is shown in Fig. 4. The solid curve
is the line of exceptional points, which shows that increasing
spin-orbit coupling enhances the range of φ within which
real eigenvalues are obtained, and hence SOC stabilizes PT
symmetry. The exceptional point for λ = 0 is at φ = π/4. It is
interesting to see that for even an infinitesimal φ > π/4, the
SOC needed to restore PT symmetry is λ ∼ O(1). This is in
contrast to the three-site model where the line of exceptional
points was given by φ − π/4 ∝ λ2 for λ → 0. The reason for
the discrepancy is that the full model has a conduction band,
and we find that the minimum spin-orbit coupling needed to
restore PT symmetry is of the order of bandwidth, which is
O(1) in the present case, and was zero in the three-site model.

B. Spectral sum rule in the U = 0, noninteracting case

Since the model is PT symmetric, and the eigenval-
ues of the Hamiltonian are real in a finite range of the
parameter space, the time evolution of operators will be uni-
tary, for φ < φEP, where the latter represents the exceptional
point. Hence, we can use the equation of motion (EoM)

method to find the retarded Green’s functions [GA
B(t, t ′) =

−i〈�L
G|{AH (t ), B†

H (t ′)|�R
G〉θ (t − t ′)] in the unbroken PT -

symmetry regime [42]. The Green’s function is defined with
respect to the left and right (L/R) eigenstates of the full
Hamiltonian. The equations of motion are given by

ω+GA
B(ω) = 〈{A, B}〉 + G[A,H ]−

B (ω) = 〈{A, B}〉 + GA
[H,B]− (ω).

(28)
In order to gain insight into the interplay of PT symmetry and
SOC, we investigate the noninteracting case (U = 0). We first
find the retarded Green’s function for the dot operators in the
chiral basis, i.e., Gdd

hh . The following equation is obtained for
the dot Green’s functions,

Gdd
hh = [ω+ − εd − �h(ω)]−1, (29)

where the hybridization function is given as

�h(ω) =
∑

k

X 2
kLh + X 2

kRh

ω+ − ε̃kh
. (30)

Using XLk+ = XLk− = |Xk|eiφk , so that XkR+ = −|Xk|e−iφk =
−XkR−, the diagonal dot Green’s functions are obtained as (for
U = 0)

Gdd
hh (ω) = 1

ω+ − εd − 2
∑

k
|Xk |2 cos(2φk )

ω+−ε̃kh

. (31)

The Green’s function is causal, as long as either (i) φk �
π/4, ∀ k or (ii) the imaginary part of hybridization is zero.
The spectral density is guaranteed to be positive-definite in
this regime. Interestingly, although the Hamiltonian is non-
Hermitian for φk �= 0, the Green’s function, being exactly
the same as for a single-impurity Anderson model with a
renormalized hybridization [V 2

k → 2|Xk|2 cos(2φk )], is fully
causal, and has the same analytic structure of the usual
Green’s functions. We also see that the eigenvalue equa-
tion (27) is identical to the equation obtained for the zeros
of the denominator of the Green’s function (31). This is not
surprising, since the noninteracting Green’s function is given
by Ĝ = [ω+1 − Ĥ ]−1.

Taking Xk = X0 and φk = φ to be independent of k, the k
sum in the hybridization can be converted to a density of states
integral, which is then given by

�h(ω) = �0 cos(2φ0)HT [ω+ − hλ], (32)

where �0 = 2X 2
0 and HT [z] is the Hilbert transform defined

by

HT [z] =
∫ ∞

−∞
dε

ρ0(ε)

z − ε
. (33)

The exact diagonalization calculation required us to choose
energy values, εk , distributed in a certain way, and for conve-
nience, we chose a uniform distribution. The density of states
accordingly for the Green’s function calculation has been
chosen to be a flat band, namely ρ0(ε) = ∑

k δ(ε − ε̃kh) =
θ (D − |εkh|)/(2D), for which the Hilbert transform may be
obtained in a straightforward way as

HT h[ω+] = 1

2D
ln

∣∣∣∣ω − hλ + D

ω − hλ − D

∣∣∣∣ − i
π

2D
θ (D − |ω − hλ|).

(34)
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FIG. 5. Dot density of states (DoS) as a function of frequency
for various values of SOC (legends are the values of λ) and φ = π/5
(top panel) and φ = π/3 (bottom panel). In the top panel, the system
does not violate PT symmetry for φ = π/5 for any λ. The bottom
panel is for φ = π/3, for which λ = 1.5 represents the SOC value
beyond which PT symmetry is restored.

The spectral function is given by

Dh(ω) = − 1

π
Im Gdd

hh = − 1

π
Im[ω+ − εd − �h(ω)]−1. (35)

For a representative set of parameters �0 = 1/4, we show the
spectral function of the chiral index summed Green’s function
(Gd = 0.5

∑
h Gdd

hh ) in Fig. 5. The numbers mentioned in
the legends are values of the SOC(λ). Both panels shows
the dot density of states (DoS) in the non-Hermitian case
of φ = 0.2π < π/4 (top) and φ = π/3 > π/4 (bottom). The
top panel shows that for λ = 0, the DoS is a Lorentzian, as
expected, while for higher λ, the DoS splits into two peaks.
These peaks grow in intensity, while becoming narrower as
λ 
 1. In fact, in the latter limit, it is easy to show that the
DoS reduces to just two poles at ω = ±2�0 cos 2φ/|λ|. We
see that for any value of λ in the top panel, the DoS preserves
the spectral sum rule, and is hence causal. The bottom panel

