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Quantum phase transitions from competing short- and long-range interactions on a π-flux lattice
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Quantum phase transitions from the cluster-charge interaction, which is composed of competing short- and
long-range interactions, are investigated on a π -flux lattice by using the mean-field theory and determinant
quantum Monte Carlo (DQMC) simulations. Both methods identify a plaquette-dimer phase, which develops
from a finite interaction strength. While its signature in DQMC is relatively weak, an obvious antiferromagnetic
transition is revealed in the spin structure factor instead. The corresponding critical interaction and exponents
are readily obtained by finite-size scalings, with the plaquette-dimer structure factor that can also be well
scaled. These results suggest a possible deconfined quantum critical point between the plaquette-dimer and
antiferromagnetic phases driven by the cluster-charge interaction on a π -flux lattice.

DOI: 10.1103/PhysRevB.106.075109

I. INTRODUCTION

Dirac semimetal (SM) in two dimensions has attracted
intense interest in condensed matter physics [1–8]. The low-
energy electronic states of this class of quantum matters can be
effectively described by a Dirac equation. The resulting linear
dispersion relation leads to many exotic physical phenomena.
Besides the well-known graphene, various two-dimensional
(2D) Dirac materials have been predicted and discovered ex-
perimentally up to now [9–17].

The emergence of massless Dirac fermions is usually
protected by specific lattice symmetries. When the lattice
is distorted by various periodic perturbations, the Dirac
semimetal can spawn interesting insulating phases. A re-
cent key theoretical advance is to gap the Dirac semimetal
with spin-orbit coupling, which has led to the discovery of
time-reversal-invariant topological insulators [18–20]. Other
insulating phases can be generated by introducing various
kinds of dimerizations of the hopping amplitudes and charge-
density-wave modulations of the on-site energies [21–23].
The above periodic orders are usually driven by interactions
through spontaneous symmetry breaking. When the repulsive
interactions of different ranges coexist, a rich phase diagram,
composed of various charge, spin, and topological ordered
phases, will be obtained[24–27]. The abundant phase transi-
tions therein allow the system to become an ideal platform to
investigate the exotic quantum criticality.

While most quantum critical behaviors can be well de-
scribed by Landau’s theory of phase transitions [28,29],
recent theoretical studies have led to the notion that Lan-
dau’s description is insufficient. In particular, a new class
of phase transition, termed as deconfined quantum critical
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point (DQCP), is established based on 2D antiferromagnets
[30–36]. DQPC occurs in a phase transition between the
Néel and valence bond solid (VBS) phases. Although either
a first-order phase transition or phase coexistence is expected
according to Landau’s theory, the actual transition is a direct
second-order one, and thus should be described by the new
theory, DQCP.

Deconfined quantum criticality may also exist in fermionic
systems [37–42]. While the antiferromagnetic (AF) order can
be induced by the on-site Hubbard repulsion, the VBS phase
can be stabilized by competing short- and long-range in-
teractions. Indeed convincing evidences of DQCP between
the AF and VBS phases have been demonstrated in the
extended Hubbard model of fermions on a honeycomb lat-
tice [41,42]. The studies on DQCP in fermionic systems are
much more difficult since the quantum Monte Carlo sim-
ulations are usually restricted to smaller lattice sizes than
those of spin Hamiltonians. Therefore, additional specially
designed interactions need to be included to stabilize the or-
dered phases (especially the VBS phase) in a larger parameter
regime [42].

