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In this work we study electromagnetic properties of a resonator recently suggested for the search of axions—a
hypothetical candidate to explain dark matter. A wire medium loaded resonator (called a plasma haloscope when
used to search for dark matter) consists of a box filled with a dense array of parallel wires electrically connected
to top and bottom walls. We show that the homogenization model of a wire medium works for this resonator
without mesoscopic corrections, and that the resonator quality factor Q at the frequency of our interest drops
versus the growth of the resonator volume V until it is dominated by resistive losses in the wires. We find that
even at room temperature metals like copper can give quality factors in the thousands—an order of magnitude
higher than originally assumed. Our theoretical results for both loaded and unloaded resonator quality factors
were confirmed by building an experimental prototype. We discuss ways to further improve wire medium loaded
resonators.
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I. INTRODUCTION

Despite wire media (WM) being one of the first metama-
terials [1], their full potential has yet to be explored. The
unique properties of WM, an indefinite dielectric media with
strong spatial dispersion, has led to it being important in
novel applications from radio frequencies to optical range.
Simple wire media (uniform arrays of parallel wires) offer
strong anisotropy in one frequency range and nearly zero
effective permittivity in another range, whereas double wire
media grant amazingly high values of the permittivity. In the
overview work [2] one may find a long list of WM applica-
tions known up to 2012—from far-zone transport of near-field
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images to drastic enhancement of thermophotovoltaic genera-
tors. Since that time simple WM of semiconductor nanowires
have found applications in modern solar panels (so-called
black silicon [3]), microwave antennas with improved patterns
[4], and as frequency selective thermal emitters for radiative
cooling of microlasers and in near-field thermophotovoltaic
systems [5,6].

However, the use of WM in resonant systems has so far
been very sparsely studied. One can mention only works [7,8],
where finite samples of nanowire media were suggested as
radiating resonators granting a huge Purcell factor to fluores-
cence emitters in the mid-IR and near-IR bands, respectively.
However, WM resonators are not only capable of enhancing
molecular emission. One exciting possibility is to use a finite
sample of WM in order to implement a novel type of mi-
crowave resonator called a plasma haloscope in the seminal
work of Ref. [9] to search for dark matter. The resonator
suggested in this theoretical paper is a metal box filled with
a simple wire medium. The governing idea of this resonator is
based on the behavior of the WM as an effective plasma.

At its plasma frequency the effective permittivity of WM
crosses zero, which enables the epsilon-near-zero (ENZ)
regime greatly increasing the wavelength of light in the
medium. In contrast to the case of optical frequencies, where
a number of natural materials such as semiconductors and
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metals can be used for ENZ, at radio frequencies this can
only be achieved with artificial materials, and the WM was
chosen in [9] as a straightforward candidate. The behavior of
WM in the ENZ regime has been partially studied: microwave
WM in this regime offered energy tunneling through subwave-
length channels [10] and excellent directionality of antennas
[4,11,12], whereas infrared WM granted the unbounded spa-
tial spectrum of eigenmodes promising the giant enhancement
of Raman radiation and fluorescence of molecules located in
such media [13]. However, the idea of Ref. [9] exploited the
increase of the effective wavelength that enables at a given
frequency a very low mode number for a very big resonator,
much bigger than the empty metal cavities having the fun-
damental mode at the same frequency. The low-frequency
resonance for a big resonator together with the high unifor-
mity of the eigenmode field (at much larger scales than a
traditional cavity allows) makes the plasma haloscope promis-
ing for the search of axions, hypothetical particles of dark
matter.

The composition of dark matter is one of the most enduring
problems in modern cosmology. While historically considered
the second most promising candidate, the axion has risen
in prominence due to the continued nondetection of weakly
interacting massive particles. Originally proposed to solve the
strong CP problem, the mysteriously precise conservation of
charge-parity symmetry in the strong interaction [14–16], the
axion can be produced nonthermally in the early Universe to
provide a natural dark matter candidate [17–22].

Due to an anomalous coupling to electromagnetism, the
axion mixes with photons when a strong external magnetic
field is applied. This mixing generates a small electric field,
oscillating at a frequency corresponding to the axion mass
and spatially constant on scales smaller than the de Broglie
wavelength (which, due to the small escape velocity of the
galaxy is approximately 1000 times larger than the Compton
wavelength). Traditionally, this effect has been used to search
for axions via the excitation of cavities [23]. The coupling
between the axion and the experiment is determined by the
overlap of cavity mode with the axion field, with the highest
overlap occurring for the most homogeneous mode [23]. Since
the exact value of the axion mass is unknown, the experimen-
tal setup has to be tunable over a wide range of frequencies,
as well as being large enough to provide a reasonable signal,
with power scaling with the volume and quality factor of the
resonator [23].

While making a large microwave resonator is straightfor-
ward at the frequencies on the order of hundreds of megahertz
to gigahertz [23–25], the axion may have significantly higher
masses, with some recent calculations predicting a frequency
of 16 ± 1.5 GHz [26]. At these frequencies a conventional
resonator has dimensions of a few centimeters, leading to
both a massive loss of signal power and increased mechani-
cal complexity. As a result, novel experimental methods are
needed, with recent proposals using multiple or coupled cav-
ities [27–30], cavities with dielectric inserts to modify the
mode structure [31–35], or even abandoning a traditional res-
onator in favor of a mirror [36–40] or of an array of large
dielectric disks [41–44].