0 0.1 0.2 0.3 0.4 0.5

φ/π
0

0.5

1

1.5

2

λ

   Spectral Sum 
Rule Preserved

Spectral Sum 
Rule Violated

FIG. 6. The U = 0 phase diagram in the φ-λ plane found through
the norm violation condition of the Green’s function. The solid
symbols represent the line of exceptional points, where the spectral
sum rule gets violated and the norm deviates from unity.

shows the DoS for φ = π/3, which is greater than π/4, so for
λ = 0, the DoS should be expected to be acausal. Indeed, we
see that for λ = 1.4 (and all lower values), the DoS is negative
and acausal, but for all λ > 1.5, we recover causality, in the
sense that the integrated spectral weight or the spectral norm is
1. But as the figure shows, the DoS does become negative over
a finite frequency range, albeit, the negative weight is compen-
sated by the positive part, preserving the total spectral norm.
The density of states being negative is of course not physical
in a conventional Hermitian picture, but for a non-Hermitian
system considered here, such a result can be speculated to
imply states that are not stationary and are either lossy or
amplifying. We note that further studies are required for find-
ing the correct interpretation of negative density of states. The
inference from the above investigation is that higher λ values
restore PT symmetry that was broken spontaneously at lower
λ, and hence SOC protects PT symmetry.

In the Hermitian case, the spectral function is positive-
definite and causal, i.e., normalized to 1 [

∫
dωDh(ω) = 1].

We will explore the violation of causality by computing the
deviation of the norm from unity, as a function of φ and λ. The
most interesting feature about the phase diagram, computed
through the violation of spectrum sum rule condition, and
shown in Fig. 6, is that although the hybridization, being
proportional to cos(2φ), has an acausal imaginary part beyond
φ > π/4, the spectral function sum rule is not violated above
a certain value of the spin-orbit coupling, λ. The critical λ for
φ = π/4 is found to be equal to the effective bandwidth of the
conduction band. Since λ shifts the center of the conduction
band away from ω = 0 for each “chiral” index, this implies
that if the imaginary part of hybridization is either vanish-
ingly small or negative-definite (causal) at ω = 0, the spectral
function norm is preserved. Thus, the inference is that, as
found through exact diagonalization in Sec. IV A, spin-orbit
coupling stabilizes PT symmetry.
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FIG. 7. The sum of energies of all occupied causal states at a
given φ measured from a reference value of φ = 0 for various values
of SOC. The φ value at which the discontinuity in total energy occurs
is marked by arrows.

We note that such a conclusion is sensitive to the choice of
the conduction band density of states. For example, the choice
of an infinitely wide flat band will result in the exceptional
point being φEP = π/4 or gEP = 1 for any value of the spin-
orbit coupling, λ. We will find the trace of the Hamiltonian in
the next section, and identify the violation of PT symmetry
from the dependence of total energy on φ and λ.

C. Total energy of the causal states (U = 0)

A violation of PT symmetry introduces complex conju-
gate eigenvalues into the eigenspectrum. Thus, if we measure
the energy of the system as the trace over the occupied
states of the real part of the eigenspectrum, we should ob-
serve some form of singular behavior such as discontinuity
or non-differentiability, when one or more pairs of real eigen-
values become complex. From the exact diagonalization done
in Sec. IV A, we have the eigenvalues of the Hamiltonian.
Now, we consider a sum of all the real eigenvalues which
are below the chemical potential (which is zero in our case),
and denote that as Etot. As shown in Fig. 7, the quantity
[Etot (φ) − Etot (0)], where Etot (0) is the corresponding quan-
tity for φ = 0, is discontinuous at specific φ values, that
depend on the value of the SOC, and the discontinuities are
marked by arrows. Such a discontinuity provides an alter-
nate measure of the exceptional point. It is also interesting
to see that the total energy is conserved below the excep-
tional point, while for φ > φEP, since some of the states
develop imaginary eigenvalues, they would be excluded from
[Etot (φ) − Etot (0)], and this quantity, which is a fictitious en-
ergy in the PT -symmetry broken regime, then appears to
increase with increasing φ. Figure 8 shows the phase diagram
computed through the energy discontinuity superimposed on
the phase diagrams obtained through exact diagonalization
and the spectrum sum rule violation. The three criteria for
finding the exceptional points match reasonably well. Thus,
we establish that the PT violation as seen by the exact di-
agonalization of the Hamiltonian is also indicated to a good
extent by causality violation of the Green’s function, and by
the energy discontinuity condition.

0 0.1 0.2 0.3 0.4 0.5

φ/π
0

0.5

1

1.5

2

λ

Spectral Norm

Exact diagonalization

Energy Discontinuity

PT - symmetry

      preserved

PT - symmetry

broken

FIG. 8. The phase diagram in the φ-λ plane, computed through
an identification of the energy discontinuity (see text for details)
showing the line of exceptional points (triangles). The shaded region
represents the spontaneously broken PT -symmetry broken regime,
and the unshaded region represents the PT -symmetry protected
regime. The circles and squares represent the exceptional points
derived through exact diagonalization and the spectral sum rule vio-
lation, respectively. All three conditions for determining exceptional
points agree reasonably well.

Until now, we have restricted ourselves to the noninter-
acting case (U = 0). In the following subsection, we will
investigate the other extreme, i.e., the U → ∞ limit using the
slave-boson formalism.

D. Slave-boson mean-field solution

The Hamiltonian in Eq. (7) may be rewritten in the U →
∞ case using Coleman bosons [43] as

H = H0 +
∑
kηh

Xkηh(c†
kηhbηdh + H.c.)

