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Many-body localization transition in a frustrated XY chain
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We show evidence of many-body localization (MBL) transition in a one-dimensional isotropic XY chain with a
weak next-nearest-neighbor frustration in a random magnetic field. We perform finite-size exact diagonalization
calculations of level-spacing statistics and fractal dimensions to characterize the MBL transition with increasing
the random field amplitude. An equivalent representation of the model in terms of spinless fermions explains the
presence of the delocalized phase by the appearance of an effective nonlocal interaction between the fermions.
This interaction appears due to frustration provided by the next-nearest-neighbor hopping.
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I. INTRODUCTION

The interplay of interparticle interactions and disorder in
low-dimensional quantum systems is an old problem [1,2]
and it has been an active research direction in the recent
years. The majority of these studies have been dedicated to
many-body localization [3], the phenomenon that extends An-
derson localization (AL) to interacting many-particle systems.
In particular, numerical studies of disordered interacting one-
dimensional (1D) quantum systems demonstrate a transition
to the many-body localized (MBL) phase, if the amplitude
of diagonal disorder is sufficiently large (for recent reviews
see Refs. [4,5]). At weak disorder, the system is in the
ergodic phase and the eigenstate-thermalization hypothesis
(ETH) [6,7] is obeyed. On the contrary, in the MBL phase the
ETH is violated [8–13], which implies protection of quantum
states from decoherence and opens new prospects for quantum
information storage. Numerical studies of the MBL phase
also show the area law entanglement entropy [14–16], Gum-
bel statistics for entanglement spectra [17,18], and vanishing
steady transport [19–22]. A number of these properties can be
explained in terms of emerging quasilocal integrals of motion
and the resulting quasi-integrability [23–25]. The MBL tran-
sition is usually characterized by the level-spacing statistics
[26–31], participation entropies [32,33], underlying entangle-
ment structure of eigenstates [17,30,34], occupation spectrum
of the one-particle density matrix [35–37], and quantum cor-
relations of neighboring states [27,38]. The 1D XXZ model
(s = 1/2) with a finite z-z Ising spin interaction serves as a toy
model in almost all fundamental studies of MBL transition
[15,19,32]. A finite strength of the Ising z-z interaction is
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a necessary condition for the observation of MBL transition
in this model [26]. On the other hand, in quantum magnets
frustration provides another platform for realization of diverse
quantum phases of matter [39,40]. Thus, the interplay between
disorder and frustration in quantum magnets is an interesting
question to address in the MBL context.

In realistic systems, when studying the MBL transition for
trapped ions, polar molecules, or superconducting circuits one
should take into account long-range interaction and hopping
terms [41–47]. Being present in effective spin models, these
terms impose a complex frustration onto the system. In this
respect, simplified models provide a natural playground to
study the interplay of frustration and disorder. In particu-
lar, the recent proposal [48] suggests realization of the 1D
XY model using superconducting arrays of three-dimensional
transmons with interqubit dipolar interactions. In the proposed
model only the nearest-neighbor and next-nearest-neighbor
flip-flop amplitudes are present, whereas other amplitudes
exactly vanish [see Fig. 1(a)]. Thus, it is reasonable to analyze
the interplay between the frustration natural to XY magnets
and the diagonal disorder in this simplified model.

In the present paper we show the existence of the many-
body localization-delocalization transition in the latter model.
We demonstrate that the presence of the next-nearest-neighbor
flip-flop term, which provides the frustration, is crucial for
the MBL transition. This is revealed by using the Jordan-
Wigner transformation, which maps the original spin model
onto the model of spinless fermions. The fermionic model
consists of trivial terms of hoppings to the two nearest sites
and a nonlocal interaction term [49,50]. In the absence of
frustration in the original spin model, the nonlocal interaction
and next-nearest-neighbor hopping terms vanish and we have
the system of free fermions where the states are known to
be localized in arbitrarily weak potential disorder [51,52].
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FIG. 1. (a) The XY model (1) is considered in a zigzag ladder
with the nearest-neighbor J1 and next-nearest-neighbor J2 flip-flop
amplitudes. The proposed MBL transition can be equivalently real-
ized in the XY model considered in quasi-1D geometries such as
(b) in the Kondo lattice or (c) in a two-leg ladder.

