
PHYSICAL REVIEW B 106, 064511 (2022)

Dipolar Bose-Hubbard model
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We study a simple model of interacting bosons on a d-dimensional cubic lattice whose dynamics conserves
both total boson number and total boson dipole moment. This model provides a simple framework in which
several remarkable consequences of dipole conservation can be explored. As a function of chemical potential
and hopping strength, the model can be tuned between gapped Mott insulating phases and various types of
gapless condensates. The condensed phase realized at large hopping strengths, which we dub a Bose-Einstein
insulator, is particularly interesting: despite having a Bose condensate, it is insulating, and despite being an
insulator, it is compressible.
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I. INTRODUCTION

A growing body of work has demonstrated that in systems
with a conserved charge, interesting phenomena can arise if
the system’s dynamics conserves higher mulitpolar moments
of the charge, such as dipole or quadrupole moments. Systems
with this type of dynamics have constrained kinematics, with
the conservation laws restricting the manner in which charge
is able to move. These systems have been shown to exhibit
close connections with fractonic phases of matter [1–11],
offer ways to realize robust ergodicity breaking [12–16] and
anomalously slow diffusion [17–22], and are relevant for de-
scribing experiments in systems where ultracold atoms are
prepared in strongly tilted optical lattices [13,23–25].

Our aim in this work is to develop a better understanding
of the physical consequences of multipolar conservation laws,
and in particular to examine how such conservation laws influ-
ence the competition between kinetic energy and interactions
which is at the heart of much of modern condensed matter
physics. To this end, we explore a simple model that we dub
the dipolar Bose-Hubbard model (DBHM), which describes
interacting bosons hopping on a d-dimensional cubic lattice
in a manner that conserves both total boson number and total
boson dipole moment. The Hamiltonian of the DBHM is

HDBHM = Hhop + Honsite

Hhop = −t
∑
i,a

b†
i−ab2

i b†
i+a − t ′ ∑

i,a

∑
b�=a

b†
i bi+ab†

i+a+bbi+b

+ H.c.

Honsite = −μ
∑

i

ni + U

2

∑
i

ni(ni − 1), (1)

where t, t ′, μ,U are all positive coefficients, ni = b†
i bi is the

boson number operator on site i, and where the sums over a, b
run over spatial unit vectors. The hopping terms proportional
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to t and t ′ capture the simplest boson hopping processes
compatible with dipole conservation, and are illustrated in
Fig. 1. The goal in this work is to understand the competition
between Hhop and Honsite, and by doing so to map out the
quantum phase phase diagram of HDBHM.

The conventional Bose-Hubbard model (BHM) [26],
whose Hamiltonian is given by

HBHM = −tsp

∑
i,a

b†
i bi+a + H.c. + Honsite, (2)

provides a simple model of a transition between an
interaction-driven Mott insulator at small single-particle hop-
ping tsp, and a kinetic-energy-driven superfluid at large tsp.
This model has been extremely well-studied, and is by now
textbook material [27]. Despite the fact that the DBHM differs
fundamentally from the conventional BHM only by the impo-
sition of a single conservation law, we will see that the phase
diagrams of the two models are markedly different. The large
t, t ′ phase of HDBHM is particularly interesting: it contains a
Bose condensate and is compressible, and yet at the same time
it is insulating, and displays no Meissner effect.

An outline of this paper is as follows. In Sec. II we discuss
the mean-field phase diagram of the DBHM, which is sum-
marized in the bottom panel of Fig. 2. In Sec. III we explore
the rather remarkable phenomenology of the condensed phase
realized at large t, t ′. Section IV is devoted to an analysis of
the nature of the phase transitions identified in Sec. II, and
in Sec. VI we conclude with a short discussion that briefly
touches on issues relevant to realizing the DBHM in experi-
ment.