+ εd

∑
h

ndh + ζ

(∑
η

b†
ηbη + εd

∑
h

ndh − 1

)
, (36)

where H0 = ∑
khη ε̃khc†

khη
ckhη

, and ζ is the Lagrange mul-
tiplier which enforces the constraint that the total filling
(fermions + bosons) is 1. Note that the two channels, namely
L and R, have been associated with two different bosons as
a general possibility. Hence, with the mean-field approxima-
tion, 〈b†

L〉 = 〈bL〉 = reiθ and 〈b†
R〉 = 〈bR〉 = re−iθ , implying

that the total mean boson number will be 〈b†
LbL + b†

RbR〉 =
2r2 cos(2θ ), the mean-field Hamiltonian becomes

HMF = H0 +
∑
kηh

X̃kηh[c†
kηhdh + H.c.]

+ ε̃d

∑
h

ndh + ζ [2r2 cos(2θ ) − 1], (37)
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where X̃kLh = reiθ XkLh = √
2r|Xk|ei(φ+θ ), X̃kRh =

h̄re−iθ XkRh = √
2h̄r|Xk|e−i(φ+θ ), and ε̃d = εd + ζ . The

parameters r, ζ , and θ may be found self-consistently
by minimizing 〈HMF 〉. Since the slave-boson mean-field
Hamiltonian has exactly the same form as the noninteracting
Hamiltonian, Eq. (7), we will find the expression for the total
energy in the U = 0 case, and generalize it to the slave-boson
case.

For finding the expectation value of the Hamiltonian in
Eq. (7), we need Green’s functions other than the one com-
puted before [Eq. (31)]. These are listed below:

Gkηh
kηh = 1

ω+ − ε̃kh
+ X 2

kηh

(ω+ − ε̃kh)2
Gdh

dh, (38)

Gdh
kηh = Gkηh

dh = Xkηh

ω+ − ε̃kh
Gdh

dh. (39)

Using these to find the expectation value of the Hamiltonian,
Eq. (7), we get

Etot =
∫ ∞

−∞
dω f (ω)D̃(ω), (40)

where

D̃(ω) = − 1

π
Im

∑
h

G̃h(ω)

= − 1

π
Im

[ ∑
khη

(
ε̃khGkhη

khη
+ 2XkhηGdh

kηh

) + εd

∑
h

Gdh
dh

]

(41)

and

G̃h(ω) =
(

−
∑
kη

)
+

(
ω+ ∑

kη

1

ω+ − ε̃kh

)

+ Gdh
dh

(
εd +

∑
kη

X 2
khη

ω+ − ε̃kh
+ ω+ ∑

kη

X 2
khη

(ω+ − ε̃kh)2

)
,

(42)

which when simplified yields

D̃h(ω) = ωDc0(ω − hλ) + εd Dd0h(ω)

− 1

π
Im

[
Gdh

dh

(
�h − ω

d�h

dω

)]
. (43)

The first term contributes to the conduction electron energy,
and depends on λ as follows:

Ec0 =
∑

h

∫ 0

−∞
ωDc0(ω − hλ) dω

= 2
∫ 0

−∞
ωDc0(ω) dω + 2

∫ λ

0
(ω − λ)Dc0(ω) dω

= E0 + 2
∫ λ

0
(ω − λ)Dc0(ω) dω, (44)

where E0 is independent of λ, and we have assumed that
Dc0(ω) is symmetric about ω = 0. The second term yields a

contribution proportional to the dot occupancy. Thus

Etot − E0 = 2
∫ λ

0
(ω − λ)Dc0(ω) dω + εd

∑
h

ndh0

−
∑

h

∫ 0

−∞
dω

1

π
Im

[
Gdh

dh

(
�h − ω

d�h

dω

)]
.

(45)

A Gaussian conduction band is chosen for convenience as
ρ0(ε) = ∑

k δ(ε − ε̃k ) = exp(−ε2/2t2
∗ )/

√
(π )t∗ (with t∗ = 1

as the unit of energy), for which the Hilbert transform may be
written in terms of the Faddeeva function, w(z), as HT [z] =
(−i

√
π/t∗)w(z/

√
2t∗) if Im(z) > 0. With a Gaussian DoS, the

hybridization function, �h(ω), is given by [Eq. (32)]

�h(ω) = �0 cos(2φ)HT [zh]

= �0 cos(2φ)
[ − is

√
π exp

( − z2
h

)
erfc(−iszh)

]
,

(46)

where zh = ω+ − hλ, s = sgn(Imzh) = +1, and erfc(z) is
the complementary error function. The derivative of the hy-
bridization function is given by

d�h

dω
= �0 cos(2φ)

dHT (z)

dz
= 2�0 cos(2φ)(1 − zhHT [zh]).

(47)

The total energy expression (45) shows that the first term is
the conduction electron contribution, and the second and third
terms are the contributions due to the dot and the hybridiza-
tion, respectively. If λ = 0 and φ = π/4, then for εd = 0,
the total energy is just zero. In fact, the third term, being
proportional to cos(2φ), will yield zero for any λ and εd at
φ = π/4.