These results imply realization of MBL transition without the
Ising-type interactions in a spin system. Moreover, a similar
scenario can be realized in disordered XY models in other
quasi-1D geometries, such as the Kondo lattice or a two-leg
ladder [Figs. 1(b) and 1(c)].

The outline of the paper is as follows. In Sec. II we present
the model of our study and discuss the main symmetries and
properties. We then represent the model in terms of interact-
ing spinless fermions and provide qualitative discussion on
the origin of the present interaction in Sec. III. In Sec. IV
we introduce localization measures we used to characterize
the MBL transition and provide numerical confirmations of
the predicted transition in Sec. V. Our outlook and concluding
remarks are given in Sec. VI.

II. MODEL AND SYMMETRIES

We consider a one-dimensional frustrated spin-1/2
isotropic XY spin chain [53] in a random magnetic field. The
Hamiltonian of the system has the following form:

H =
∑

β=1,2

Jβ

L∑
i=1

[
Sx

i Sx
i+β + Sy

i Sy
i+β

] +
L∑

i=1

hiS
z
i , (1)

where J1,2 > 0 are exchange interaction coupling constants,
and h j are uncorrelated random field amplitudes drawn from
the uniform distribution [−h, h]. We consider the model in
a chain with an even number of sites, L, and impose periodic
boundary conditions. In the presence of disorder, Hamiltonian
(1) possesses only the U (1) symmetry. If either J1 = 0 or
J2 = 0, the eigenstates are localized for arbitrary h j since
in this case the model can be mapped onto the system of
free fermions. The discussion of integrability in this limit is
presented in Appendix A.

The low-temperature phase diagram of the clean model (1)
was earlier studied extensively using numerical techniques
such as density matrix renormalization group (DMRG) and
exact diagonalization (ED) methods [54,55]. It is shown that
for κ = J2/J1 � 0.32 the system is in the gapless Tomonaga-
Luttinger liquid phase, where expectation values of spin
operators vanish and two-point correlation functions ex-
hibit power-low decay. For κ � 0.32 the gapped insulating
phase (singlet dimer phase) is developed via the Berezinskii-
Kosterlitz-Thouless-type transition. In the limits of κ = 0 and

κ = ∞ the clean model (1) is integrable. In the former case,
the unfrustrated XY chain is restored, while the second case
corresponds to two decoupled XY chains. For κ � 1 the
clean model is quasi-integrable, possessing quasiconserved
charges, that is, charges conserved on a large time scale ∼κ−2

(see Appendix B and Ref. [56] for details). We hereafter
consider only κ < 0.32, so that the system is in the gapless
phase.

III. QUALITATIVE ARGUMENTS
FOR MANY-BODY LOCALIZATION

Jordan-Wigner fermionization. Before turning to our nu-
merical results we point out that there is an implicit interaction
which guarantees delocalization at weak disorder. Naively,
one may expect that spin fluctuations in our model should
be localized by disorderlike fermionic fluctuations, and the
states should undergo AL in arbitrarily weak random mag-
netic fields. We show here that this is not the case. This is due
to the statistics of spins which has neither pure bosonic nor
pure fermionic character. However, one may fully fermionize
the spin problem (1) by using the Jordan-Wigner (JW) trans-
formation [57]:

S+
i = c†

i eiπ
∑

p<i n̂p, Sz
i = n̂i − 1/2, (2)

where n̂i = c†
i ci and the operators c†

i , ci obey the canonical
fermionic anticommutation relations. From Eq. (2) one imme-
diately gets S+

i S−
j = c†

i �̂i, jc j , where the Hermitian operator

�̂i, j is given by

�̂i, j =
j−1∏

l=i+1

(1 − 2n̂l ), j � i + 2, (3)

and reduces to �̂i, j = 1 for j = i + 1. Then, applying the
JW transformation to Eq. (1) we obtain (neglecting irrelevant
boundary terms)