II. MEAN-FIELD THEORY AND PHASE DIAGRAMS

In this section we employ a simple mean-field analysis to
sketch out the quantum phase diagram of the DBHM model
(1) as a function of the hopping strength and chemical poten-
tial. Because we are fixing μ, we will be working in the grand
canonical ensemble for boson number. We will however fix
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FIG. 1. Illustration of the simplest dipole-conserving hopping
terms on the square lattice. Left: an operator that creates two dipoles
with moment ±â, separated by one lattice site in the â direction.
Right: an operator that creates two dipoles with moment ±â, sepa-
rated by one lattice site in the b̂ �= â direction.

the total dipole moment, and in particular will only consider
states in which it vanishes.1

Before starting, we briefly recapitulate the physics of the
conventional BHM [26]. The phase diagram of this model
is reviewed in the top panel of Fig. 2. When the single-
particle hopping tsp vanishes, the system forms a gapped Mott
insulating state, with the average boson number n at each
site quantized to be an integer determined by the ratio μ/U .
Increasing tsp lowers the gap to doped particles via virtual pro-
cesses in which single particles delocalize around the lattice.
When the decrease in energy brought about by these hopping
processes brings the gap to zero, the doped particles condense
to form a superfluid.

The transition between the Mott insulators and the super-
fluid takes place along a series of dome-shaped critical lines.
The transition generically occurs when particles (or holes, de-
pending on the value of μ) are gradually doped into the parent
Mott insulator, and in this case the critical point is described
by a dilute Bose gas of particles (or holes), with a dynamical
exponent of z = 2, and with the average density changing
smoothly across the transition. This story is modified at the
“tips” of the Mott insulating regions (purple circles in the top
panel of Fig. 2). At these multicritical points the energy gaps
to doped particles and doped holes simultaneously vanish,
thereby producing an effective particle-hole symmetry. In this
case the average density is unchanged across the transition,
which has z = 1 and which is described by the critical point
of the (d + 1)-dimensional XY model.

With this review out of the way, let us now turn our at-
tention to the DBHM. The t = t ′ = 0 limit of the DBHM
Hamiltonian (1) is the same as the tsp = 0 of limit of the
regular BHM, and consequently in this limit we obtain a series
of Mott insulators with fixed integral average particle number
per site.

In the opposite limit of large t/U, t ′/U , the DBHM de-
velops an instability towards states in which the bosons form
isolated clumps with large boson number. This is because
when acting on a region with local density n, the hopping
operators −b†

i−ab2
i b†

i+a, −b†
i bi+ab†

i+a+bbi+b have eigenvalues

1Focusing on such states lets us preserve the spatial symmetries of
the square lattice, and states with zero dipole moment are particularly
natural in the context of cold atoms, in which HDBHM is obtained as an
effective Hamiltonian describing bosons hopping in a strongly titled
optical lattice.

FIG. 2. Mean-field quantum phase diagram of the normal Bose-
Hubbard model (top) and the dipolar Bose-Hubbard model (bottom).
The orange regions are Mott insulators, with the integer labels de-
noting the average density of bosons on each site. The green regions
are dipole condensates, where dipoles (but not single bosons) have
condensed; the average density of these phases is the same as that
of their parent Mott insulators. The blue region in the top plot
is a conventional superfluid, while the blue region in the bottom
plot is a “Bose-Einstein Insulator” (BEI)—a gapless condensate
with dynamical exponent z = 2 discussed in Sec. III. Dashed lines
denote transitions which are either first-order or are described by
(d + 1)-dimensional XY models, and dotted lines denote transitions
described by the d-dimensional dilute Bose gas. The purple circles
in the top plot denote multicritical points described by the (d + 1)-
dimensional XY model, while the blue circles in the bottom point
denote the multicritical points discussed in Sec. IV. Red question
marks denote various types of crystalline states beyond the present
mean-field framework. At large t/U � 1 and small n, the BEI phase
is unstable to the clumped phase (not shown) discussed in the main
text.

that scale with n as −n2, which has the same scaling as the
Hubbard repulsion ∼ Un2. When t, t ′ are sufficiently larger
than U , the energy can thus always be lowered by making the
local boson density as large as possible, with the instability
arrested only by higher-order interactions like n4 (note that
this instability would not arise in analogous dipole-conserving
spin models). The physics of this clump formation (which is
similar to the fractonic microemulsions of Ref. [28]) will be
discussed elsewhere [29], and in the remainder of this paper
we will focus on the intermediate t/U, t ′/U regime, where as
we will see several exotic stable phases of matter exist.