The slave-boson mean-field Hamiltonian may be treated
exactly as the noninteracting limit, and the average energy
Ẽtot = 〈HMF 〉 is obtained as

Ẽtot − E0 = 2
∫ λ

0
(ω − λ)Dc0(ω) dω + ε̃d

∑
h

ñdh0

−
∑

h

∫ 0

−∞
dω

1

π
Im

[
G̃dh

dh

(
�̃h − ω

d�̃h

dω

)]

+ ζ [2r2 cos(2θ ) − 1], (48)

where the renormalized dot Green’s functions and hybridiza-
tions are given by

G̃dh
dh(ω) = [ω+ − ε̃d − �̃h(ω)]−1, (49)

�̃h(ω) = 4r2|X0|2 cos(2φ + 2θ )HT [zh], (50)

and the Hilbert transform is defined by the Faddeeva function
given above Eq. (46). We observe that the first term in Eq. (48)
does not depend on r, ζ , or θ , and hence will not affect the
minimization.

In order to investigate the effect of finite bandwidth and
SOC in the strong-coupling limit, we go back to Eq. (48),
and minimize the total energy for a Gaussian band and for
finite SOC. We will find the equations for the determination
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of r2, ε̃d , and θ , and solve them numerically. The derivatives
of the total energy are

∂Ẽtot

∂ζ
= A(ε̃d , r2, θ ) + 2r2 cos 2θ − 1, (51)

∂Ẽtot

∂r2
= 1

r2
B(ε̃d , r2, θ ) + 2ζ cos 2θ, (52)

∂Ẽtot

∂θ
= −2{tan[2(φ + θ )]B(ε̃d , r2, θ ) + 2ζ r2 sin 2θ}, (53)

where

A(ε̃d , r2, θ ) = − 1

π
Im

∫ 0

−∞

∑
h

Fh(ω) dω,

B(ε̃d , r2, θ ) = − 1

π
Im

∫ 0

−∞

∑
h

Gh(ω) dω, (54)

and

Fh(ω) = (
G̃dh

dh

)2
(

ε̃d + �̃h − ω
d�̃h

dω

)
+ G̃dh

dh,

Gh(ω) = (
G̃dh

dh

)2
�̃h

(
ε̃d + �̃h − ω

d�̃h

dω

)

+ G̃dh
dh

(
�̃h − ω

d�̃h

dω

)
. (55)

Using the above expressions and the definitions, we get the
following self-consistent nonlinear equations:

A(ε̃d , r2, θ ) = 1 − 2r2 cos(2θ ), (56)

B(ε̃d , r2, θ ) = −2ζ r2 cos(2θ ), (57)

tan(2φ + 2θ )B(ε̃d , r2, θ ) = −2ζ r2 sin(2θ ). (58)

Since Eqs. (57) and (58) yield the result that θ �= 0 only if
φ = 0, we conclude that the slave-boson equations do not
renormalize the non-Hermitian coupling strength, which is
nonzero only if φ �= 0. Thus, we restrict ourselves to θ =
0, and solve Eqs. (56) and (57) to determine ε̃d = εd + ζ

and r2. Again, we choose a Gaussian density of states for
the bare conduction band. The numerical solution proceeds
with the choice of a parameter, a = r2/ε̃d , and using this,
Eq. (56) can be transformed to a single-variable nonlinear
equation, and hence can be solved easily. Given both r2 and
ε̃d , we can substitute in Eq. (57) and get ζ , and hence εd .
For vanishing SOC (λ → 0), we expect to find a Kondo scale
that has a dependence similar to the conventional Hermitian
case. Defining �0 = πX 2

0 ρ0(0) which is equal to
√

πX 2
0 /t∗

for the Gaussian DoS, Fig. 9 shows that the Kondo scale,
TK/D = r2

√
�2

0 + ε̃2
d/D, found with the Gaussian density of

states, is indeed exponentially dependent on πεd/�0, but with
an exponent, that is slightly different than the one obtained for
the flat-band case.

With increasing SOC, since the hybridization value at
ω = 0 decreases, we may expect that the Kondo scale should
also decrease. A countereffect is provided by a concomitant
increase in the total bandwidth. However, since λ affects
�h(ω = 0) exponentially (Gaussian DoS), the Kondo scale
decreases exponentially with an increase in SOC as shown
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Slave-Boson solution
Fit : y=0.52exp(1.17x)

FIG. 9. TK (black solid) and the exponential fit (red dashed) as a
function of scaled dot-orbital energy, πεd/4�0, for λ = 0 and φ = 0.

in Fig. 10. This finding must be contrasted with that of
the flat-band case [44,45], where, since the �h(ω = 0) does
not change with varying λ, the bandwidth becomes the only
controlling parameter, and the scale increases linearly with
increasing SOC in the flat-band case.

Now, we investigate the variation of the scale with in-
creasing non-Hermitian strength for fixed SOC and εd in the
strong-coupling regime. To recapitulate the results from the
noninteracting case, we had found that for λ = 0, the excep-
tional point was at φEP = π/4, and that increasing λ increased
the φEP to beyond π/4, showing that SOC stabilized PT
symmetry for U = 0. In the zero-bandwidth, three-site model,
we found that the exceptional point (gEP > 1) and the quantum
critical point (gc = 1) become distinct in the U -λ plane except
on the λ = U/2 line, where gEP = gc = 1. With the slave-
boson calculation, we will be able to extract the Kondo scale,
TK , and hence the quantum critical point (QCP) will be iden-
tified through the vanishing of TK . However, we may not be

0 0.5 1 1.5 2

SOC (λ)

10
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10
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10
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T
K

Slave Boson result

0.07exp(λ2
- 2.1λ4

)

FIG. 10. TK (black solid) and the exponential fit (red dashed) as
a function of spin-orbit coupling (λ).