HF =
∑

β=1,2

Jβ

2

L∑
i=1

(c†
i ci+β + H.c.) + Vint +

∑
i

hin̂i, (4)

with the nonlocal interaction (correlated hopping) term

Vint = −J2

L∑
i=1

(c†
i n̂i+1ci+2 + H.c.). (5)

We thus have an interacting fermionic system with a non-
local interaction in a potential disorder. In the absence of
frustration (i.e., for J2 = 0) the interaction and the next-
nearest-neighbor hopping terms vanish, and in Eq. (4) one
has a system of free fermions with nearest-neighbor hop-
ping in the potential disorder, where all states are localized
[51,52]. It is the nonlocal interaction Vint that can lead to
delocalization at weak disorder. As we show in the numerical
section, indeed this is the case. On the other hand, the model
in Eq. (4) with Vint = 0 is known to be localized in a weak
disorder [51]. The interaction term Vint can be removed at
the price of introducing a three-spin interaction term in the
original spin model (1). It is done by replacing the first term in
Hamiltonian (1) for β = 2 with J2

∑
i(S

x
i Sx

i+2 + Sy
i Sy

i+2)Sz
i+1,

where the Sz
i operators cancel the JW phase in Eq. (3). We
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then arrive at the so-called XZX+YZY model which maps
onto the free-fermionic limit of Eq. (4) [58], where Vint = 0
but there is the next-nearest-neighbor hopping on top of the
nearest-neighbor one. The states in this case are localized in
a weak disorder [51]. We note that the longer-range flip-flop
term in Eq. (1) also fermionizes onto many-body interaction
terms encapsulated in the JW phase in Eq. (3). In general,
the flip-flop transition to the β nearest sites generates up to
β-body interaction. This can be seen already in the β = 3
case:

H3 = J3c†
i (1̂ − 2n̂i+1 − 2n̂i+2 + 4n̂i+1n̂i+2)ci+3. (6)

Here, the first term corresponds to the trivial fermionic hop-
ping, while the other terms imply many-body interactions.
Thus, one has to take into account this type of interaction term
in the studies of frustrated spin models [31].

Mapping onto the system of hard-core bosons. A simple
qualitative explanation of the present interaction can also be
given using alternative representation of the clean model (1) in
terms of hard-core bosons via the Matsubara-Matsuda trans-
formation [59],

S+
i = b†

i , Sz
i = b†

i bi − 1

2
, (7)

HB =
∑

i,β=(1,2)

Jβ

2
(b†

i bi+β + H.c.). (8)

Hamiltonian (8) consists of only the kinetic term for bosons,
with an imposed constraint b†

i bi � 1 for a given site i. In
general, such a hard-core constraint leads to a hard-core in-
teraction. The origin of this interaction lies in the truncation
of the normal bosonic Hilbert space by the constraint on real-
space occupations. This interaction does not manifest itself
in Eq. (8) for J2 = 0 (or J1 = 0), when the geometry reduces
to the strict 1D chain. In this case, hard-core bosons hop
around the ring, while strictly keeping their ordering; i.e., no
particle exchange occurs. It is this ordering that guarantees
JW mapping onto free spinless fermions, where the hard-core
constraint plays a role of the Pauli principle. At finite J2,
the single-particle behavior does not hold since the additional
hopping channel is introduced and particle exchange is no
longer prohibited. The latter guarantees the manifestation of
hard-core interaction [60], which is exhibited in the form of
Eq. (5) in the fermionic formulation. We note that the interplay
of disorder and hard-core interaction in quasi-1D geometries
was already addressed previously in the context of superfluid-
Bose glass transition at zero temperature [61,62].

Presented analytical arguments and qualitative discussions
hint at the MBL transition when the disorder strength is grad-
ually increased. In the next sections, we numerically examine
this prediction based on finite-size ED calculations.