Consider then what happens to the Mott insulators as the
boson hopping terms are turned on. The kinematic constraint
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(a) (b)

(c)

FIG. 3. An illustration of the kinetic constraints imposed by
dipole conservation. (a) A single isolated boson (or hole) doped into a
given Mott insulator is completely immobile. (b) two bosons located
near one another can undergo collective motion which preserves their
center of mass, where each boson hops in the ±â direction. (c) A
dipolar bound state of a boson and a hole is free to move in any
direction.

imposed by the dipolar conservation law prevents a superfluid
from forming in the way that it does in the conventional BHM.
Indeed, consider what happens when one dopes particles into
a given Mott insulator. Due to dipole conservation, an isolated
doped particle is completely immobile, and cannot lower its
energy through any processes which do not create additional
excitations.

Now consider a pair of nearby doped particles. These par-
ticles are able to move in a restricted sense, since they can
“push” off of one another and move in opposite directions—
see panels a and b of Fig. 3 for an illustration. However,
once the distance between the particles becomes significantly
larger than the range of the hopping terms in the Hamiltonian,
their motion will again be frozen out. This means that doped
particles will only be able to fully delocalize throughout the
lattice when their average density is of order 1.

This suggests that a transition out of the Mott insula-
tor which proceeds directly by condensing single bosons
will be first order, as the kinematic constraint means that
it is impossible for the bosons to delocalize at arbitrarily
small doping levels—the density must therefore jump dis-
continuously across any direct transition where single bosons
condense. In line with these expectations, a naive single-boson
mean-field treatment of Eq. (1) [performed by writing bi =
(bi − ψ ) + ψ and working to lowest order in (bi − ψ )] indeed
generically yields a first-order transition.

As we discuss in Sec. III, the resulting condensed phase is
actually very interesting. Before explaining why, we will take
a moment to analyze a more natural two-step condensation
process, whereby boson condensation is mediated by the con-
densation of charge-neutral dipolar “exciton” bound states.

A. Dipole condensation

The most natural way of transitioning out the Mott insu-
lator can be understood by noting that the hopping terms in

(1) are simply conventional kinetic terms for the operators
bib

†
i+a, which create dipolar bound states with dipole moment

along â. This means that while isolated doped particles are
localized by the kinematic constraint, dipolar bound states can
move freely in all directions (see panel c of Fig. 3). Since
dipole motion is the easiest way for the system to lower its
kinetic energy, we expect dipole condensation to occur before
single-particle condensation does. Note that since the dipoles
are charge neutral, the resulting dipole condensate possess the
same average density as its parent Mott insulator.2

We may analyze this transition within a simple mean-field
framework by decoupling the quartic terms in Hhop. To do this,
we write Hhop as

Hhop = −
∑
i,a

(
da

i

)†Aa
i jd

a
j , (3)

where we have defined the operators

da
j ≡ b†

j+ab j, (4)

which create boson configurations with dipole moment along
the â direction, as well as the matrix

[Aa]i j ≡
∑

b

[tδa,b + t ′(1 − δa,b)](δi, j+b + δi, j−b). (5)

Decoupling Hhop by introducing a set of dipole fields Da
i , we

obtain an imaginary-time coherent-state path integral with the
action

S =
∫

dτ

{ ∑
i

b†
i ∂τ b −

∑
i,a

[(
da

i

)†
Da

i + (
Da

i

)†
da

i

]

+
∑
i, j,a

(
Da

i

)†
[Aa]−1

i j Da
j + Honsite

}
, (6)

with the dipole fields satisfying〈
Da

i

〉 =
∑

j

Aa
i j

〈
da

j

〉 =
∑

b

〈
da

i−b + da
i+b

〉
[tδa,b + t ′(1 − δa,b)].

(7)
We now play the usual game of integrating out the b fields

to generate an effective continuum action for the Da dipole
variables. On general grounds the most relevant pieces of such
an effective action compatible with dipole conservation and
spatial symmetries may be written as

Seff =
∫

dτ dd x

(
w

∑
a

|∂τ Da|2 + r
∑

a

|Da|2

+
∑
a,b

Kab
D

2
|∇aDb|2 +

∑
a,b

uab

2
|Da|2|Db|2

)
. (8)

2Here, as well as in all of what follows, we will restrict our attention
to positive values for μ, where the t = 0 Mott insulators have a
nonzero average density. For μ < 0 by contrast the t = 0 state has
no particles at all, and it is therefore impossible to create dipoles
on top of the ground state. In this case, a direct first-order transition
across which single bosons condense seems to be the most natural
outcome, but we leave a more detailed investigation to future work.
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Here the absence of a linear time derivative term follows under
the spatial reflection symmetry which sends Da

i to (Da
i )†: A

nonzero density of Da dipoles would break reflection sym-
metries that send â to −â, hence in the presence of such
symmetries the dipoles must all be at zero density.