075113-10



KONDO EFFECT IN A NON-HERMITIAN … PHYSICAL REVIEW B 106, 075113 (2022)

0 0.05 0.1 0.15 0.2 0.25

φ/π
10

-4

10
-3

10
-2

10
-1

10
0

T
K

/T
K

0

λ=0.0
λ=1.2
λ=1.5
15777(0.236-x)

3.767

300280(0.209-x)
5.566

158631(0.17-x)
5.493

ε
d
 = -1.75

FIG. 11. TK/TK0 for λ = 0 (black circles) and λ = 1.5 (red
squares) and the respective fits (green dashed and blue dashed) for
εd = −1.75.

able to identify the exceptional point since the zero-bandwidth
case indicates that PT symmetry breaks spontaneously at
a non-Hermitian coupling, g � 1, which is always greater
than or equal to the QCP (g = 1), while the slave-boson
mean field vanishes at the QCP, and the theory may not even
be valid beyond the QCP. Now, we discuss the slave-boson
results.

Defining TK0 as the Kondo scale for φ = 0, in Fig. 11,
we show TK/TK0 vs φ for εd = −1.75 and λ = 0, 1.2, and
1.5. The scale decreases sharply with increasing φ, and is
seen to vanish at a critical φ (as seen by the power law
fits). The critical values of φ and the non-Hermitian cou-
pling g = tan(φ) for various λ are given in Table I. It is
observed that the critical coupling decreases sharply with
increasing λ, and at some value of λ = λc, the critical φ

will vanish, which implies that the model will not have a
Kondo screened state for any finite value of the non-Hermitian
coupling if λ > λc. The results shown in Table I also con-
solidate the inference that interactions and SOC cooperate
in reducing the value of the quantum critical non-Hermitian
strength.

Using the above results in Fig. 11, we can draw a phase dia-
gram in the φ-λ plane. The shaded region in Fig. 12 represents
the parameter regime where the Kondo scale is finite, while
the dashed line is where the scale vanishes. The red crosses
are the actual slave-boson results found through the analysis
shown in Fig. 11, where for a fixed λ, we have found the TK vs

TABLE I. Table showing the results of the fits of TK vs φ of
Fig. 11, from which the critical φ has been obtained.

λ φc gc = tan(φc )

0.0 0.236π 0.916
1.2 0.209π 0.771
1.5 0.17π 0.591
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FIG. 12. The shaded region represents a parameter regime,
where a finite Kondo scale is found. The slave-boson results for the
vanishing of TK are shown by red crosses (φ scan) and blue stars (λ
scan), and the dashed line represents a fit, and is a guide to the eye.

φ. This will be called the φ scan. In order to validate the phase
diagram, we have carried out λ scans for fixed φ, and the blue
stars shown in Fig. 12 are found to lie on the same curve as
the red crosses. The fit shows that the critical λc discussed
above is given by λc = 2.96(0.236)1/4 = 2.06, beyond which
the model does not support the Kondo screened state for any
finite φ.

V. DISCUSSION AND CONCLUSIONS

In this work, we have considered the interplay of in-
teractions, Rashba spin-orbit coupling, and non-Hermitian
coupling to the baths on the Kondo effect and preservation
or violation of PT symmetry. We begin with a derivation of
the model of an interacting quantum dot hybridizing through
non-Hermitian couplings with noninteracting leads having
Rashba spin-orbit coupling using Lindbladian dynamics. A
simplification of the full model in terms of a zero-bandwidth,
three-site model is considered, which yields a wealth of
information including the demonstration of PT symmetry,
the dependence of quantum critical points and exceptional
points on Rashba spin-orbit coupling and interactions, etc.
Our analysis shows that the exceptional point at gEP = 1 in
the noninteracting case coincides with the Kondo destruction
critical point, gc, for all λ = U/2,U �= 0, but the two bifurcate
significantly everywhere else in the U -λ phase diagram. The
quantum critical point remains at gc = 1 for all U �= 0 and λ.
The phase diagram of this simple, three-site system shows that
U and λ protect PT symmetry in the U/λ 
 1 and U/λ � 1
regime for any strength of the non-Hermitian coupling, but in
the neighbourhood of λ = U/2, the exceptional point occurs
at a finite coupling strength.
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A detailed analysis of the full, finite-bandwidth model,
in the noninteracting case using exact diagonalization (ED),
Green’s functions, and Hamiltonian trace calculation, is used
to establish that exceptional points may be deduced from
the ED calculations, or equivalently from the violation of
the spectral sum rule of the Green’s functions or the energy
discontinuity condition. Finally, the strong-coupling regime
is investigated using a slave-boson approach, which, by con-
struction, is valid for U → ∞. The mean-field equations were
derived through the Green’s function approach. We have
shown earlier (in Sec. IV A) that the spectral function is
positive-definite and norm preserving for all φ < π/4, while
only beyond π/4, the spectral function became negative over
certain frequency regions. Since the Kondo destruction critical
point has been found for all λ to lie at φc < π/4, the derived
mean-field equations are valid. The exceptional points could
not be found within this approach since the solution to the
slave-boson mean-field equations yields a vanishing boson
mean field implying a Kondo destruction quantum critical
point before the PT symmetry is violated. The quantum
critical points for the finite bandwidth case get significantly
renormalized below the λ = 0 value of gc = 1 by the SOC.
A critical value of λ is also found beyond which the model
does not support the Kondo screened singlet state for any
finite value of the non-Hermitian coupling. Lourenço et al.
[31] had considered a real-space non-Hermitian model that
was similar to what we have considered, and through RG,
the authors had found that the exceptional point and the
critical point coincide at gc = 1, and the RG flow does not
renormalize the critical point. This is, of course, contrary
to our findings, and the discrepancy could be due to the
subtle differences between their model and our model. We
are working on trying to understand the origin of these
discrepancies through RG-based approaches. Further, the
solution of the slave-boson equations beyond the Kondo de-
struction critical point is being attempted. We believe that
the slave-boson mean field could take on negative or com-
plex values implying complex values of the boson mean
fields.
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APPENDIX A: DEVELOPMENT OF A NON-HERMITIAN
HAMILTONIAN