In the initial stage of modeling the strong correlation
physics in twisted bilayer graphene, the cluster-charge in-
teraction, which has a simple form and is feasible for
sign-problem-free DQMC simulations, has been proposed as
an effective interaction on a honeycomb lattice [43,44]. Inter-
estingly it is found the Kekulé VBS is stabilized in a wide
range of interaction strengths. Although there exists a transi-
tion from the VBS to AF phases, it is shown to be a first-order
one. As the other realization of 2D Dirac semimetals, the
π -flux lattice has a lattice symmetry and coordination number
distinct from the honeycomb lattice [45–54]. Thus it is natural
to ask what kind of VBS may be stabilized, and whether a
DQCP may be realized by the cluster-charge interaction on
the π -flux lattice.
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In this paper, the quantum phase transitions from com-
peting short- and long-range interactions constituting the
cluster-charge interaction are investigated on a π -flux lattice.
The mean-field theory predicts the appearance of plaquette-
dimer phase from a finite interaction strength. While the
subsequent DQMC simulations find signatures of the above
SM-VBS transition, the lattice sizes accessed are not large
enough to characterize the VBS transitions due to the fragility
of the plaquette-dimer phase. A clear AF transition is revealed
instead, whose critical interaction and exponents are estimated
by finite-size scalings. Furthermore, we find the structure
factor of the VBS phase can be scaled satisfactorily with the
above critical values. Our results suggest a possible DQCP
between the plaquette-dimer and AF phases driven by the
cluster-charge interaction on a π -flux lattice.

This paper is organized as follows. Section II introduces
the model we will investigate, along with our computational
methodology. Section III presents the results from the mean-
field theory. Section IV uses DQMC simulations to study
the quantum phase transitions of the interacting Hamiltonian.
Section V includes the conclusions and discussions.

II. THE MODEL AND METHOD

We start with the following Hamiltonian describing inter-
acting spin-1/2 fermions on a π -flux lattice [51,52]:

H = −
∑
〈i j〉,σ

(ti jc
†
iσ c jσ + H.c.) + U

∑
�

(Q� − 2)2, (1)

where the sum on σ runs over spins σ =↑,↓, and 〈i j〉 denotes
the nearest-neighbor (NN) pairs; c†

iσ and ciσ are creation and
annihilation operators of electrons with spin σ on a given
site i; the cluster charge Q� = ∑

i∈�
ni
2 is defined as the total

charge on the four sites of each plaquette with ni = ∑
σ c†

iσ ciσ

the total number operator of electrons on each site; and U
is the interaction strength. To avoid the cluster-charge inter-
action, four electrons per plaquette are energetically favored,
when the system is exactly at half filling.

The first term in Eq. (1) is noninteracting, describing the
electrons on a square lattice subjected to a magnetic field.
The magnetic flux per plaquette is one half of a magnetic
flux quantum �0 = hc/e. As a consequence, when an electron
hopping along the four bonds constituting a plaquette is in
one direction, a total phase π is picked up when it returns
to the starting point. We choose the Landau gauge so that
all hopping amplitudes in the x direction are tx = t , while
the hopping signs along the y direction are staggered, i.e.,
ty = (−1)ix t = ±t (ix represents the x coordinate of the ith
site). The resulting lattice is composed of two sublattices,
and the unit cell contains two sites A and B (Fig. 1). In the
reciprocal space, within the reduced Brillouin zone (|kx| �
π/2, |ky| � π ), the noninteracting Hamiltonian can be
written as

H0 =
∑
kσ

ψ
†
kσH0(k)ψkσ , (2)

(a)

-2

0

0

2
(b)

0.5
11 0-1

FIG. 1. (a) The π -flux model on the square lattice. The unit cell
is composed of two inequivalent sites A and B. The NN hopping
amplitudes may be t (solid line) or −t (dashed line), depending on
the directions and positions of the bonds. (b) Band structure of the
π -flux square lattice with two Dirac cones at the momentum points
(kx, ky ) = (π/2,±π/2).

with the basis ψkσ = (cAσ , cBσ )T and the Hamiltonian in the
momentum space

H0(k) =
(−2t cosky +2t coskx

+2t coskx +2t cosky

)
. (3)

The energy spectrum is given by

Ek = ±
√

4t2(cos2 kx + cos2 ky), (4)

which is symmetric around the Fermi level, and gapless at the
two inequivalent Dirac points located at K± = (π/2,±π/2).

The interacting term in the Hamiltonian, Eq. (1), contains
various kinds of short- and long-range interactions, which is
more easily seen through an expanding of the cluster-charge
interaction [43],

U
∑
�

(Q� − 2)2 = 2U
∑

i

ni↑ni↓ + U
∑
〈i j〉

nin j

+ 1

2
U

∑
〈〈i j〉〉

nin j − 7U
∑

i

ni + 4UNs, (5)

with Ns the total number of sites on the lattice. 〈〈i j〉〉 means
the next-nearest-neighbor (NNN) interactions. Thus the sys-
tem includes on-site, NN, and NNN repulsions, and the
interaction strength ratio from the on-site to NNN ones is
4 : 2 : 1.