As shown in Ref. [9], the plasma haloscope allows one
to overcome the mass difference between the axion and

the photon, allowing for much larger resonant systems with
close to homogeneous mode structures. While natural plasma
operable at cryogenic temperatures with low loss and a con-
trollable plasma frequency in the microwave regime does not
exist, WM allow for a bespoke plasma to be made. WM
made of a nonmagnetic metal such as copper can operate
in high DC magnetic fields and at low temperatures. They
exhibit low loss, and, importantly, can be controlled me-
chanically (e.g., moving the wires) to allow simple tuning
mechanisms.

However, previous work (Refs. [9,45,46]) were based on
a simple effective medium approach, and did not calculate
the properties of such a medium from first princples. First
of all, WM are spatially dispersive, and it is not evident
how the effective permittivity known for an unbounded WM
is applicable to a finite sample. Is it mesoscopic (sensi-
tive to the sample sizes and to the surroundings, i.e., the
walls being metal or not)? Mesocopy was not considered in
Refs. [9,45,46] but it is well known that mesoscopy exists
for a layer of low-loss WM located in a dielectric host or in
free space. In this situation the effective permittivity of WM is
useless without the so-called additional boundary conditions
(ABCs) [47]. The problem of boundary conditions in metama-
terials can be highly nontrivial as evidenced, for instance, by
the recent rigorous analysis of boundary conditions in layered
metamaterials [48]. While in Refs. [7,8] finite samples of WM
were successfully modeled without ABCs, this was possible
only because they were lossy (as was shown in work [49]
for lossy WM layers, ABCs are not needed). In our case,
the WM sample must have low losses. Thus, the applicability
of the homogenization model has to be checked in view of
the possible mesoscopy. Moreover, Refs. [9,45,46] assumed
that the volume of the system V and quality factor Q were
unrelated, an important assumption as the signal strength of an
experiment would be proportional to QV . Wires are not per-
fectly conducting and by filling the cavity with them we bring
significant losses into the resonator. This effect can be taken
into account by a homogenous effective medium approach,
but the size of the effect has not been estimated. Also, there
may be additional losses at the places where the wires are
connected to the cavity walls. This possible effect is not taken
into account by the homogenization model. Together, the WM
sample inside the cavity must downgrade its quality factor,
but by how much? How does this downgrading counteract the
gain granted by the enlarged volume V ?

In our work, we estimate these issues, providing a compar-
ison of the analytical model with full-wave simulations and
measurements. Our results are positive: we demonstrated the
feasibility of a large-scale haloscope. We analytically derived
the quality factor of the WM loaded cavity and made ana-
lytical calculations of the mode frequencies and mode fields.
Comparison with the full-wave simulations has shown the
analytic model works without any mesoscopic corrections if
the metal walls are separated from the wires by one half of
the WM internal period. We found that even at room tem-
peratures one can have Q by an order of magnitude higher
than that heuristically assumed in Refs. [9,46]. Namely, using
rather thick wires of polished copper we may reach quality
factors higher than 3000, whereas further improvement may
be granted by cryogenic environment. We have validated the
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FIG. 1. Left: The corner of the xy cross section for a resonator
consisting of an array of square wires of thickness 2r, with spacing
a with a gap of a/2 between the wire array and an enclosing metal
cavity of side length d . Right: 3D model of the 10 × 10 example wire
medium cubic resonator which will be used in numerical simulations.
The wires have a square cross section for ease of calculation with a
hexahedral mesh in CST MWS [52] eigenmode solver. The number
of wires allows for manageable computational requirements while
operating in a regime where one expects the homogeneous effective
medium description to be valid.

analytic model not only by numerical simulations but also
by building and measuring a 10 × 10 wire array in a cubic
metal box. Our numerical and experimental results are in
good agreement and pave the way for further studies of large,
controllable plasma haloscopes as advantageous setups for the
search for dark matter.

II. ANALYTICAL MODEL OF THE RESONATOR

At the most basic level, a WM resonator consists of an
array of wires, which in this work we will consider to be
encased inside a metallic cavity. Using a cylindrical cavity
with a square lattice of wires results in the variable distance
between the edge of the metamaterial and the wall. Depending
on the wall spacing and how the cavity is filled, there is a
possibility of eigenmodes being formed in the air gaps at
frequencies comparable or lower than the plasma frequency.
We consider a cubic cavity as it matches the lattice geometry,
leading to a constant and simple distance between the cavity
walls and wires. The walls ensure that the only losses in the
system are either resistive losses or coupling to an external
antenna, leading to a stronger resonance. To understand the
general behavior of such a system, we will start with an
analytic approach.

