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Dirac fermions with plaquette interactions. I. SU(2) phase diagram with Gross-Neveu and
deconfined quantum criticalities
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We investigate the ground state phase diagram of an extended Hubbard model with a π -flux hopping term
at half filling on a square lattice, with unbiased large-scale auxiliary-field quantum Monte Carlo simulations.
As a function of interaction strength, there emerges an intermediate phase which realizes two interaction-driven
quantum critical points, with the first between the Dirac semimetal and an insulating phase of weak valence
bond solid (VBS) order, and the second separating the VBS order and an antiferromagnetic insulating phase.
These intriguing quantum critical points are respectively bestowed with Gross-Neveu and deconfined quantum
criticalities, and the critical exponents ηVBS = 0.6(1) and ηAFM = 0.58(3) at a deconfined quantum critical point
satisfy the conformal field theory bootstrap bound. We also investigate the dynamical properties of the spin
excitation and find the spin gap open near the first transition and closed at the second. The relevance of our
findings in realizing deconfined quantum criticality in fermion systems and the implication to lattice models
with further extended interactions such as those in quantum moiré systems, are discussed.
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I. INTRODUCTION

The Landau-Ginzburg-Wilson (LGW) paradigm of phases
and their transitions is one of the cornerstones of modern
condensed matter physics [1,2], in which the phase transition
could be understood in terms of symmetry breaking and the
establishment of order parameters. According to LGW, the
transition between two ordered phases with spontaneously
broken symmetries should either be first order or through an
intermediate phase. However, new transitions between novel
quantum states that are beyond the LGW have been accumu-
lating in recent years. For example, Senthil et al. proposed
that a continuous quantum phase transition between the anti-
ferromagnetic (AFM) order and the valence bond solid (VBS)
order could exist [3,4], referred to as the deconfined quantum
critical point (DQCP). Strong evidence of a DQCP in a spin- 1

2
model on a square lattice has been first shown in the J-Q
model by Sandvik [5,6]. Subsequently, other numerical ex-
amples and new theoretical understandings of the DQCP have
been developed in quantum spin models [7–20] and have been
gradually extended to interacting fermionic systems [21–27].
It is obvious that the model design and large-scale quantum
Monte Carlo (QMC) simulations played a key role in pushing
the frontier of our knowledge on such surprising phenomena.
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Except for the DQCP discussed above, the interaction ef-
fects on massless Dirac fermions have also attracted great
attention. Since the linear dispersion is stable against weak
interactions, there must be one or more quantum phase
transitions separating the Dirac semimetal (SM) phase and
various possible Mott insulator states. Depending on the
type of interactions, many Mott insulators have been discov-
ered, including the ferromagnetic and AFM states [28–34],
VBS state [35–40], nematic phase [41], superconductor and
quantum (spin) Hall states [25–27,42,43], and many others.
Among these examples, particular interest lies in the direction
where from the Dirac SM to the strong-coupling limit, there
exist multiple insulating phases as a function of the inter-
action strength, and leaves room for interesting intermediate
phases such as topological ordered phases and multiple exotic
quantum phase transitions, such as Gross-Neveu and DQCP.
Previous works have shown, with spin- 1

2 electron and SU(2)
symmetry, an extended interaction on a honeycomb lattice
offers a robust VBS with a Kekulé pattern exactly as such
an intermediate phase between Dirac SM and strong-coupling
AFM order [39]. However, although the transition between
Dirac SM with a Kekulé VBS is found to be a Gross-Neveu
QCP, the transition between VBS and AFM phases is first
order. These results motivate us to investigate the interaction
effect in a π -flux extended Hubbard model on a square lattice,
as we show below, and in this case, except for a Gross-
Neveu QCP between Dirac SM and VBS, there indeed further
emerges a continuous transition between the VBS and AFM
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FIG. 1. (a) Square lattice with π -flux hopping. Red and black
solid lines correspond to −t and t . �ex (�ey) is the unit vector along the x
(y) direction. The position of site i is given as ri = ix�ex + iy�ey. (b) The
white square is the BZ of the original square lattice, and the blue
BZ is the folded one considering the translation-symmetry-breaking
hopping amplitudes. The red solid points represent the position of
Dirac cones K0 = ( π

2 , π

2 ). High-symmetry points � = (0, 0), X =
(π, 0), and M = (π, π ) are denoted.

phase within the largest system sizes accessed, consistent with
the expected behavior of the DQCP. Our results of the Dirac
fermion with an extended interaction could also shed light
on the great ongoing efforts in understanding the interaction
effects on quantum moiré material models [40,44–50] such as
twisted bilayer graphene (TBG) and transition metal dichalco-
genides, where the interplay between flat-band Dirac cones
and the extended Coulomb interactions can be engineered by
twisting angles, and gating and tailored design of the dielectric
environment, giving rise to a plethora of exotic phenomena.