IV. CHARACTERIZATION OF THE MBL TRANSITION

An important quantity that characterizes the eigenstates of
the disordered model is the ratio of the minimum to maximum
consecutive level spacing,

ri = min(�i,�i+1)

max(�i,�i+1)
, �i = εi − εi−1, (9)

where εi are the ordered energy eigenvalues for a given re-
alization of disorder. In the delocalized (chaotic) phase the
energy level spacing distribution obeys Wigner’s surmise of
the Gaussian orthogonal ensemble (GOE), while in the lo-
calized phase no level repulsion is expected and there is a
Poissonian distribution (PS) of the level spacings. For the
PS distribution the disorder-averaged value is 〈r〉P = 2 ln 2 −
1 ≈ 0.386, and for the Wigner-Dyson (WD) distribution one
has 〈r〉W = 0.5307(1) [28].

We also consider localization of eigenstates in the Hilbert
space. For model (1) with L sites and a fixed number of
{↑} spins M one has an NH -dimensional Hilbert space, with
NH = CL

M = L!
M!(L−M )! . We analyze many-body eigenstates in

the computational basis |s〉 = |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sL〉, with
local states |si〉 ∈ {|↑〉, |↓〉}. The quantities well character-
izing localization properties of the wavefunctions ψα (s) =
〈s|α〉 are the fractal dimensions Dq. The set of Dq is deter-
mined from the scaling of participation entropies Sq with NH ,

Sq = 1

q − 1
ln

(NH∑
s=1

|ψα (s)|2q

)
NH →∞−−−−→ Dq ln (NH ). (10)

Eigenstates |α〉 localized on a finite set of |s〉 have Sq inde-
pendent of NH and thus Dq = 0 for any q > 0. On the other
hand, delocalized states with |ψα (s)|2 ∼ NH

−1 give Dq = 1.
The multifractal states with 0 < Dq < 1 are nonergodic albeit
extended. We confine ourselves to the Shannon limit (q → 1)
in Eq. (10).

Quantum correlations between neighboring (in energy)
eigenstates can be calculated directly if the eigenstates are
known and hence can also be used to characterize the MBL
transition. The corresponding quantity is the Kullback-Leibler
divergence KL [38,63,64]:

KL =
NH∑
s=1

|ψα (s)|2 ln

( |ψα (s)|2
|ψα+1(s)|2

)
, (11)

where the states |α〉 are supposed to be ordered in energy.
The extended states close to this transition can be viewed
as the result of the hybridization of localized states. The lo-
calized states are not correlated in space. In this case, if the
contribution of the state ψα (s) to the basis state |s〉 is large,
then the state ψα+1(s) neighboring in energy has necessarily
vanishingly small weight in the same basis state. This implies
that the ratio | ψα (s)

ψα+1(s) | is exponentially large if |ψα (s)| is not
negligible, i.e., KL → ∞ for NH → ∞. After the hybridiza-
tion, extended states |α〉 and |α + 1〉 involve mostly the same
localized states. As a result |ψα (s)| and |ψα+1(s)| are strongly
correlated with | ψα (s)

ψα+1(s) | ∼ O(1) and KL is finite. An abrupt
change of KL is therefore an indication of the MBL transition.

We study the MBL transition for eigenstates with energies
close to zero (eigenstates from the central part of the spec-
trum), although this transition can be observed at any energy
density (assuming sufficiently strong frustration to delocalize
low-energy eigenstates). For lattice sizes L = {14, 16, 18, 20}
we employ the shift-invert ED algorithm based on LDLT

decomposition to obtain m = {20, 20, 40, 100} eigenstates.
We consider the problem in the largest Hilbert subspace
(at total magnetization Sz = 0) with dimensions NH = ( L

L/2

)
.
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FIG. 2. (a) Dependence of the average gap ratio 〈r〉 on the disor-
der strength h for the system sizes L = {14, 16, 18, 20} at fixed κ =
0.1. The MBL phase (region II) is separated from the delocalized
phase (region I) at the critical field amplitude hc/J1 ≈ 1.98. In the
XZX+YZY limit the states are localized and 〈r〉 = 〈r〉p ≈ 0.386 at
arbitrary disorder strength. (b) Implementation of the scaling ansatz
leads to the collapse of numerical data to a single universal curve
with hc/J1 = 1.98 ± 0.01 and ν = 0.63 ± 0.03.