In order to incorporate dissipation in a conventional
Hermitian model, one can start with the quantum master equa-
tion [46–48], thereby arriving at an effective model in terms
of a Lindbladian which is non-Hermitian. For spin Hamil-
tonians, the Lindbladians have been constructed by Prosen
and others [49,50]. For a Hermitian Kondo model, Kawakami
and co-workers [32] utilized a similar Lindbladian approach
to justify a non-Hermitian Kondo model. Lindbladians for

the dissipative Bose-Hubbard model have also been consid-
ered [51]. A unique gauge transformed Hamiltonian [52] also
gives rise to a PT -symmetric, non-Hermitian 1D Hubbard
model.

The quantum master equation is given by the following:

dρ̃

dt
= −i[H, ρ̃] +

∑
σσ ′

[
Lσ ρ̃L†

σ ′ − 1

2
{L†

σLσ ′ , ρ̃}
]
, (A1)

where Lσ is the PT -symmetric Lindbladian obeying [53]

PT (Lσ ) → σ̄Lσ (A2)

and ρ̃ = PT |ψ〉〈ψ | is the PT -symmetric non-Hermitian
density matrix. The above master equation can also be writ-
ten in terms of diagonal generators of dynamical quantum
groups by a unitary transformation which is discussed in the
quantum master equation approach to many-body systems
[54]. The last term in Eq. (A1) is the recycling term, which
can be absorbed in the unitary part of the single-particle
effective evolution [47], using an effective Hamiltonian
as

dρ̃

dt
= −i[Heff , ρ̃] +

∑
σσ ′

L†
σ ρ̃Lσ ′ , (A3)

where the effective Hamiltonian is given by

Heff = H + i

2

∑
σσ ′

L†
σLσ ′ , (A4)

and Eq. (A3) obeys PT -symmetric Liouvillian dynamics as
d ρ̃

dt = L̂ρ̃ as shown in Ref. [50], in terms of an effective
Hamiltonian given by Eq. (A4) [46]. We present a possible
way of deriving a non-Hermitian Hamiltonian through this
formalism in the next Appendix.

APPENDIX B: LINDBLADIAN DERIVATION

The construction of the Lindbladian is based on the angular
quantum number jm = m ± 1

2 . For simplifying notation, we
drop the k (momentum) index for now, but one can also define
a local operator by summing over the momentum c0mσ =∑

k Vkckmσ . The Lindbladians below are in the (m, σ ) basis,
but they can equally well be written in the ( jm, σ ) basis.
For these local Lindbladians, we can use the angular mo-
mentum expansion Lσ = 1√

2π

∑∞
m=−∞ Lmσ exp(−imθ ), and

so

L†
σLσ ′ = 1

2π

∞∑
m=−∞

L†
mσ exp(imθ )

∞∑
m′=−∞

Lm′σ ′ exp(−im′θ )

= 1

2π

∑
m,m′=0,±1

e−i(m′−m)θL†
mσLm′σ ′ + higher m . . .

= 1

2π
(L†

0σL0σ ′ + e−i2θL†
1σL−1σ ′ + ei2θL†

−1σ ′L1σ

+L†
−1σL−1σ ′ + L†

1σL1σ ′ + e−iθL†
0σL1σ ′

+ eiθL†
1σL0σ ′ + eiθL†

−1σL0σ ′ + e−iθL†
0σL−1σ ′ . . .).

(B1)

From the above, we can see multiplicative phase factors
for m �= m′, and it is enough to proceed with retaining
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only the operator structures. However, one can also start
with generic expansion (B1) and start eliminating interac-
tions that do not preserve the global number to get gain-loss
terms.

We choose the Lindbladian for ground state and ex-
cited states as Lgσ = |m = 0, σ 〉k + |m = ±1, σ 〉k + |0, σ 〉d ,
Leσ = |m = 0, σ 〉, or |m = ±1, σ̄ 〉, L f ↓ = |m = 0,↓〉, and
L f ↑ = |m = −1,↑〉. Here k is the bath index, and d represents
impurity states. This choice is based on the low-energy phys-
ical picture of the Anderson model, where the ground state
can be composed of the bath and dot states. Excited states
are only bath states with lifted degeneracy due to spin-orbit
interaction. Also, all Lindbladians satisfy symmetry opera-
tions PT Lm↑ → −Lm↓, and we consider only single-fermion
states. To incorporate dissipation with varying number sce-
narios with essential inclusion of the excited states and out of
them, only certain kinds of electron scattering to these states
will be gain-loss balancing. There is definitely an ambiguity in
choosing these states, but we can derive various Hamiltonians
and show that gauge transformations connect these various
choices:

Lg↑ = c 1
2 ↑ + c− 1

2 ↑ + d↑,Lg↓ = −c 1
2 ↓ − c− 1

2 ↓ − d↓,

Le↑ = c 1
2 ↑,Le↓ = −c 1

2 ↓,L f ↑ = c− 1
2 ↑,L f ↓ = −c− 1

2 ↓.