For simplicity we will take the WM to be a square grid
of N × N metal wires of thickness 2r arranged with a period
a (as depicted in Fig. 1). We will consider wires with both
rectangular and round cross sections. Lateral walls of the
cubic metal cavity are distanced by a/2 from the centers of
the edge wires so that the side length d of the resonator is
equal to d = Na. The distance of a/2 was chosen since it is
the distance by which the effective medium extends out of the
material [50]. The wire length is defined as d and the wires
are terminated at the top and bottom walls.

The dielectric permittivity tensor ε̂ of a simple WM com-
posed of z-oriented wires is given by (see, e.g., [2])

ε̂ =
⎛
⎝1 0 0

0 1 0
0 0 εzz

⎞
⎠, (1)

where in the absence of losses we have

εzz = 1 − k2
p

k2
0 − k2

z

, (2)

where k0 is the free space momentum (ω/c) and kz is the mo-
mentum in the z direction. This gives a maximally anisotropic
plasma, so that modes E fields perpendicular to the wires
“perceive” an almost empty cavity. For the special case when
the E field is aligned strictly in the z direction (i.e., along the
wires) this formula becomes identical to that describing the
permittivity of a nonmagnetic collision-free plasma:

ε ≡ εzz|kz=0 = 1 −
(ωp

ω

)2
. (3)

In writing these we have written the effective plasma fre-
quency as ωp with kp = ωp/c the plasma wave number
defined in [51] for round wires as

k2
p = 2π/a2

ln a
2πr + F (1)

. (4)

Here F is a function of the ratio of the periods in the lattice
of wires for a rectangular array. For square lattices F (1) =
0.5275 [51]. As we only deal with the case of square lattices,
we will write F (1) ≡ F . In other words, the effective plasma
frequency and wave number are simply given by the geometry
of the system, depending only on a and r. This allows for cus-
tom plasmas to be created with the plasma frequency desired
for any particular application, or even tuned mechanically
[9,46].

A. Modes

The eigenmodes of the whole structure (WM in the cav-
ity) can be split into transverse electric (TE) modes with the
magnetic field aligned with the wires and transverse magnetic
(TM) modes with the electric field aligned instead. For the
TE modes, the E -field vectors lack any component along z
and if the wires are thin enough their quasistatic interaction
with the wires is negligible. As a result, the frequencies of
TE modes are nearly equal to the frequencies of an empty
cavity. Because of this, we will focus primarily on the TM
modes; however, if the WM is extended to have wires in the
x, y directions we would expect a similar story to play out for
the TE modes.

For the TM modes, the E field is confined to the z axis
and so sees a plasma medium. Below the plasma frequency
the effective refractive index is predominantly imaginary and
so any waves are evanescent. Near the plasma frequency, the
WM enters an ENZ regime leading to significantly larger
wavelengths. Because of this the TM modes are shifted to just
above the plasma frequency, leading to the fundamental mode
being much higher in frequency than would be realized for an
empty cavity.
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FIG. 2. Resonance frequency fres as a function of the number of
wires N2 in a WM consisting of radius r = 1 mm wires with a period
a = 1 cm placed inside a cubic cavity. Analytic results (red line)
assuming a homogenization model are compared with a numerical
simulation (blue squares) in CST [52] with square wires of thickness
2r, with a gap of a/2 with the cavity walls. For comparison, the
plasma frequency of the WM is shown via the black dashed line.
As N increases fres approaches the plasma frequency of the WM.

Neglecting losses, by requiring that the E fields satisfy the
conducting boundary conditions at the walls, the TM modes
Elmn

z with eigenfrequencies ωlmn
res of amplitude E0 can be writ-

ten as

Elmn
z = E0 cos(kxx) cos(kyy) cos(kzz), (5)

with eigenfrequencies given by

ε

(
ωlmn

res

c

)2

=
(

lπ

d

)2

+
(mπ

d

)2
+ ε

(nπ

d

)2
, (6)

where we have used that kx = lπ/d, ky = mπ/d , and kz =
nπ/d . As one of the primary applications of resonant WM
are plasma haloscopes, we will focus on the fundamental
(TM110) mode. As this mode has the highest spatial homo-
geneity, it would couple most strongly to dark matter and
provide the strongest signal [9]. In this case, we will define
ωres ≡ ω110

res , which allows us to write(ωres

c

)2
≡ k2

res = k2
p + 2

(π

d

)2
. (7)

We thus have a simple analytic expression for the resonant
frequencies of the resonant WM. To check this analytic effec-
tive medium treatment, we compare the analytic calculations
to full-wave simulations in CST Microwave Studio [52] using
the eigenmode solver in Fig. 2. By showing the resonant
frequency versus the number of wires across the resonator
(N = d/a) we see that the analytic formulas provide an excel-
lent prediction for the full numerical treatment. The agreement
is particularly good for larger systems (1%), meaning that the
analytical treatment should be appropriate for the large sizes
considered for plasma haloscopes. We note, however, that this
numerical model used a square cross section of wires for com-
putational simplicity and faster meshing. As will be shown
later, modeling a cavity with round wires results in a small
but noticeable difference in the quality factor and plasma
frequency. We see also that as the size of the WM increases
the ωres → ωp asymptotically. With this understanding of the
mode structure, we can turn our attention to the losses.