However, we note that the MBL transition in the other sectors
also can be observed. The number of disorder realizations for
a given disorder strength h varies from 104 for the smallest
lattice size up to 102 for the largest size. We average the
quantities of our interest over the ensemble of m states and
then the disorder averaging is performed.

V. NUMERICAL RESULTS

In this section we present our numerical results at fixed
κ = 0.1. All calculated quantities confirm the presence of a
thermal delocalized phase at weak disorder, whereas at large
disorder the system undergoes the MBL transition. We first
identify the MBL transition exploiting the average gap ratio
for adjacent eigenstates 〈r〉, defined in Eq. (9). Our findings
are illustrated in Fig. 2(a). For the disorder strength h/J1 � 1
the energy minigaps obey the WD statistics with 〈r〉W ≈ 0.53.
This implies the presence of hybridization between regions of
the system, which results in the level repulsion between the
neighboring eigenstates. For all system sizes that we consider
the benchmarked WD level 〈r〉W is observed in a finite interval
of h/J1, although for our smallest system size L = 14 the
finite-size effects are the strongest and the WD distribution
is not fully obeyed. When the disorder strength is further
increased, the energy minigap statistics deviates from the WD
distribution taking the full PS character at large disorder.
The curves corresponding to different L cross each other in
the vicinity of the critical point h/J1 ≈ 2. When the system
size is further increased the crossing points drift to larger
values of disorder strength and in the thermodynamic limit
the convergence of the crossing points to the critical point can
be hypothesized. Based on the finite-size calculation results,
the behavior of 〈r〉 near the critical point can be analyzed
via the scaling form 〈r〉 ∼ f (L1/ν (h − hc)), with the scaling

FIG. 3. Averaged fractal dimensions 〈D1〉 versus the disorder
strength h/J1 for L = {14, 16, 18, 20}. The critical point hc/J1 =
1.98(1) is fixed by the vertical dashed line and correctly lies in
the shaded region, defined by the 〈D1〉 curve crossings. Insets show
scaled histograms P(D1) for two representative disorder amplitudes
(a) at the delocalized phase (h/J1 = 0.5) and (b) at the MBL phase
(h/J1 = 3). Error bars smaller then the symbol size are omitted.

function f [27]. Direct implementation of this scaling ansatz
leads to the collapse of all data to a single universal curve [see
Fig. 2(b)] with hc/J1 = 1.98 ± 0.01 and ν = 0.63 ± 0.03. For
the disorder strength h > hc the states are in the MBL phase
and the gap statistics converges to the PS distribution with
〈r〉P ≈ 0.39.

The demonstrated signatures of the MBL transition are
similar to the ones for the 1D Heisenberg chain in a random
magnetic field [27,28]. The ergodic phase at weak disorder
in the latter case is guaranteed by the Ising interaction term
(n̂in̂i+1 for dual fermions), whereas in our model it appears
due to the interaction term Vint. To finalize this argument,
we repeated our calculations of 〈r〉 for the system sizes L =
{16, 18} when the interaction term is removed (XZX+YZY
limit). The corresponding plots are presented in Fig. 2(a).
For both considered system sizes a stable PS distribution
of level spacings with 〈r〉 = 〈r〉p ≈ 0.39 is exhibited, which
corresponds to Anderson localization of eigenstates.

The MBL transition is also correctly captured by the
fractal dimensions presented in Fig. 3. In the delocalized
phase the support set of states covers a sufficiently large
fraction of the Hilbert space with |ψ ( j)|2 ∼ NH