(B2)

We rewrite the sum in Eq. (B1) as L†
σLσ ′ =∑

m,m′=g,e, f L†
mσLm′σ ′ . In fact, a similar convention has

also been used in the Supplemental Material of Nakagawa
et al. [32] for two-body losses. This deviates from earlier
approaches [52] like forward and backward hopping having
opposite phases of each other with a finite real part in 1D
tight-binding models.

The above Lindbladians (B2) give a total of 36 terms
[which can be identified in (B1); each of the 9 terms will
have implicit 4 terms with σ = ± 1

2 , σ ′ = ± 1
2 ] which are rep-

resented below pictorially. We can see several ways to derive
minimal terms that preserve symmetry. We also verified, in
general, that there is a possibility to derive PT -symmetric
representations if we find coefficients that commute with the
total number operator (at a single-particle level). Here we see
it is not easy due to the angular momentum and spin indices,
but this method works nicely when only the spin index is
present:

green lines = L†
e↑Lg↑ + L†

f ↓Lg↑ + L†
e↓Lg↓

+L†
f ↑Lg↓ + L†

g↑Le↑ + L†
g↑L f ↓

+L†
g↓L f ↑ + L†

g↓Le↓;

blue lines = −2L†
e↑Le↑ − L†

f ↑Le↑ − L†
f ↓Le↑

− 2L†
e↓Le↓ − L†

f ↑Le↓ − L†
f ↓Le↓

−L†
e↑L f ↑ − L†

e↓L f ↑ − 2L†
f ↓L f ↑

−L†
e↑L f ↓ − L†

e↓L f ↓ − 2L†
f ↑L f ↓; (B3)

f, σ = 1
2

f, σ = − 1
2

e, σ = 1
2

e, σ = − 1
2

g, σ = ± 1
2

This choice of interactions also yields us the only hy-
bridization terms we considered in our model:

d†↑c 1
2 ↑ + d†↓c 1

2 ↓ − d†↓c− 1
2 ↑ − d†↑c− 1

2 ↓

+ c†
1
2 ↑d↑ + c†

1
2 ↓d↓ − c†

− 1
2 ↑d↓ − c†

− 1
2 ↓d↑; (B4)

green lines = L†
e↑Lg↓ + L†

g↓Le↑ + L†
f ↓Lg↓

+L†
g↓L f ↓ + L†

e↑Lg↑ + L†
g↑Le↑

+L†
f ↓Lg↑ + L†

g↑L f ↓;

blue lines = −L†
e↑Le↓ − L†

e↓Le↑ − L†
f ↓Le↓

−L†
e↓L f ↓ − 2L†

f ↓Le↑ − 2L†
e↑L f ↓

−L†
f ↑Le↑ − L†

e↑L f ↑ − 2L†
e↑Le↑

−L†
f ↑L f ↓ − L†

f ↓L f ↑ − 2L†
f ↓L f ↓. (B5)

The above Lindbladian construction may be seen graphically
as the following:

f, σ = 1
2

f, σ = − 1
2e, σ = 1

2

e, σ = − 1
2

g, σ = ± 1
2

The above preserves the total number in Kondo-relevant
angular momentum channels since we find the coeffi-
cients by calculating the commutators as [(green lines +
blue lines)no−flip, (n jmσ + ndσ )] = 0, and since the flip terms
are odd under parity, their coefficients are evaluated
as {(green lines + blue lines)flip, (n jmσ + ndσ )} = 0. All blue
lines correspond to the negative sign scattering terms and
green correspond to positive scattering terms. Red dots are
the terms left out because we preserve number in jm = ± 1

2 .
On the dot, dissipation is absent; hence we did not consider
the on-site dissipation for the dot operators and non-flip terms,
which will introduce non-Hermitian spin-orbit interaction on
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the dot, which is out of the scope of the current work. These
terms may arise in controlled dissipation, and these signs
by this way of calculation also tell us about even and odd
under parity, which also ensures commutation with the metric
operator:

green lines + blue lines = −d†↑c− 1
2 ↓ + d†↑c− 1

2 ↓ + d†↑c 1
2 ↑

− d†↓c 1
2 ↑ − c†

− 1
2 ↓d↑ + c†

− 1
2 ↓d↓

+ c†
1
2 ↑d↑ − c†

1
2 ↑d↓. (B6)

Following a slightly laborious but straightforward calcula-
tion of commutators and anticommutators, this hybridization
can be written as the following by multiplying a prefactor as
(iV + ω) to get the following terms. We also bring back the k
index for bath operators and coefficients:

Hhyb =
∑

k

Vk
(
c†

k 1
2 ↑d↑ + c†

k,− 1
2 ↓d↓ + H.c.

)
,

i

2

∑
σσ ′

L†
σLσ ′ =

∑
k

(
−Vk

2
+ i

2
ωk

)(
c†

k 1
2 ↑d↑ + c†

k,− 1
2 ↓d↓

− c†
k 1

2 ↑d↓ − c†
k,− 1

2 ↓d↑ + H.c.
)

⇒ Hhyb + i

2

∑
σσ ′

L†
σLσ ′ = Hhyb

flip + Hhyb
no−flip.

(B7)

Out of the two possibilities (B4) and (B6), although we
have chosen the first one in this work on the lines of the real-
space non-Hermitian Anderson model [31], nevertheless, we
have considered both these hybridization terms below, which
are PT symmetric and also yield the same eigenvalues.