B. Losses

Unfortunately, normal conductors will always have resis-
tive losses, leading us to one of the most salient properties of
any resonator: the quality factor Q. To estimate the losses of
the system, we must augment the dielectric constant to include
an imaginary component. For simplicity, we will consider the
same fundamental TM110 mode; however, other modes of
the system can be analyzed similarly. In this case, we can treat
the medium as isotropic and use the results of Ref. [53] to
write

ε = ε′ − jε′′ = 1 − k2
p

k2 − jξk
, (8)

with real and imaginary parts given by

ε′ = 1 − k2
p

k2 − ξ 2
,

ε′′ = ξk2
p/k

k2 − ξ 2
. (9)

The loss coefficient ξ is derived in Ref. [53]:

ξ = Zw

Lw

√
ε0μ0, (10)

with Zw and Lw being the wire impedance and inductance
per unit length, respectively. For wires with circular cross
sections, these quantities can be calculated from the magnetic
permeability μ and conductance σ of the wire material as
[53,54]

Lw = μ0

2π

(
ln

a

2πr
+ F

)
, (11a)

Zw = Re

(√− jωμ√
σ2πr

J0(
√− jωμσ r)

J1(
√− jωμσ r)

)
. (11b)

The electromagnetic field of the fundamental mode of a
cubic resonator (d × d × d), loaded by a dielectric whose
complex permittivity has real part ε′ much larger than ε′′, can
be obtained from Eq. (5) explicitly as

Hx = jE0

√
ε0ε′

2μ0
cos

πx

d
sin

πy

d

Hy = − jE0

√
ε0ε′

2μ0
sin

πx

d
cos

πy

d

Ez = E0 cos
πx

d
cos

πy

d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− d/2 � x, y � d/2,

(12)
where we have assumed that the medium is nonmagnetic
(μ = μ0). The quality factor Q of the resonator at the mode
eigenfrequency can then be found via the stored energy Wstored

and the power of the losses in the walls, Pwalls, and in the wires,
Pwires, as follows:

Q = Wstored

Wlost
= ωWstored

Pwalls + Pwires
. (13)

The equation for the stored energy density in a dispersive
dielectric includes a correcting coefficient ∂[ωε′(ω)]

∂ω
and is thus
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written as [55]

wstored = μ0|Ht |2
4

+ ε0S|Ez|2
4

,

S = ∂[ωε′(ω)]

∂ω
= 1 +

( ωp

ωres

)2
. (14)

In the limit of ωres −→ ωp the coefficient S = 2 and the H fields
vanish. Integrating wstored over the resonator volume gives

Wstored =
∫∫∫ d/2

−d/2
wstoreddV = ε0d3E2

0

16
(ε′ + S). (15)

Losses in the walls, Pwalls, can be found by integrating the
tangential components of the magnetic field over the walls.
Ignoring an overall phase and using that the currents are given
by the cross product of the normal vector n̂ via J = n̂ × H we
get

J
∣∣
|x|=±d/2 = E0

√
ε0ε′

2μ0
cos

πy

d
ẑ, (16a)

J
∣∣
|y|=±d/2 = E0

√
ε0ε′

2μ0
cos

πx

d
ẑ, (16b)

J
∣∣
|z|=±d/2 = ±E0

√
ε0ε′

2μ0
sin

πx

d
cos

πy

d
x̂

±E0

√
ε0ε′

2μ0
cos

πx

d
sin

πy

d
ŷ; (16c)

we can then integrate to find [56]

Pwalls = Rs

2

∫∫ d/2

−d/2
|J|2dS

= 3Rsε0ε
′

4μ0
d2E2

0 , (17)

where Rs = √
ωμ0/2σ is the surface resistivity of the cavity

walls.
Similarly, the losses in the wires can be found by consid-

ering the imaginary component of the dielectric constant ε′′
using [55]

Pwires = ωε0ε
′′

2

∫∫∫ d/2

−d/2
|Ez|2dV = ω

ε0ε
′′d3E2

0

8
. (18)

As opposed to the losses in the walls, which grow with the
surface area of the resonator, the losses in the wires grow
proportionally to the cavity volume. As a result, as d is in-
creased, Pwires dominate over Pwalls if the cavity is made of
similar quality material. As axion experiments will focus on
large volumes (and so large d) the wall losses can be mostly
neglected. The resulting quality factor of the resonator can
then be written using Eqs. (15) and (18) as

Qwires = ωWstored

Pwires
= (ε′ + S)

2ε′′
kres=kp−−−→ kp

ξ
− 3

2

ξ

kp
. (19)

As can be seen from Fig. 3 for a large resonant cavity in
the case of a highly conducting metal (ξ � kp), the quality
factor depends on the size of the resonator in a manner similar
to that of the mode frequency. Our analytic calculation is in