−1 in the
thermodynamic limit. This implies Dq → 1, Sq ∼ ln(NH ) as
NH → ∞. In our finite-size calculations 〈D1〉 is practically
independent of h/J1 in a finite interval of h/J1 with the val-
ues 〈D1〉 = {0.900, 0.922, 0.931, 0.939} for the system sizes
L = {14, 16, 18, 20}, respectively. The convergence of 〈D1〉
towards unity with increasing the system size is demon-
strated clearly by the histograms with a vanishing variance
[Fig. 3(a)]. In the thermodynamic limit the constant value
D1 = 1 is expected within the chaotic phase, with an abrupt
jump to D1 = 0 at the critical field. In the MBL phase the
distribution of D1 has an opposite skewness and converges to-
wards zero with growing the system size as shown in Fig. 3(b).
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FIG. 4. The Kullback-Leibler divergence 〈KL〉 as a function of
disorder strength h/J1 for L = {14, 16, 18, 20} (left) and finite-size
phase boundary in the κ-h space (right). Insets show scaled his-
tograms P(KL) (a) at the MBL phase (h/J1 = 2.7) and (b) at the
delocalized phase (h/J1 = 0.7). In the left panel, the critical field
is fixed by the vertical dashed line and it lies in the shaded region,
defined by the 〈KL〉 curve crossings.

As expected, the benchmarked critical point hc/J1 = 1.98(1)
lies within the transition area (shaded region) determined from
D1 curve crossings.

Strong quantum correlations between nearby eigenstates
in the chaotic regime result in the known value of 〈KL〉 =
KLGOE = 2, which is demonstrated in Fig. 4 (left). This value
is kept within the delocalized region, which widens with
increasing the system size. On the other hand, neighboring
eigenstates in the MBL phase are weakly correlated and this
results in the divergent behavior 〈KL〉 ∼ ln(NH). These dis-
tinctive features are also demonstrated in the scaled histogram
plots in the insets of Fig. 4. In the delocalized phase [Fig. 4(a)]
the distribution of KL has a Gaussian form with the mean
value 〈KL〉 = 2 and the variance vanishing with increasing L.
On the contrary, in the MBL phase the situation is different
and both the mean value and the variance increase with L
[Fig. 4(b)]. Although a large drift of crossing points with
increasing the system size does not allow one to do a precise
finite-size scaling analysis, it is clear that the crossing point
of the last two curves (corresponding to the largest Hilbert
spaces) lies in the critical region determined above from D1

and it is close to the benchmarked critical field hc.
We next performed ED calculations of D1 for other values

of κ = J2/J1 � 0.32, such that the system is still in the gap-
less phase. The determined finite-size critical field strengths
hc(κ )/J1 based on curve crossings of D1 (corresponding to
L = 14 and L = 16) are presented in Fig. 4 (right). This
figure demonstrates that an increase of κ should increase the
interaction strength in Eq. (5) and, hence, should lead to the
enhancement of the delocalization effect of the frustration.
This indeed results in a linear growth of hc/J1 with κ , as
shown in Fig. 4 (right). In the limit of κ → ∞ we arrive at
two weakly coupled XY chains and the critical field should
decrease, reaching hc = 0 at κ = ∞.

VI. OUTLOOK AND CONCLUSIONS

Actually, the investigation of localization-delocalization
transitions in disordered systems with long-range interactions
and long-range hopping terms has a fairly long history. The
first consideration of the long-range hopping terms was done
in the seminal work of Anderson on disordered d-dimensional
noninteracting fermionic systems with Ji j ∼ r−α

i j (Ji j and ri j

are the hopping amplitude and distance between the ith and
jth sites, respectively). It predicts delocalization for α � d at
any disorder strength even at T = 0 [41]. A natural extension
of this study to many-body quantum systems with the Ising-
type long-range interaction Vi j ∼ r−α

i j Sz
i Sz

j modifies the above
criterion to α < 2d [42,65,66], implying a possibility of the
MBL transition for α > 2d .

The natural extension of our model for longer-range flip-
flop amplitudes was addressed in the d-dimensional case with
Ji j ∼ r−α

i j in a random transverse magnetic field [67]. It was
shown that, being explicitly absent initially, the Ising-type
interaction is generated in the third order of perturbation the-
ory in hopping [67]. This interaction delocalizes states for
α > 3d/2 provided that the disorder is sufficiently weak. Nu-
merical findings based on finite-size ED (L � 18) and matrix
product states (L � 40) suggest the MBL transition for α � 1
in 1D systems [68,69]. Experimentally, the 1D XY chain with
long-range flip-flop amplitudes was realized using trapped
Ca+ ions (with α < 3) [70].