At the finite strength of U , Eq. (1) is solved numerically
via DQMC, where one decouples the two-body interaction in
perfect square form through the introduction of an auxiliary
Hubbard-Stratonovich field, which is integrated out stochas-
tically [55–57]. The only errors are those associated with
the statistical sampling, the finite spatial lattice size, and the
inverse temperature discretization. These errors are well con-
trolled in the sense that they can be systematically reduced as
needed, and further eliminated by appropriate extrapolations.
At half filling, the simulations are free of sign problems due to
the presence of particle-hole symmetry [58–61]. Thus we can
access low enough temperatures, necessary to determine the
ground-state properties on finite-size lattices. In the following,
we use the inverse temperature discretization �τ = 0.1, and
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the simulations are carried out on L × L lattices with the linear
size L up to 24.

III. THE MEAN-FIELD APPROXIMATION

We first treat the Hamiltonian in Eq. (1) using the mean-
field approximation, which should be helpful to identify the
possible ordered quantum phases. Here we can deal with
various values of the interaction strengths, thus starting from
the following general interaction terms,

Hint = U0

∑
i

ni↑ni↓ + V1

∑
〈i j〉

nin j + V2

∑
〈〈i j〉〉

nin j, (6)

where U0, V1, and V2 are the strengths of the on-site, NN, and
NNN interactions, respectively. All interactions are decoupled
in the on-site channel as [25,26]

ni,↑ni,↓ = 〈ni,↑〉ni,↓ + 〈ni,↓〉ni,↑ − 〈ni,↑〉〈ni,↓〉,
nin j = 〈ni〉n j + 〈n j〉ni − 〈ni〉〈n j〉. (7)

The on-site Hubbard, NN, and NNN repulsive interactions
favor antiferromagnetism, and staggered and striped charge-
density waves (CDWs), respectively. We introduce three order
parameters σ, ρ, and ν to characterize the above three phases.
Meanwhile, the unit cell is enlarged to have four sites in the
presence of the above charge and spin configurations. Then
we have the following ansatz for the average density ρi = 〈ni〉
on each site:

ρi = 1 + (−1)i−1ρ + (−1)miν,

ρi,↑ = ρi/2 + (−1)i−1σ, (8)

ρi,↓ = ρi/2 − (−1)i−1σ,

where i = 1, 2, 3, 4 labels the sites in a unit cell, and m1 =
m2 = 0, m3 = m4 = 1.

To incorporate possible valence-bond ordered phases,
we also consider a bond decoupling channel for the NN
interaction,

nin j = c†
i cic

†
j c j

= −〈c†
i c j〉c†

j ci − 〈c†
j ci〉c†

i c j + 〈c†
j ci〉〈c†

i c j〉. (9)

While there exist various kinds of dimer patterns on the square
lattice, here we focus on the spontaneous plaquette dimeriza-
tion [see Fig. 2(b)], which we will demonstrate to emerge out
of the competing interactions in Eq. (6) thereafter.

In the momentum space, the mean-field Hamiltonian is

HMF =
∑
kσ

ψ
†
k

[
H1

σ (k) + H2
σ (k)

]
ψk + E0. (10)

Here ψk = (c1,k, c2,k, c3,k, c4,k )T is a four-element basis.
H1

σ (k) is spin dependent, and for the up-spin subsystem (the
formula for the down-spin copy is similar), it writes as

H1
↑(k) =

⎡
⎢⎣

h11 t (kx )∗ 0 −t (ky)∗
t (kx ) h22 t (ky)∗ 0

0 t (ky) h33 t (kx )
−t (ky) 0 t (kx )∗ h44

⎤
⎥⎦, (11)

(a) (b)

(c)

1 2

34

(d)

FIG. 2. Schematics of the possible ordered phases on the square
lattice: (a) AF insulator, (b) plaquette dimerization, (c) staggered
CDW, and (d) striped CDW. In the presence of all four orders, the
unit cell is enlarged to contain four sites, each of which is marked
with an integer index [see (c)]. The configurations in (a), (c), and
(d) are solely favored by the on-site, NN, and NNN interactions,
respectively.