FIG. 3. Unloaded quality factor Q as a function of the number of
wires N2 in a WM consisting of radius r = 1 mm wires with a period
a = 1 cm placed inside a cubic cavity. Analytic results (red line)
assuming a homogenization model are compared with a numerical
simulation (blue squares) in CST with square wires of thickness 2r,
with a gap of a/2 with the cavity walls. For comparison, the quality
factor of the resonator with lossless walls Qwires is shown (black
dashed line). As N increases, Q asymptotically approaches that of an
infinite wire medium (i.e., no wall losses) and Qwires and Q become
virtually indistinguishable. In the limit of N → 0, Qwires approaches
infinity, as there are no wires to cause resistive losses.

excellent agreement with numerical simulations for all system
sizes. The worst agreement (32 wires with 2.4%) provides a
good match between analytics and simulations, improving to
less than 1% for 122 and up. However, we can see that as the
system size increases, the relative importance of wall losses
decreases, with Q � Qwires for arrays larger than ∼7 × 7,
approaching an asymptotic value of Q � 3300. Beyond this
point, increasing the system size simply gives an almost lin-
ear increase in signal power, which is proportional to QV .
These analytical calculations were confirmed by full-wave
simulations of square cross-section wires in CST MWS [52]
eigenmode solver, whose results are shown in Fig. 3 as well.
As the number of wires approaches the limit of a single wire
N = 1 both resonance frequency and Q factor rise sharply,
approaching the corresponding values calculated for an empty
cubic metallic cavity with side length d = a. This can be
explained by the losses in the walls starting to dominate over
the losses in the medium in smaller WM-filled cavities.

While the quality factor remains constant for large system
sizes, the existence of a single cavity mode actually breaks
down. To see this, consider the refractive index n = √

εμ near
resonance, as shown in Fig. 4. Near the plasma frequency the
real and imaginary part of n are equal up to a sign which
depends on the time convention used (i.e., e±iωt ) with ε �
j/Qwires leading waves to decay with a characteristic length
∼√

Qwiresλc. This affects both the energy transport in the sys-
tem, and the ability to form standing wave cavity modes. For
cavities larger than this typical scale, waves will decay before
they travel from one wall to another. In this case, our mode
analysis breaks down. However, the analysis of Ref. [9] does
not assume that cavity modes form, and is thus unaffected.
The axion would create an effective volume current, exciting
the entire system uniformly. However, as the system would
then be larger than the decay length, multiple antennas would
be required to pick up the full signal. While we leave such
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FIG. 4. Real (green) and imaginary (blue) parts of the refractive
index n as a function of frequency f around the plasma frequency fp.
For illustrative purposes, we have chosen a plasma with ξ = 10−3kp,
i.e., a lifetime of 1000 cycles.

considerations for future work, we note that the walls can be
neglected and the quality factor of the cavity will only depend
on the power extracted by the antenna and the resistive losses
of the wires, which will still be given by Qwires.

Many applications of resonators rely on the resonance be-
ing high quality. With this in mind, how can one maximize
the quality factor? In general, the losses will depend primarily
on the thickness of the wires, as well as their conductivity.
While one might anticipate that thicker wires would result in
lower resistive losses in analogy to energy transport in power
lines, this does not hold without limit. As the radius of the
wires increases it starts to become comparable to the Compton
wavelength, violating the assumption that the wire radius is
much smaller than the wavelength (i.e., that the wires are
thin).

As shown above, for large resonators the wall losses can
be neglected, so for simplicity we will treat the system as
infinitely large (i.e., fres = fp and Q = Qwires). This allows us
to choose an optimal wire radius for a given plasma frequency.
To see how Q scales with experimental parameters, we can
explicitly write it as

Q � kp

ξ
=

√
ωpσμ−1μ0r

Re

[√− j
J0(

√
− jωpμσ r)

J1(
√

− jωpμσ r)

](
ln

a

2πr
+ F

)
. (20)

As we expect that larger wires will result in lower losses, we
will focus on the regime where r 	 1/

√
ωσμ. In this limit

the wires are much larger than the skin depth of the material
δ = √

2/ωσμ and we can simplify Eq. (20) by noting that

J0(
√− jα)

J1(
√− jα)

lim
α→∞ = j, (21)

giving

Q � μ0r

√
2ωpσ

μ

(
ln

a

2πr
+ F

)
= 2

μ0

μ

r

δ

(
ln

a

2πr
+ F

)
.

(22)
We see that Q is determined by two factors. The first being
given by the ratio of radius r with the skin depth δ (up to the
relative permeability, which for copper is close to unity). The
second is a geometric term coming from the inductance Lw,

f

FIG. 5. Unloaded quality factor Q as a function of the plasma
frequency fp for an infinite copper wire metamaterial at room tem-
perature. We show wires with radius r = 1 mm and r = 3 mm in
blue and green, respectively, with the black dashed line showing the
maximum possible Q for a given fp. The period of the wires a is
adjusted so that the plasma frequency of the system is given by fp.
The theoretically maximum Q diverges as one moves to DC as the
optimal wire size and spacing approaches infinity.

which regulates Q for high frequencies. Note that a is uniquely
determined for a given r and ωp, falling with increasing ωp

and increasing with larger r. We can rearrange Eq. (4) for the
explicit form, given by

a = 2
√

π

ωp
W0

(
e2F

πr2ω2
p

)−1

, (23)

where W0(x) is the principle branch Lambert W function.
For some specific examples, we show r = 1, 3 mm exam-

ples with Q a function of fp = ωp/2π for room temperature
copper in Fig. 5. Due to the trade-off between decreasing the
resistive losses and maintaining a thin wire limit, each wire
radius has a maximum quality factor at a frequency which
corresponds to r � λc/50. However, the peak of the quality
factor curve of a specific radius does not actually give the
optimal wire radius for a specific frequency.