We have shown that in a 1D XY magnet in a random
magnetic field already a weak frustration provided by the
next-nearest-neighbor hopping is sufficient for the emergence
of many-body localization-delocalization transitions. We ex-
ploited the Jordan-Wigner transformation to map the spin
model onto a system of interacting fermions with a nonlocal
interaction originating from the frustration. Our results for the
level-spacing statistics show the presence of quantum corre-
lations between the neighboring eigenstates and the resulting
level repulsion in the delocalized phase. In the limit of strong
disorder, the neighboring eigenstates are not correlated and
the system is in the MBL phase. This leads to the vanishing
level repulsion, and energy minigaps obey the PS statistics.
The present results are supported by the calculation of fractal
dimensions and characterization of quantum correlations of
neighboring eigenstates by the KL divergence.

While our primary aim in this work is to show signatures of
the MBL transition, there are open questions to be addressed.
Particularly, the nature of the high-temperature spin trans-
port in the delocalized phase remains to be investigated. This
problem was studied previously for the disordered 1D XXZ
model and the low-frequency optical conductivity of the form
Reσ (ω) = σdc + c|ω|δ with σdc > 0 and δ ∼ 1 was proposed
[20,71,72]. However, in our model the effect of the frustrating
term on transport properties is expected to be drastic. In the
disorder-free case, this term degrades integrability blocking
ballistic spin transport. Such frustrating perturbation of the 1D
Heisenberg chain is known to cause a crossover from subdif-
fusive to superdiffusive transport, depending on the sign of
J2 [73]. This puts the applicability of the proposed form with
δ ∼ 1 for our model with finite disorder into question. Thus,
transport properties of model (1) in the clean and disordered
cases should be separately studied in the future.
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In summary, our results demonstrate an important role of
frustration terms in disordered spin models. The discussed
transition can be equally observed in other types of quasi-
1D ladders, where the JW phase survives and generates a
many-body interaction. Experimentally, the discussed MBL
transition can be realized, e.g., by using a setup of supercon-
ducting qubit arrays proposed in Ref. [48].
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APPENDIX A: EXACT FORM OF THE CONSERVED
CHARGES FOR THE 1D XY MODEL

We first consider conserved quantities (charges) for the
spin-1/2 isotropic XY model in an inhomogeneous magnetic
field. The Hamiltonian is given by

H0 = J1

∑
j

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) +
∑

j

h jS
z
j, (A1)

where Sα
j = σα

j /2 with α ∈ {x, y, z}, and σα
j are the Pauli

matrices acting nontrivially on the jth site of the chain, J1

is the coupling constant for the nearest-neighbor exchange
interaction between the spins, and h j is the inhomogeneous
transverse magnetic field. Hamiltonian (A1) is integrable
for any boundary condition and with arbitrary hj . It can
be diagonalized by the Jordan-Wigner transformation, which
reduces Eq. (A1) to the model of noninteracting spinless
fermions [75].

In the homogeneous case, i.e., hj = h, there are two fami-
lies of conserved charges, which commute with H0 and each
other. Explicitly, they are given by [76,77]

Q(1)
n =

∑
j

(
exy

n, j − eyx
n, j

)
,

Q(2)
n = J1

∑
j

(
exx

n, j + eyy
n, j + exx

n−2, j + eyy
n−2, j

)

− h
∑

j

(
exx

n−1, j + eyy
n−1, j

)
, (A2)

where by convention n � 3 and we denoted

eα,β
n, j = Sα

j Sz
j+1 · · · Sz

j+n−2Sβ

j+n−1, eαα
1, j = − Sz

j . (A3)

Note that the combinations
∑

j (e
xx
n, j + eyy

n, j ) and
∑

j (e
xy
n, j −

eyx
n, j ) commute with the total magnetization Sz = ∑

j Sz
j .