Method I:

Hhyb
no−flip =

∑
k

Xk
(
c†

k,+ 1
2 ↑d↑ + c†

k, 1
2 ↓d↓ + H.c.

)
,

Hhyb
flip = −

∑
k

X ∗
k

(
c†

k,− 1
2 ↑d↓ + c†

k,− 1
2 ↓d↑ + H.c.

)
.

(B8)

Method II:

Hhyb
no−flip =

∑
k

Xk
(
c†

k,+ 1
2 ↑d↑ + c†

k,− 1
2 ↓d↓ + H.c.

)
,

Hhyb
flip =

∑
k

X ∗
k

(
c†

k, 1
2 ↑d↓ + c†

k,− 1
2 ↓d↑ + H.c.

)
. (B9)

So, we can see that method I compares well with Lourenço
et al. [31], while method II is indeed consistent with the work
of Zarea et al. [34]. However, the additional terms brought
through Lindbladian dynamics are to explore the interplay be-
tween dissipation and parity-breaking interactions. Only in a
bath this parity breaking can be verified with commutation of
only bath Sz operator [(n± 1

2 ↑ − n± 1
2 ↓), Hhyb

no−flip + Hhyb
flip ] �= 0.

This condition is satisfied by both hybridization terms, and
they yield the same eigenvalues since there is no angular-
momentum-dependent coefficient for hybridization. However,
from method I, it is convenient to find simpler metric operators
(no-phase attached to d operators in eigenvector) to map to the
non-Hermitian studied version of the model and to compare

the results. Here we show from the following gauge choices
that the (B8) and (B7) are equivalent:

for no-flip: ck 1
2 ↑ = eiθ ckL↑, ck− 1

2 ↓ = e−iθ ckL↓;

for flip: ck 1
2 ↑ = −e−iθ ckR↑, ck− 1

2 ↓ = −eiθ ckR↓.

(B10)

From this choice, we get the following unitary which
shows that both the hybridization terms yield equivalent mod-
els (7) which we used for various calculations:

U = 1√
2

(
e−iθ eiθ

e−iθ −eiθ

)
,U

(
d↑
d↓

)
=

(
d+
d−

)
. (B11)

Thus, the full non-Hermitian Hamiltonian in the angular mo-
mentum basis then becomes

HNH
SIAM = H0 + Hhyb

flip + Hhyb
no−flip + HRSO + Hd . (B12)

Equation (6) is off-diagonal in the m basis, but a simple
transformation to the total angular momentum basis, namely
jm = m + σ , gives the following:

HRSO = λ
∑
k jm

(c†
k jm↑ck jm↓ + H.c.), (B13)

which is diagonal in the jm basis. The kinetic energy term and
the hybridization terms may also be rewritten in the same way,
and we get the following:

H0 =
∑
k jmσ

ε̃kc†
k jmσ

ck jmσ , (B14)

Hhyb
no−flip =

∑
k

Xk
(
c†

k,+ 1
2 ↑d↑ + c†

k, 1
2 ↓d↓ + H.c.

)
, (B15)

Hhyb
flip = −

∑
k

X ∗
k

(
c†

k,− 1
2 ↑d↓ + c†

k,− 1
2 ↓d↑ + H.c.

)
, (B16)

where Xk = (Vk + iωk )/2
√

k. Note that the Lindbladian for-
malism allows us to choose coefficients of the hybridization
in a specific way, that maintains the PT symmetry of the
Hamiltonian. The RSOC term [Eq. (B13)] is off-diagonal in
the spin index, so we can combine it with Eq. (B14) through
a unitary rotation of the σz basis into a “chiral” basis, namely,

ck jmh = 1√
2

(
ck jm↑ + hck jm↓

)
, (B17)

where h = ±, to a form that is diagonal in the chiral quantum
number (h). So, we get

H0 + HRSO =
∑
k jmh

ε̃khc†
k jmhck jmh, (B18)

where ε̃kh = ε̃k + hλ. The coupling of only the m = 0 lead
states in hybridization follows in a straightforward way by
combining the Fourier transform and the angular momentum
expansion, and is a consequence of the dot states being inde-
pendent of k [34]. In this rotated basis ( jmσ −→ jmh), and
with the identification of jm = ±1/2 as the left (L) and right
(R) channels respectively, the model may be interpreted as a
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system with one interacting quantum dot hybridizing with two
conduction electron baths. The full Hamiltonian written below
reflects such an interpretation:

H =
∑
khη

ε̃khc†
khη

ckhη

+
∑

k

Xk[(c†
kL+ + c†

kL−)d↑ + (c†
kL+ − c†

kL−)d↓ + H.c.]

−
∑

k

X ∗
k [(c†

kR+ + c†
kR−)d↓ + (c†

kR+ − c†
kR−)d↑ + H.c.]

+
∑

σ

εd ndσ + Und↑nd↓, (B19)

where η = L, R is the channel index. Defining a rotation of
the spin basis on the dot (d+ d−)T = U (d↑ d↓)T , where the

unitary rotation is given by U = (σz + σx )/
√

2, the model
Hamiltonian may be condensed into a form which appears
very similar to a conventional Anderson impurity model con-
nected to two baths, namely,

H =
∑
khη

ε̃khc†
khη

ckhη
+

∑
kηh

Xkηh(c†
kηhdh + H.c.)

+ εd

∑
h

ndh + Und+nd−, (B20)

where XkLh = √
2|Xk|eiφk and XkRh = −hX ∗

kLh.
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