To find an optimal wire radius, we maximize the quality
factor Q for a given plasma frequency fp, shown by the dashed
line in Fig. 5. We see that the maximal Q falls as 1/

√
fp

following the skin depth, assuming that the conductance is
constant. Numerically, the maximum quality factor for a given
frequency occurs when r � λc/11. As this trade-off is caused
by the geometry of the system, the optimal thickness of the
wires is largely unaffected by the conductance of the wires,
which only modifies the extrema of Q through the Bessel
functions in Eq. (20). Note that as the wire thickness starts
to become an appreciable fraction of λc, the assumption that
they are one-dimensional objects breaks down, which would
necessitate modifying the effective medium approach. Thus
while these results are indicative of the Q that can be achieved,
a practical design should be fine-tuned through numerical
simulation.

To give a sense of scale, Refs. [9,46] assumed Q = 100
over a range of 2–100 GHz in a cryogenic environment. How-
ever, as we have shown even with room temperature copper,
it is possible to get Q > 103 over this entire range, a gain of
more than an order of magnitude. In a cryogenic environment
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(a) (b)

FIG. 6. The TM110 mode structure in the xy cross section of a WM loaded cavity calculated in a CST MWS eigenmode solver. The
amplitudes of the E field scaled via its maximum value (Emax), E/Emax, are shown via the color map (red). It is clear that the distribution of
the electric field is almost the same in two plots and corresponds to the one given by Eq. (12). The log-scaled in-plane components of the H
field are shown via the blue arrows. The direction (amplitude) of the H field corresponds to the direction (magnitude) of the arrows. Left: A
full simulation with metal wires. The WM consists of a 10 × 10 array of square wires of thickness 2r, with spacing a = 1 cm and r = 1 mm
inside a metal cavity as shown in Fig. 1. Right: A simulation with an effective medium using the analytic formula in Ref. [51] using the same
parameters, except replacing the square wires of the numerical simulation with radius 1 mm.

we would expect further gains, ultimately being limited by
the anomalous skin effect. For an example, a cavity designed
specifically to search for axion dark matter was demonstrated
to improve in quality factor by a factor of ∼3 at 12 GHz by
moving to cryogenic temperatures [57]. Further gains could
be made by moving to superconducting wires, though this
may present design challenges in strong magnetic fields. We
have also demonstrated that with some simple optimization
one can noticeably improve the quality factor for a given
frequency. This allows for high-quality WM resonators to be
manufactured, with particularly interesting applications in the
low-frequency regime.

III. RESONATOR EIGENMODE SIMULATIONS

While analytic formulas provide great simplicity and trans-
parency, they will necessarily neglect the fine details of the
system. Further, the region of validity of such a homogenized
effective medium approach must be explored. Testing the
validity of the analytic approach requires a comparison with
both simulations and physical measurements. To accomplish
the former, we use the frequency domain solver in CST MWS
2020.

To look at the mode structure directly, we will take the
case of a 10 × 10 wire array, using r = 1 mm copper wires
with a period of a = 1 mm (arranged as shown in Fig. 1).
We compare the full wire treatment with a completely ho-
mogeneous effective medium, with properties as calculated in
Sec. II. To start, we plot the E - and H-field distributions of
the TM110 mode in Fig. 6. Comparing the two red color maps
showing the value of the E field we see that the presence of
the individual wires does not have a significant impact on the

overall mode structure for the E field, except a local decrease
in the immediate proximity of the wires.

However, the sharp decrease in E field around the wires
causes significant H fields to be generated. Because of this
the magnetic field circles around individual wires, and the
highest amplitudes are achieved not at the centers of the walls,
but at the cavity center (same as for the E field). Indeed, it
is the mutual inductance of the wires that is responsible for
the collective oscillation of WM [1]. While this change does
not have an impact for the unloaded Q, it may be signifi-
cant when we consider the coupling of external circuits to
the resonator. An empty cavity would effectively couple to
a magnetic probe inserted at the internal side of the wall. In
a wire-filled cavity, however, the strong local H fields near
the wires may affect the loop antenna very differently. For
instance, since the magnetic fields of any two neighboring
wires to an extent counteract each other at the point between
them, placing a loop antenna there would lead to a signifi-
cantly weaker signal. Note that the H fields around the wires
are approximately three times stronger than the strongest H
fields in the homogenized effective medium approach. There-
fore SMA (subminiature A-version) ports with an 8-mm-long
extended core placed at the point of the maximum of the E
field on the top and/or bottom walls were used as monopole
antenna probes in both simulations and experiments.