with t (kα ) = t (1 + eikα ) (α = x, y) and

h↑
ii = (−1)i−1

(U0

2
− 4V1 + 4V2

)
ρ

+ (−1)mi

(U0

2
− 4V2

)
ν

+ (−1)iU0σ +
(U0

2
+ 4V1 + 4V2

)
. (12)

H2
σ (k) is decoupled from the NN interaction, and does not

depend on the spin index,

H2
σ (k) =

⎛
⎜⎝

0 hχ (kx )∗ 0 −hχ (ky)∗
hχ (kx ) 0 hχ (ky)∗ 0

0 hχ (ky) 0 hχ (kx )
−hχ (ky) 0 hχ (kx )∗ 0

⎞
⎟⎠, (13)

where χ1, χ2 = −〈c†
iσ c jσ 〉 are for thick and thin bonds in

Fig. 2(b); hχ (kα ) = V1(χ1 + χ2eikα ) with α = x, y. Here the
constant is

E0 = (8V2 − U0)ν2 + (8V1 − U0 − 8V2)ρ2

+ 4U0σ
2 − U0 − 8V1 − 8V2 + 4V1

[
χ2

1 + χ2
2

]
. (14)

We can diagonalize the total Hamiltonian and obtain the
dispersion with four branches:

Ei(k) = D + (−1)i 1√
2

√
A + (−1)mi+1B + C,

A = a2 + b2 + 4(t2
1 + t2

2 ),

B = (a + b)
√

(a − b)2 + 4
(
t2
1 + t2

2

) + 8t1t2cos(kx ),
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FIG. 3. (a) The phase diagram in the (V1,V2) plane at fixed
U0/t = 20. The blue cross marks the point when the interactions can
be written in perfect square form of the cluster charge. (b) The order
parameter |χ1 − χ2|, which characterizes the plaquette-dimer phase,
as a function of the cluster-charge interaction U .

C = 4t1t2[cos(kx ) + cos(ky)],

D = U0

2
+ 4V1 + 4V2, (15)

with

a =
(

U0

2
− 4V1 + 4V2

)
ρ +

(
U0

2
− 4V2

)
ν − U0σ,

b = −
(

U0

2
− 4V1 + 4V2

)
ρ +

(
U0

2
− 4V2

)
ν + U0σ. (16)

Minimizing the total energy Etot = ∑
i,k Ei(k) + E0, the

order parameters of the ground state satisfy the following
self-consistent equations:

ρ = − 1

2(8V1 − 8V2 − U0)

∂Etot

∂ρ
,

ν = − 1

2(8V2 − U0)

∂Etot

∂ν
,

σ = − 1

8U0

∂Etot

∂σ
,

χ1 = − 1

8V1

∂Etot

∂χ1
,

χ2 = − 1

8V1

∂Etot

∂χ2
. (17)

The order parameters can be obtained by numerically solv-
ing the above equations. In Fig. 3, we plot the phase diagram
in the (V1,V2) plane at fixed U0/t = 20. Three kinds of phases,
including AF, CDW, and plaquette-dimer states, are revealed.
In the absence of V1 and V2, the system is an AF insulator
at U0/t = 20. A phase transition from AF to CDW is driven
by the NN interaction, and the critical interaction increases
with V2. When V2 is large enough, there appears a region
of plaquette-dimer phase around V1 = 2V2. In particular, at
V1 = 2V2 = U0/2 when the interactions can be written in a
perfect square form of the cluster charge, the system is in the
plaquette-dimer ordered state. We then investigate the quan-
tum phase transition driven by the cluster-charge interaction
U (the ratio of the interaction strengths to be U0 : V1 : V2 =
4 : 2 : 1, and U0 = 2U ). As U increases, all other order pa-
rameters remain vanished except for |χ1 − χ2| characterizing
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50

60
L=8
L=12
L=16
L=20
L=24

FIG. 4. The structure factors of the two kinds of orders as a
function of U for various lattice sizes: (a) the AF structure factors
SAF(L); (b) the plaquette-dimer structure factor SDM(L).

the plaquette dimerization. |χ1 − χ2| jumps to a finite and
large value at U/t = 4.6, marking the occurrence of a phase
transition from SM to plaquette dimer.