At the mean-field level, the transition occurs when r = 0.
Expressions for the coefficients in Seff in terms of the micro-
scopic parameters in Eq. (1) can be calculated using standard
methods (see Appendix B); in particular, for r one finds

r = 1

2t + 2(d − 1)t ′ − 2n(n + 1)

U
, (9)

so that e.g. when t = t ′, the transition occurs at t∗ =
U/[4dn(n + 1)]. Note that when n is large, this value allows
for a clear parametric separation between the onset of the
dipole condensate and the instability caused by the clumping
phenomenon mentioned earlier, which occurs when t � U .
The extent of this separation at small n is a question requiring
a more detailed numerical treatment [29]; in what follows we
will simply assume that a nonzero separation exists (which
can always be arranged by working at large n).

The first term in Eq. (9) arises from the zero-momentum
contribution to (Da)†[Aa]−1Da, while the second piece arises
from performing perturbation theory in the b†

i bi+aDa
i + H.c.

term. The U in the denominator of this piece comes from
the energy cost of creating a particle-hole pair on top of the
Mott insulating ground state. Since this energy is independent
of μ to second order in perturbation theory, the shape of
the mean-field phase boundary separating the Mott insulator
from the dipole-condensed state is independent of μ to lead-
ing order (see Fig. 2). In particular, at fixed small values of
t, t ′, changing μ will simply induce a direct first-order tran-
sition between different Mott insulators, at least at the level
of the mean-field analysis considered here. Going beyond
the present mean-field approximation, the regions in between
distinct Mott insulators will likely host various intermediate
density states that spontaneously break lattice symmetries.3

We leave a detailed investigation of these states to future work.
Now let us now address the nature of the dipole con-

densate that forms when r < 0. Let us write uab = udδ
ab +

uo(1 − δab), with ud > 0 assumed to be positive. If uo > ud ,
then the system prefers to break the discrete lattice rotational
symmetry and condense only a single species of dipole, with
the condensed phase possessing a single gapless mode. If
uo < ud , on the other hand, then the system prefers to con-
dense dipoles of all orientations with equal magnitudes. This
happens though a continuous transition if uo > −ud/(d − 1);
otherwise, the potential for the dipole fields is unbounded
from below to quartic order, and the transition is likely to be
rendered first order (which is in fact what happens within a
mean-field analysis for the particular Hamiltonian in Eq. (1);
see Appendix B for details).

Note that even in the case where all species of dipoles
condense, the condensate generically spontaneously breaks
both lattice reflections (unless Im[〈Da〉] = 0 for all a) and
lattice rotations (unless 〈Da〉 is independent of a). Translation

3We thank David Huse for this remark.

symmetry is unbroken in the condensate however, since the
operators which condense are the zero-momentum compo-
nents of Da.

B. Single-boson condensation

After dipoles have condensed, there is no longer any
kinematic obstruction to condensing single bosons, since
the presence of the dipole condensate eases the kinematic
constraint—roughly speaking, single bosons are now free to
move by absorbing dipoles from the condensate. In the case
where all species of dipole condense with equal magnitudes,
we may write

Da = √
ρDeiϕa

D , (10)

with ρD a nonzero constant determining the dipole condensate
fraction. This substitution yields the effective Hamiltonian

H =
∑
i,a

√
ρD

[(
da

i

)†
eiϕa

D + da
i e−iϕa

D

]
+ Honsite

+ KL

2
(∇ · ϕD)2 + KT

2
(∇ × ϕD)2 + KA

2

∑
a

(
∇aϕ

a
D

)2

,

(11)

where KL, KT , KA set the stiffness for the phase modes of
the dipole condensate, with the anisotropic term KA allowed
by the cubic lattice symmetry. The first term proportional to√

ρD provides an effective single-boson hopping term (recall
da

i = b†
i+abi), and since ρD increases as one goes further into

the dipole condensed phase, eventually—at least in 2 and 3
dimensions—one triggers a transition at which single bosons
condense. In 1d the situation is slightly different, as the effects
of vortices in the boson phase need to be taken into account. A
detailed analysis of these effects will be given in [29], and in
the following we will simply restrict to d > 1, where vortices
can effectively be ignored for the present purposes.