II. MODEL AND METHOD

We study a SU(2) extended Hubbard model with a π -flux
hopping term at half filling on a square lattice,

H = −
∑

〈i j〉,σ
ti j (c

†
iσ c jσ + H.c. ) + U

∑

�
(n� − 1)2, (1)

where 〈i j〉 denotes the nearest neighbor, c†
iσ and ciσ are

creation and annihilation operators for fermions on site i
with spin σ = ↑,↓, n� is the extended particle number op-
erator of the � plaquette defined as n� ≡ 1

4

∑
i∈� ni with

ni = ∑
σ c†

iσ ciσ and at half filling 〈n�〉 = 1, and U tunes the
interaction strength, which favors AFM order in the strong-
coupling limit [38].

As shown in Fig. 1(a), we set the hopping amplitudes
ti,i+�ex = t and ti,i+�ey = (−1)ix t , where the position of site i is
given as ri = ix�ex + iy�ey and t = 1 is the energy unit. Such an
arrangement bestows a π flux penetrating each � plaqutte. As
a consequence, two Dirac cones are located at K0 = ( π

2 ,±π
2 )

in the first Brillouin zone (BZ). We note the folding and
locations of the Dirac cones all depend on the gauge choice
of hopping amplitudes, i.e., with the above hopping the BZ
is folded in half [the blue area in Fig. 1(b)], but the dis-
tance between two Dirac cones is actually gauge invariant.
The model therefore still has full crystalline symmetries of
the square lattice (the p4mm wallpaper group), where each
crystalline symmetry operation is supplemented by a U (1)
gauge transformation. For example, the translation symmetry

FIG. 2. (a) Phase diagram of the extended Hubbard model as a
function of interaction strength U , obtained from QMC simulations.
The SM-VBS transition at Uc1 is continuous and of Gross-Neveu
universality. The VBS-AFM transition at Uc2 is also continuous and
should be explained according to the deconfined quantum criticality.
Correlation ratios of the (b) VBS order and (c) AFM order as a
function of interaction strength U are shown

becomes T̂�ex : ci → (−1)iy ci+�ex . Consequently, we will still
discuss our results in the original square lattice BZ.

For the extended Hubbard interaction term, the on-site,
first-, and second-nearest-neighbor repulsions are all included
in one plaquette. This particular extended Coulomb interac-
tion form can be related with quantum moiré materials with
a square lattice structure. Because the Wannier orbitals of
moiré materials, such as TBG, are quite extended, the rela-
tively long-range Coulomb interactions have to be included
to construct an effective model [51,52]. As found in previ-
ous studies [39,40,44,45], such an extended interaction will
require a relative larger U to gap out the Dirac cones.

One can easily show the Hamiltonian in Eq. (1) is sign-
problem free for auxiliary-field QMC [53] and we implement
a projector version of the QMC method [54] to solve the
model. Details of the algorithm can be found in the Sup-
plemental Material (SM) [55], and we only mention the
projection length βt = L for equal-time measurements: βt =
L + 10 for imaginary-time measurements and a discrete time
slice �τ = 0.1. We simulate the systems with linear size
L = 12, 16, 20, 24, 28, and 32. We have also tested that this
setup is enough to achieve controlled error bars [55].

III. QMC RESULTS

The phase diagram obtained from QMC simulations is
shown in Fig. 2(a). We find an emergent intermediate phase
which realizes two continuous quantum phase transitions
when gradually increasing the interaction strength U . They
are the phase transitions from the Dirac SM to VBS phase
and that from the VBS to AF phase. This particular sequence
of transitions has yet to be observed in other models. The first
corresponding QCP is at Uc1/t = 23.5(5) and of Gross-Neveu
type with the VBS acquiring a Z4 discrete lattice symmetry
breaking, and the critical point is expected to have emergent
U (1) symmetry as the Z4 anisotropy is irrelevant [6]. The
second corresponding QCP is at Uc2/t = 29.25(25), sepa-
rating two spontaneous symmetry-breaking phases, e.g., Z4
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for VBS and SU(2) for AFM phases, and shall be explained
according to the deconfined quantum criticality [3,4]. What
is more, the corresponding critical exponents ηVBS = 0.6(1)
and ηAFM = 0.58(3) are extracted, and they satisfy the CFT
bootstrap bound [56,57]. In particular, our model is a one-
tuning-parameter fermionic model that gives rise to the critical
exponents ηVBS ≈ ηAFM meeting the CFT bootstrap bound at
DQCP.