We now turn to the case of an inhomogeneous magnetic
field; i.e., h j is an arbitrary function of the lattice site j. One
can show that Hamiltonian (A1) commutes with the following
conserved charges,

Qn =
∑

j

n−2∑
k=0

a(k)
j

(
exx

n−k, j + eyy
n−k, j

) −
∑

j

a(n−1)
j Sz

j, (A4)

given that the coefficients a(m)
j in Eq. (A4) satisfy a set of

recurrent relations:

J1
(
a(m)

j+1 − a(m)
j

) = J1
(
a(m−2)

j − a(m−2)
j−1

)
− a(m−1)

j

(
h j+ n − m − h j

)
(0 � m � n − 1),

(A5)

where for l < 0 we have a(l )
j ≡ 0. Then, taking m = 0 in

Eq. (A5) we immediately see that a(0)
j+1 = a(0)

j , which has only

a homogeneous solution a(0)
j = a(0)

1 . The rest of the n − 1
equations in Eq. (A5) can be successively solved to determine
n − 1 remaining coefficients. Thus, we obtain

a(m)
j = a(m)

1 + A(m)
j , (A6)

A(m)
j =

j−1∑
k=1

[
a(m−2)

k − a(m−2)
k−1 − 1

J1
a(m−1)

k (hk+n−m − hk )

]
,

(A7)

which is valid for arbitrary h j . It is easy to check that con-
served charges Qn in Eq. (A4) commute with each other.
Clearly, for the homogeneous case, hj = h, the charges in
Eq. (A4) coincide with Q(2)

n in Eq. (A2); i.e., only one of the
families of conserved charges survives in the presence of the
inhomogeneous field.

APPENDIX B: QUASICONSERVED CHARGES
IN THE PERTURBED XY MODEL WITH THE

HOMOGENEOUS FIELD

We next consider the Hamiltonian H = H0 + H1, where H0

is the integrable part given by Eq. (A1) with the homogeneous
magnetic field, h j = h, and H1 is a perturbation that breaks
integrability. The perturbation in our case has the following
form:

H1 = J2

∑
j

(
Sx

j S
x
j+2 + Sy

j S
y
j+2

)
. (B1)

We assume that the perturbation is weak and one has κ =
J2/J1 � 1. It is believed that in the case of weak integrability-
breaking perturbation the model is quasi-integrable. In
particular, this implies that it should not thermalize for times
as large as τth ∼ κ−2, so that the model possesses approximate
conservation laws that prevent thermalization at shorter times
[78–82].

Clearly, in the presence of the perturbation (B1) the charges
Q(1,2)

n from Eq. (A2) are no longer conserved, since they do
not commute with the term H1. They are not even quasicon-
served, because one has ||[H1, Q(1,2)

n ]|| ∝ κ . Therefore, under
the evolution with the Hamiltonian H = H0 + H1 the oper-
ators Q(1,2)

n change significantly at times much shorter than
τth ∼ κ−2 and cannot be responsible for the nonergodic be-
havior in the prethermal phase. Using the procedure discussed
in detail in Ref. [56], one can show that the first nontrivial
quasiconserved charge reads

Q̃3 = Q(1)
3 + κ δQ3, (B2)
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where Q(1)
3 follows from Eq. (A2) with n = 3 and the correc-

tion δQ3 is given by

δQ3 =
∑

j

Sx
j S

z
j+2Sy

j+3 −
∑

j

Sy
j S

z
j+2Sx

j+3

+
∑

j

Sx
j S

z
j+1Sy

j+3 −
∑

j

Sy
j S

z
j+1Sx

j+3

+
∑

j

(S j × S j+1) · S j+2, (B3)

where S j = {Sx
j , Sy

j , Sz
j} is the vector of spin operators in the

jth site. One can easily check that Q̃3 satisfies the relation

‖[H0 + H1, Q̃3]‖F ∝ κ2, (B4)

where ||X ||F =
√

tr X †X is the Frobenius norm. One can also
obtain higher-order quasiconserved charges Q̃n, which com-
mute with the Hamiltonian H0 + H1 and each other with the
accuracy O(κ2). However, this is beyond the scope of the
present paper.
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