The location of the phase boundary where single bosons
condense can be determined by performing single-particle
mean-field theory on Eq. (11) in the standard way [26]4; this
gives rise to the domed parts of the phase diagram in the
bottom panel of Fig. 2. We note in passing that this series of
transitions—where an intermediate dipolar condensed phase
separates the Mott insulating and single boson condensed
phases, and provides a way for single bosons to move—is
conceptually quite similar to the theory of 2d dislocation-
mediated quantum melting put forward in Refs. [22,30–32].

When the interaction matrix uab is such that only one
species Da of dipole condenses, single-boson hopping is only
generated along a single direction, and the condensed phase
possesses a quasi-1d character. The consequences that this
quasi-1d behavior has for the nature of the condensed phase

4In the presence of a dipole condensate, the ground state to perturb
about is not given by the usual Mott-insulating ground state, although
it does have the same average density. However, in the limit where
the condensate fraction of the dipoles is small, treating the ground
state as the Mott insulating one will still give accurate results for the
phase boundary.
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and the character of the condensation transition are discussed
in Appendix A. For simplicity, in the rest of the main text
we will specialize to the case where all species of dipoles
condense.

Recall that in the dipole condensed phase, the symmetries
of lattice rotations and reflections are generically sponta-
neously broken, while translation symmetry is preserved. In
the single-boson condensed phase, however, we have (assum-
ing that the condensate is not destroyed by fluctuations; the
criteria for when this happens will be discussed in the next
section)

〈bi〉 = |〈b〉|eiα+iβ·i, (12)

where 〈eiϕD〉 ∼ eiβ and where |〈bi〉| is independent of the
lattice site i. In particular, as long as β is nonzero, trans-
lation symmetry is spontaneously broken in the condensate.
However, a subgroup mixing global charge conservation and
translation symmetries is preserved, as Eq. (12) is left invari-
ant under the transformation

bi �→ bi+âe−iβ·â. (13)

Thus, the single-particle condensed phase realizes a type of
spiral ordering, with intertwined patterns of phase and transla-
tional ordering. Note however that spirals with different pitch
are in fact degenerate in energy, as they are related by shifts
of β.

III. PHENOMENOLOGY OF THE SINGLE-PARTICLE
CONDENSED PHASE: THE BOSE-EINSTEIN INSULATOR

A. IR field theory and symmetry breaking

In this section, we explore the phenomenology of the phase
in which single particles have condensed (still restricting our
attention to d > 1). In this phase, the resulting IR theory may
be written in terms of the phase mode φ appearing in b ∼ eiφ

as5

L = κ

2
(∂τφ)2 + w

2
(∂τϕD)2 + Kρ

2
(∇φ − ϕD)2

+ KL

2
(∇ · ϕD)2 + KT

2
(∇ × ϕD)2 + KA

2

∑
a

(∇aϕ
a
D

)2
,

(14)

where Kρ is a stiffness parameter proportional to
√

ρD.
We see from Eq. (14) that the single-particle condensate

“Higgses” the dipole Goldstone ϕD: we may shift ϕD �→
ϕD + ∇φ, with the term proportional to Kρ then effectively
gapping out the dipolar phase field, allowing us to set ϕD = 0.
That ϕD disappears from the IR theory is of course completely
physical: in the presence of a single-particle condensate, the
phase of 〈da

i 〉 = b†
i b†

i+a〉 is no longer an independent variable,
and is determined by the phase of 〈bi〉—thus only φ (and
not ϕD) should be a low-energy degree of freedom in the IR
theory.

5The term K2(∇2φ)2/2 is also allowed by symmetry, but as we will
see shortly K2 merely leads to a renormalization of KL .