To quantitatively study the two phase transitions, we define
two structure factors,

CAFM(k, L) = 1

L4

∑

i, j

eik·(ri−r j )〈SiS j〉 (2)

and

CVBS(k, L) = 1

L4

∑

i, j

eik·(ri−r j )〈BiBj〉, (3)

for AFM order and VBS order, respectively. In the above
equations, Si = 1

2

∑
σσ ′ c†

iσ σσσ ′ciσ ′ are the fermion spin op-
erators at site i, and σ the Pauli matrices. Here, Bi =∑

σ (ti,i+�ex c
†
i,σ ci+�ex,σ + H.c.) are gauge invariant bond oper-

ators. For AFM order, CAFM(k, L) is peaked at momentum
M = (π, π ); for VBS order, CVBS(k, L) is peaked at mo-
mentum X = (π, 0). We then use the renormalization-group
invariant correlation ratios (c = VBS, AFM) to perform the
data analysis,

Rc(U, L) = 1 − Cc(k = Q + dq, L)

Cc(k = Q, L)
, (4)

where Q is the ordering wave vector, and |dq| ∼ 1
L denotes

the smallest momentum on finite-size lattice. By definition,
Rc(U, L) → 1 (0) for L → ∞ in the corresponding ordered
(disordered) phase. At the QCP, Rc is scale invariant for
sufficiently large L and exhibits the scaling behavior for the
corresponding universalities [23,32,58–60].

As shown in Fig. 2(b), when varying U/t from 18 to
33, RVBS(U, L) first increases then decreases. Importantly,
RVBS(U, L = 20, 24, 28, 32) for different L’s cross at two sep-
arate regions. These results mean that our model undergoes
two phase transitions, and the VBS order is the intermediate
phase. Admittedly, the VBS order is very weak but remains
finite at the thermodynamic limit (TDL), and we believe it
is attributed to the enhanced quantum fluctuations from the
interplay of Dirac fermions and extended interactions within
a plaquette. We also find that at the transition, the VBS order
parameter histogram is consistent with the emergent U (1)
symmetry [39]. The correlation ratio of AFM order is shown
in Fig. 2(c). Interestingly, a clear crossing takes place around
U/t = 29.4, which further indicates the phase transition be-
tween the VBS and the AFM order is continuous.

To understand the two intriguing QCPs, we first focus on
the more complicated VBS-AFM transition, to demonstrate it
has the flavor of DQCP. To this end, we collapse the corre-
lation ratio of AFM order with the finite-size scaling relation
RAF(U, L) = f1[L1/ν (U/Uc − 1)], as shown in Fig. 3(a), and
obtain the position of the corresponding QCP at Uc2/t =
29.25(25) and the correlation length exponent ν = 1.13(5).
Then at Uc2 the AFM and VBS structure factors, in Eqs. (2)
and (3), shall obey the following finite-size scaling ansatz

FIG. 3. (a) The data collapse of the correlation ratio RAFM, which
gives Uc2/t = 29.25(25) and ν = 1.13(5). (b) The data collapse of
the AFM structure in the vicinity of Uc2/t = 29.25 with ν = 1.13 and
η = 0.58. The log-log plot of the structure factor of (c) AFM order
and (d) VBS order vs the linear lattice size L at Uc2/t = 29.25. The
critical exponents 1 + η can be extracted from the slopes of linear
fitting curves in log-log plots. We obtain ηAFM = 0.58(3) and ηVBS =
0.6(1).

[40,61],

Cc(U, L) = L−z−η f2[L1/ν (U − Uc)/Uc], (5)

where η is the anomalous dimension exponent, and z = 1 is
the dynamic exponent. As shown in Figs. 3(c) and 3(d), we
extract η from the slope of the log-log plot of Cc(U, L) curves
at Uc2/t = 29.25 and find ηAFM = 0.58(3) for AFM order and
ηVBS = 0.6(1) for VBS order, respectively, giving rise to good
quality linear fits.