In order to couple to the resonant cavity, two SMA ports
were added at the centers of the walls at which the wires were
terminated. Being placed at the point of the maximum electric
field at these walls, the SMA probes are very strongly coupled
to the mode field making the resonator heavily loaded by these
lumped ports. The vertical position of the probes allows us to
only excite the TM modes of the resonator, without coupling
to the numerous TE modes of the cavity, which are weakly
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(a) (b)

FIG. 7. Cross section of the E -field mode structure of the TM110
mode of a WM loaded resonator through the x, z directions found
with the CST MWS eigenmode solver. The WM consists of a
10 × 10 array of square wires of thickness 2r, with spacing a = 1 cm
and r = 1 mm inside a metal cavity as shown in Fig. 1. Darker
red indicates a stronger E field. Left: TM110 mode of an isolated
resonator (i.e., no antenna). Right: TM110 mode of the resonator
with two SMA ports acting as 8-mm-long monopole probes added
at the center of the top and bottom walls. The configuration mirrors
the one used in the experiment.

influenced by the wires. As can be seen from the comparison
in Fig. 7, in terms of field magnitude the presence of probes
changes the field structure in their vicinity, but does little in
terms of affecting the mode structure at large. However, a
slight nonhomogeneity is added in terms of the phase of the
dominating Ez component.

Thus we can see that while the effective medium approach
allows for a good prediction for the overall properties of a
WM resonator, the presence of wires leads to local distortions
which may have an impact on the coupling of antennas to the
system.

IV. EXPERIMENT

Lastly, analytic and numerical solutions must always be
validated by actual physical measurements. To this end, a
brass prototype was built with the aim of testing whether a
Q factor on the order of thousands could be achieved at room
temperature by enclosing the wires within a cavity. Yellow
brass wires (65% copper, 35% zinc) of r = 1 mm were placed
and welded within a 10 × 10 × 10 cm brass cube with a
period a = 1 cm. The lateral walls were spaced a/2 = 0.5 cm
away from the WM sample. To facilitate measurements, two
SMA ports were attached to the top and bottom walls to which
the wires were welded, as shown in Fig. 8. The two ports acted
as 8-mm-long monopole probes coupled to the TM modes of
the resonator. The center contact of the ports had a diameter
of 1.3 mm and was made of beryllium copper. The insulator
dielectric had a diameter of 4.1 mm and was made of material
polytetrafluoroethylene. The conductivity of the metal used
in our experiment was measured in the DC regime to be
1.51 × 107 S/m. This conductivity is only slightly lower than
the tabulated value 1.59 × 107 S/m of the 65% brass that was
used in the CST model for the numerical comparisons.

To measure the system, we used an Agilent E8362C vector
network analyzer in the range of 11–13.5 GHz connected to
SMA connectors acting as monopole antennas. We first mea-

(a) (b)

FIG. 8. Photos of the experimental prototype WM resonator.
The resonator is a 10 × 10 array of radius 1-mm circular cross-
section brass wires placed with a period a = 1 cm. The wires are
inserted into the holes in the brass walls and soldered to ensure
an electric connection. Two 8-mm-long SMA connectors acting as
monopole antenna probes are inserted at the centers of the walls to
which the wires are connected. Left: The wires inside the resonator
in an unfinished state. Right: The finished resonator fully enclosed in
a cavity.

sured the coupling coefficient of each of the ports by attaching
the other port to a matched load and measuring the reflection
coefficient S11 at the port in question. After employing curve
fitting to the resulting S parameters to account for the coupling
losses at the ports, as described in Ref. [58], we obtained a pair
of coupling coefficients κm1, κm2 for the matched setup.

We can convert the coupling coefficients of a matched
cavity to input and output coupling coefficients κ1, κ2 via [58]

κ1 = κm1
1 + κm2

1 − κm1κm2
, (24a)

κ2 = κm2
1 + κm1

1 − κm1κm2
. (24b)

The overall coupling coefficient can then be found as the
sum of the input and output ones,

κ = κ1 + κ2. (25)

Thus armed with the coupling coefficient, we used a
transmission-type measurement to study the Q factor of the
system. In Fig. 9 we compare the numerical simulation with
the S12 measurement. Apart from the lowest TM110 mode
around 11.45 GHz, two other modes, TM111 and TM112,
can also be seen at higher frequencies. While there is a good
overall agreement, there is a discrepancy of about 33 MHz
in the frequency of the resonances. This discrepancy is likely
caused by the finite accuracy available for a given mesh and
can likely be neutralized by increasing its density. The loaded
Q factor QL, corresponding to the full width at half maximum,
can be read off from the 3-dB width of the S12 maximum
corresponding to the mode in question. To translate this read-
ing into an unloaded Q factor QU , we can use the coupling
coefficient via

QU = QL(1 + κ ). (26)

We summarize the key parameters (κ, Q, fres, etc.) in
Table I. The most significant difference occurs in the unloaded
quality factor QU : the experimental prototype is noticeably

075106-8



WIRE METAMATERIAL FILLED METALLIC RESONATORS PHYSICAL REVIEW B 106, 075106 (2022)