IV. RESULTS FROM THE DQMC SIMULATIONS

With the mean-field insights into the ground-state prop-
erties of the interaction Hamiltonian, Eq. (1), we next apply
DQMC to unveil its physical behavior quantitatively. To char-
acterize the AF order, we calculate the spin structure factor,
which is defined by [62]

S(q, L) = 1

N2
s

∑
i, j

eiq·(ri−r j )〈Si · S j〉, (18)

where the spin operator is Si = (Sx
i , Sy

i , Sz
i ); Ns is the total

number of sites. The antiferromagnetism has an order vector
q0 = (π, π ), and we let SAF = S(q0). For the plaquette-dimer
phase, we define the following static structure factor:

SDM(L) = 1

N2
s

∑
i, j

∑
σ,σ ′

〈�iσ �
†
jσ ′ 〉, (19)

where the bond operator writes as

�iσ = −[(−1)ix+1ti,i+x{(c†
iσ ci+xσ − c†

iσ ci−xσ ) + H.c.}
+ i(−1)iy+1ti,i+y{(c†

iσ ci+yσ − c†
iσ ci−yσ ) + H.c.}]. (20)

In Fig. 4(a), we plot SAF(L) as a function of the cluster-
charge interaction U for various values of L. The AF structure
factor increases continuously with U , and tends to be constant
for large enough U . In addition, the saturated value increases
with L. These suggest that the AF order develops at large U
and the AF transition is continuous. To determine the critical
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FIG. 5. (a) The RG-invariant correlation ratio of the AF structure
factor as a function of the cluster-charge interaction U for various
lattice sizes. (b) The critical value Uc(L) determined by the crossing
of two RAF(L) curves with consecutive sizes. The anomalous dimen-
sion η(L) (c) and the correlation function exponent ν (d) calculated
according to Eq. (23). The red solid curves in (b), (c), and (d) are
from polynomial fitting schemes. The fitted values in the thermo-
dynamic limit are Uc/t = 7.278, η = 0.586, and 1/ν = 0.85 ± 0.07,
respectively.

interaction strength, we compute the renormalization-group
(RG) invariant ratio of the AF structure factor [63,64]:

RAF(L) = 1 − SAF(q0 + δq, L)

SAF(q0, L)
, (21)

where δq points to a NN momentum in the Brillouin zone.
In the presence (absence) of long-range AF order, we have
SAF(q0 + δq) → 0[SAF(q0]), and thus RAF(L) → 1(0). At the
critical point, the use of RAF is advantageous as it has smaller
scaling corrections than SAF(q) itself. Moreover Rc has no
scaling dimension, thus it will cross at the critical point Uc

for different system size L. However, due to the finite-size
effect, the curves of RAF for different lattice sizes do not cross
exactly at the same point [see Fig. 5(a)]. Figure 5(b) shows
the critical value Uc(L) determined by the crossing of two
consecutive sizes, i.e., L and L + 4. By extrapolating to the
thermodynamic limit, the critical interaction is estimated to
be Uc/t = 7.278.

The universal scaling functions describing the AF structure
factor and RG-invariant correlation ratio around the quantum
critical point are [42]

SAF(L) = L−(d+z−2+η)F1[(U − Uc)/UcL1/ν, L−b1 ],

RAF(L) = F2[(U − Uc)/UcL1/ν, L−b2 ], (22)

where the critical exponent η is anomalous dimension, and ν

is the correlation function exponent; d is the space dimension
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FIG. 6. Data collapses using the critical interaction and expo-
nents determined in Fig. 5. (a) The AF structure factor, and (b) the
corresponding RG-invariant correlation ratio. (c) and (d) are the
plaquette-dimer structure factor and its RG-invariant ratio.

exponent, which is d = 2, and z is the dynamical critical
exponent, which is z = 1 due to the Lorentz invariant; the
terms L−b1 and L−b2 are subleading finite-size correlations;
F1 and F2 are unknown ansatz scaling functions. Based on the
above scaling function, we can extract the values of η and ν:

η(L) = 1

ln
(

L
L+4

) ln

(
SAF(L + 4)

SAF(L)

)∣∣∣∣
U=Uc

− (d − 1),

1

ν(L)
= 1

ln
(

L+4
L

) ln

( d
dU Rc(L + 4)

d
dU Rc(L)

)∣∣∣∣
U=Uc

. (23)

Figures 5(c) and 5(d) show η(L) and 1
ν(L) as a function

of inverse lattice size, respectively. The critical exponents
in the thermodynamic limit can then be obtained by fitting
the data points. The anomalous dimension is determined to
be η = 0.586 [65], and the correlation function exponent is
1/ν = 0.85 ± 0.07. As a further check, we demonstrate the
data collapses of SAF(L) and RAF(L) in Figs. 6(a) and 6(b),
respectively, which are satisfactory for relatively large lattice
sizes.

As shown in Fig. 4(b), the plaquette-dimer phase exists
in a narrow region between the Dirac semimetal and the AF
insulator. We also find that there is only a crossing between
the curves of the largest two lattice sizes for the RG-invariant
correlation ratio of the plaquette-dimer structure factor, sug-
gesting a large finite-size effect for the plaquette-dimer order.
Thus a reasonable finite-size scaling, like that performed on
the AF structure factor, seems impossible for the present ac-
cessible lattice sizes. Nevertheless, we try to collapse SDM(L)
and RDM(L) using the critical interaction and exponents ob-
tained from the AF transition. The good collapses of the
large-size data [see Figs. 6(c) and 6(d)] suggest the critical
exponents from the correlation functions of the two orders
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with different symmetries may be the same. Considering the
continuous nature of the phase transition, it is highly expected
that a DQCP exists between the plaquette-dimer and AF
phases.

It is noted that there are quasirigorous bounds on critical
exponents coming from the conformal bootstrap: η > 0.52
and 1/ν < 1.957 [66]. However, the resulting critical expo-
nents extracted from the DQCP in bosonic systems, such
as J − Q spin and classical loop models [33,36,67], are in
discrepancy with the above bounds. Specifically, the obtained
critical exponent of the anomalous dimension is extremely
small (η = 0.26 ± 0.03 in Ref. [33]). Hence there is still a
debate as to whether the Néel-VBS DQCP in the bosonic
systems is really a continuous transition or a weakly first-order
transition. In the present paper, we give the critical exponents
of the plaquette-dimer-AF transition in the π -flux lattice, i.e.,
1/ν = 0.85 ± 0.07 and η = 0.586, which is not only within
the conformal bootstrap bounds, but also consistent with a
recent study on the same model [ν = 1.13(5), ηAF = 0.58(3),
ηV BS = 0.6(1)] [68]. In addition, for the DQCP in other Dirac-
fermion system [42], the obtained critical exponents for the
VBS-AF transition (ηAF = 0.58 ± 0.03, ηV BS = 0.59 ± 0.02)
is in accordance with our results. All these results point to
the very possible realization of the DQCP in the fermionic
systems, and its profound physical properties may be further
explored herein.

V. CONCLUSIONS

We investigate a specific extended Hubbard model on the
π -flux lattice, in which the interaction terms can be written in

a perfect square form of the cluster charge. The mean-field
theory predicts a plaquette-dimer phase to occur at a finite
interaction strength. While the existence of such a phase is
verified by DQMC simulations, it only extends over a narrow
parameter region interpolating between the Dirac semimetal
and the AF insulator, thus is relatively weak for the lattice
sizes accessible by DQMC. In contrast, the AF transition re-
flected in the spin structure factor is much more obvious, and
the critical interaction and exponents are steadily obtained by
finte-size scalings. We then find the plaquette-dimer structure
factor of large lattice sizes can be well scaled using the above
critical values. Our results reveal that a possible DQCP may be
induced by the cluster-charge interaction on the π -flux lattice.
Clearly, DQCP identified here needs further confirmations,
either by simulating larger lattice sizes or by stabilizing the
plaquette-dimer phase with additional interactions, which we
leave for future studies.

Note added. Recently, we noticed a related investigation by
Liao et al. [68].
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