According to the scenario of DQCP [3,4], the closeness of
the exponents from the two ordered phases approaching the
critical point, i.e., ηVBS ≈ ηAFM in our setting, is considered as
an important signature for the associated emergent symmetry
[8,9], and numerical evidence of such closenesses has been
seen in the J-Q model [5,12], the three-dimensional (3D)
loop model [9], as well as those in the recently discovered
fermionic models [23,25–27]. In the literature [8,9,12,23,25–
27], the precise value of the exponents appears to depend on
the detailed implementation of each model, and there also
exists the conformal field theory (CFT) bound that the emer-
gent symmetry needs to satisfy [56,57]. We note the ηVBS and
ηAFM in our work satisfy the CFT bootstrap bound, as well
as in a completely different interacting fermion model on a
honeycomb lattice in Ref. [23]. Importantly, comparing with
Ref. [23], we only use one tuning parameter in our model,
as there is no interference from the nearby multicriticality or
first-order transition as in Ref. [23], which may pollute the
measurement of critical exponents because a clean scaling
behavior can only be observed far away from the multicritical
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FIG. 4. (a) The 1/L extrapolation of the single-particle gap
�sp(K0, L): The gap opens at an interaction strength locating in
a range from U/t = 23 to U/t = 24. (b) The data collapse of the
structure factor of VBS order, which gives an estimation of Uc1/t =
23.5(5), ν ′ = 1.0(1), and η′ = 0.89(3).

point or first-order transitions. The more recent entanglement
measurements further point out the DQCP, at least in the
J-Q model, might not be a unitary CFT in the first place
[18,20] and other possible scenarios such as multicritical
points [16], complex CFT [62,63], and weakly first-order
transitions [17] have been constantly and actively proposed
and explored. Despite these efforts and the enigmatic situation
of the DQCP, our observation, that within the system sizes
simulated ηVBS ≈ ηAFM, is consistent with the deconfinement
at Uc2. It is further worthwhile to point out that a relatively
large η ∼ 0.6 is also the hallmark of many QCPs associated
with the fractionalization of elementary excitations such as
the condensation transition of spinons and visons in ZN topo-
logical orders [64–66]. We also collapse the AFM structure
factor according to Eq. (5) with Uc2/t = 29.25, ν = 1.13,
and η = 0.58, and as shown in Fig. 3(b), all data points fall
on a smooth curve. Therefore, our numerical data in Fig. 3
certainly reveal an internally consistent description along the
line of DQCP for the VBS-AFM transition.

Next, we move on to the SM-VBS transition. It is
known that the massless Dirac fermion is robust at weak
interaction, and a single-particle gap will open at a finite
interaction strength [24,44]. In our model, we indeed find
that as a function of U , the Dirac SM transits to an insu-
lating VBS order continuously through a Gross-Neveu QCP
[22,37,39,40,61,67–76]. This is also consistent with a similar
situation of the extended Hubbard model on a honeycomb
lattice [39,40].

To determine Uc1, we extract the single-particle gap
�sp(K0, L) from a fit to the asymptotic long imaginary-time
behavior of the single-particle Green’s function G(k, τ, L) =
(1/L4)

∑
i, j,σ eik·(ri−r j )〈c†

i,σ (τ )c j,σ (0)〉 ∝ e−�sp(k,L)τ . The ob-
tained �sp(K0, L) are shown in Fig. 4(a). It is clear that
�sp(K0, L → ∞) → 0 at U/t < 23 and �sp(K0, L → ∞) >

0 at U/t > 24, which indicates Uc1/t ∈ (23, 24) and is overall
consistent with the cross point of RVBS shown in Fig. 2(b).
This again signifies the weakness of the VBS order and the
strong fluctuations at this QCP which give rise to a strong
finite-size effect. To locate the Uc1 more accurately, as shown
in Fig. 4(b), we collapse the VBS structure factor according
to Eq. (5) in U/t ∈ (23, 24). Although the finite-size effect is
strong, the data collapse nevertheless gives rise to an estima-
tion, Uc1/t = 23.5(5), and critical exponents, ν ′ = 1.0(1) and

FIG. 5. (a) Spin excitation gap �sp(K0) for different L’s and their
TDL extrapolation as a function of interaction strength U . The VBS
phase has a finite spin gap due to the formation of singlets. (b) Main
panel: First derivative of kinetic energy density as a function of U .
The solid curves are a cubic polynomial fitting through the data. No
discontinuity observed. Inset: Kinetic energy density as a function of
U . Lines and points in both the main panel and inset are shifted for
visualization purposes without changing the physical meaning. Error
bars are smaller than the symbols.