FIG. 9. S12 (transmission) parameters for a WM consisting of a
10 × 10 wire array with spacing a = 1 cm inside a metal cavity. We
depict both a CST simulation (red line) similar to that shown in Fig. 1
and the measured values of the prototype experiment (blue dashed
line) as shown in Fig. 8. The CST simulation assumes 65% brass
wires with radius 1 mm, whereas the experiment uses wires with the
same radius but has a measured DC conductivity of 1.51 × 107 S/m
(slightly lower than 65% brass). Circular cross-section wires are used
in both the experiment and the simulation. The xz cross sections of
the corresponding TM modes are shown as insets next to the reso-
nances in the CST simulation.

more lossy than the simulated one, that results in wider band-
width and lower Q. The difference in the coupling coefficients
might be attributed to the nonideal electrical connection of the
port and leakage of energy in the experimental case resulting
in lower coupling.

The extra losses in the experimental setup may be at-
tributed to a number of factors: the presence of an oxidized
layer on the wires (while it does not influence the DC con-
ductivity averaged over the wire cross section, the skin effect
means that the majority of the current occurs in the periphery
of the wire), the submillimeter roughness of the wires surface,
the presence of the drops of solder inside the resonator, and
possible misalignment of the wires. Using the expressions
from our analytical model, these various losses can be all
factored into an effective conductivity σeff, which is decreased
compared to the measured one (already lower than the tabu-
lated one) and turns out to be equal to 0.77 × 107 S/m, i.e.,
about twice lower than the actual conductivity of brass. In
Fig. 10 we present the dependence of the unloaded quality
factor on the conductivity σ calculated analytically for several

TABLE I. Comparison between numerical simulations in CST
and measurements of the experimental prototype for the key param-
eters of the TM110 mode. The WM consists of a 10 × 10 wire array
with spacing a = 1 cm inside a metal cavity. The CST simulation
assumes 65% brass wires with radius 1 mm, whereas the experiment
uses wires with the same radius but has a measured DC conductivity
of 1.51 × 107 S/m (slightly lower than 65% brass). Circular cross-
section wires are used in both the experiment and the simulation.

Experimental Numerical

Frequency (GHz) 11.420 11.453
Bandwidth (GHz) 0.022 0.016
Loaded Q 509 735
Coupling coefficient 1.34 1.82
Unloaded Q 1194 2074

FIG. 10. Dependence of unloaded quality factor Q on the con-
ductivity of the wires σ for an infinite wire media. The other
parameters of the resonator are the same as for Fig. 3. The three
blue points mark maximum unloaded quality factors achievable with
wires made of common metals, 65% brass, 91% brass, and pure
copper. The gray point shows the quality factor observed in the
experiment and an equivalent conductivity that would result in the
same value for the otherwise ideal conditions.

metals in comparison with the σeff observed in the experiment
to better visualise the discrepancy and the extent to which the
quality factor may be improved with more refined prototype
and measurement.

While the resulting value of the unloaded Q factor is 40%
lower than expected, the value obtained still speaks in favor of
the quality factors on the order of thousands being achievable
with high-quality copper wires (and manufacturing). Further
investigations explore the sources of increased losses to allow
for the highest possible quality factors.

V. CONCLUSIONS

In this work we have analyzed the behavior of a cubic
microwave resonator filled with uniaxial wire medium an-
alytically, numerically, and experimentally. One particularly
interesting use of such a system is to build a plasma haloscope
[9]; however, previous work made no computation of the
quality factor of such a system, and assumed a homogenized
effective medium model. When a WM is enclosed inside a
metal cavity, we find that the primary source of loss comes
from the conductivity of the wires themselves, with wall
losses only playing a role for small systems. While the quality
factor decreases as the size of the system increases, it plateaus
at the value expected from wire losses alone. Thus the system
size can be increased to allow for large volume (and thus
high signal power) haloscopes without negatively impacting
the resulting quality factors. We also discussed the limits in
which the system can be treated as a single-mode resonator:
when the system size is larger than ∼√

Qλc such a description
breaks down. While a plasma haloscope can operate in such a
limit, the decay length in media would require a multiantenna
readout design (such as a phase-matched array).

We performed numerical simulations in CST, which
showed a very strong agreement with the analytic model. This
indicates that additional boundary conditions are not needed
for the case of a wire medium with an a/2 spacing between
the wires and the walls, which validates the homogenization
approach. These numerical simulations were then compared
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to an experimental prototype, which showed good agreement
in the mode structure and loaded quality factors. However,
the resulting unloaded quality factor was 40% lower than
expected, most likely due to flaws in the manufacturing of
the prototype. Promisingly, even with room temperature brass,
a quality factor larger than a thousand was easily obtained,
more than an order of magnitude higher than assumed in
Ref. [9]. With high-quality copper, machining, and moving
to a cryogenic environment we expect that as much as an
additional order of magnitude can be gained.

We have studied in detail the behavior and quality factor
of WM loaded resonators, finding that they are extremely
promising for the purpose of detecting axion and dark photon
dark matter.
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