η′ = 0.89(3). These exponents are consistent with previous
numerical simulations of similar SM-VBS transitions on the
honeycomb lattice [39], where it is found that the threefold
lattice rotation symmetry is enhanced to an emergent U (1) at
the Gross-Neveu QCP. Since the threefold anisotropy of the
U (1) order parameter is (dangerously) irrelevant at the QCP,
it is expected that the fourfold anisotropy should be even more
irrelevant in our case.

At U < Uc1, the ground state is in a Dirac SM state,
and thus there is no spin excitation gap in the TDL. At
U > Uc2, the ground state is in an AFM state, and the spin
excitation gap in the TDL should also vanish because of the
existence of the Goldstone mode. However, the spin excita-
tion gap will open in the VBS state due to the formation
of a spin singlet [40]. To verify the theoretical predictions,
we measure the dynamical spin-spin correlation function
C(k, τ, L) = 1

L4

∑
i, j eik·(ri−r j )〈Si(τ )S j (0)〉. The spin excita-

tion gap �spin(M, L) can be extract from the imaginary-time
decay of C(k, τ, L) ∝ e−�spin (k,L)τ . As shown in Fig. 5(a) we
extrapolate the spin excitation gap to the TDL and find that
�spin(M) goes to a finite value near Uc1 and goes back to
zero near Uc2. These QMC results are consistent with our
above theoretical analysis, and thus confirm the process of
the evolution of the ground state of our model, i.e., transiting
from the Dirac SM to VBS state first and then from the VBS
to AFM state, as a function of interaction strength U .

In addition, we provide more evidence that the two QCPs
are continuous within the system size studied, by means of
monitoring the evolution of the expectation value of the ki-
netic energy density. Since our QMC is of projector type, this
is meant to monitor the evolution of the (part of) the free
energy of the system. As shown in the inset of Fig. 5(b), the
kinetic energy density E = 1

L4 〈−
∑

〈i j〉,σ ti j (c
†
iσ c jσ + H.c.)〉

evolves smoothly as a function of U for different system
sizes. We then compute their first-order derivatives and find
in the main panel of Fig. 5(b) no discontinuities, consistent
with the continuous phase transition. In the SM [55], we also
present a similar analysis of the structure factors for AFM and
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VBS orders. They support the notion that the SM-VBS and
VBS-AFM transitions are all continuous.

IV. DISCUSSIONS

With the help of a large-scale sign-free projector QMC
simulation, we investigate the phase diagram of a π -flux ex-
tended Hubbard model on a square lattice at half filling. Based
on all the numerical results obtained, we conclude that this
simple looking model acquires an interesting phase diagram
with an intermediate phase with weak VBS order separating
the well-known Dirac SM and AFM phases. More impor-
tantly, we find the Gross-Neveu transition from the Dirac SM
to VBS is continuous, and the transition from VBS to AFM is
also continuous, consistent with deconfined quantum critical
criticality.

Our results, along with the previous works of an extended
interaction model on a honeycomb lattice [38–40], point out
the directions that to realize interesting phase diagrams with
(multiple) intermediate phases between the free Dirac SM
and strong-coupling Mott insulators, the extended interactions
beyond the on-site Hubbard term are crucial and could bring
more surprises. In fact, the weak VBS order discovered here
and the DQCP associated with it towards the AFM order,
imply further perturbations could give rise to even more exotic
interaction-driven phases and transitions. In this context, our
results also have relevance to the great ongoing efforts in un-
derstanding the interaction effect on quantum moiré material
models [38–40,44–48] such as twisted bilayer graphene and
transition metal dichalcogenides, where the interplay between
flat-band Dirac cones and the extended Coulomb interactions
can be engineered by twisting angles, and gating and tai-

lored design of the dielectric environment, giving rise to a
plethora of exotic phenomena and interesting phase and phase
transitions. It is natural to anticipate, with the technique and
analysis presented in this work, once further degrees of free-
dom and tunabilities in moiré systems are added, interesting
phases and transitions and their mechanism will be revealed
from the lattice model simulations.

Note added. Recently, we become aware of a related in-
vestigation by Zhu et al. [77], in which consistent results are
obtained.
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