With ϕD out of the way, we may thus write (dropping
KT (∇ × ∇φ)2/2, which vanishes away from vortices)

L = κ

2
(∂τφ)2 + KL

2
(∇2φ)2 + KA

2

∑
a

(∇2
aφ

)2
. (15)

This is the Lagrangian of an anisotropic quantum Lifshitz
model (QLM), which has also appeared in the analysis of the
fractonic “superfluids” of Refs. [33,34].6 In most applications
the QLM is realized only at a critical point [36–39], arising
when the coefficient of a single gradient term (∇φ)2 is tuned
through zero. By contrast, the QLM written down above de-
scribes an entire phase of matter, made possible by the dipolar
symmetry which forbids the aforementioned single-gradient
term.7

Let us now examine the pattern of symmetry breaking that
occurs in the condensed phase. The equal-time T = 0 boson
two-point function, which in the IR is determined by the two-
point function of eiφ , is

〈eiφ(r)e−iφ(0)〉 = exp

[
−

∫
dω dd k

(2π )d+1

1 − cos(k · r)

κω2 + KLk4

]
, (16)

where we have momentarily set KA = 0 for simplicity. By
looking at the small k behavior of the integral as r → ∞, we
see that eiφ has QLRO in d = 2, and LRO in d = 3 [11,33].

At finite temperatures, the integral over ω is replaced with
a Matsubara sum, and eiφ is seen to have short-range correla-
tions in all d � 3. In d < 3, vortices (textures around which φ

winds by 2π , with a core at which |ψ | → 0) proliferate at any
nonzero T , which happens due to the fact that because of the
structure of the kinetic term, a single isolated vortex does not
cost a thermodynamically large amount of gradient energy.8

Thus, at any T > 0 the field φ ceases to be well defined and
the IR theory is trivial, with all operators exhibiting short-
ranged correlation functions. In d = 3 by contrast, although
eiφ is disordered at any T > 0, vortex lines do not immedi-
ately proliferate, since they are extended objects possessing
a nonzero core energy. In this case φ remains well-defined
at small T and the IR theory remains nontrivial, with many
operators possessing long-range correlation functions (such
as ei∇aφ, ei∂τ φ). At large enough T , the vortices lose their line
tension, and the theory passes into the trivial disordered phase
by way of an inverted 3d XY transition.

We may also consider correlation functions of dipole op-
erators, which in the IR map to correlators of ei∇aφ . The
correlators are calculated as in Eq. (16), except with an extra
factor of 1 − cos(k · â) appearing in the integrand. This extra
factor means that the integral is never IR-divergent, so that at
T = 0, ei∇aφ always has long-range order in the boson con-
densed phase, even in those cases for which eiφ is disordered.

6The one-dimensional version of this model has also recently stud-
ied in Ref. [35].

7In the normal QLM, the critical point in, e.g., d = 2 has the
possibility of being destabilized by marginal terms such as (∇φ)4

[36,40]. In the present setting however such terms are forbidden by
dipole conservation, and these issues do not arise.

8Thus, in d = 2, TBKT = 0. This is also true in the normal QLM
[41], but for more subtle reasons.
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TABLE I. The symmetry breaking patterns in the dipole con-
densed phase (top) and single-particle condensed phase (bottom).
Here U (1)D indicates the dipole symmetry, and U (1)C indicates
global charge conservation. A

√
indicates that the symmetry is

preserved while a ✗ indicates that SSB occurs, with Q standing
for a symmetry-preserving phase with QLRO. The black symbols
give the symmetry breaking pattern at T = 0, with the red symbols
corresponding to T > 0. U (1)C is always preserved in the dipole
condensed phase, and both symmetries are always preserved in the
Mott insulating phase. We write “n/a” in the second table to signify
that understanding the 1d theory in this case requires dealing with
the effects of vortices [29], which goes beyond the present analysis.

Dip. cond. d = 1 d = 2 d = 3

U (1)D Q,
√

✗, Q ✗, ✗

Boson cond. d = 1 d = 2 d = 3

U (1)D n/a ✗,
√

✗, ✗

U (1)C n/a Q,
√

✗,
√

The patterns of symmetry breaking that occur throughout the
phase diagram are summarized in Table I.

B. Electromagnetic response

Let us now address whether or not the boson condensed
phase is as a superfluid. If we were to define a superfluid as
a state in which global particle number conservation is either
spontaneously broken or has QLRO, then the condensed phase
would count as a superfluid for d = 2, 3 (provided that T =
0). This however is not the correct definition of a superfluid:
a more precise definition (albeit one that is frequently used
interchangeably with the above statement about symmetry
breaking) is a system with a nonzero superfluid weight, viz.
a system which exhibits the Meissner effect when coupled to
a background electromagnetic field. In this sense, the boson
condensed phase is not a superfluid, in any dimension. Indeed,
the superfluid weight of the boson condensed phase vanishes,
and it does not display any Meissner effect. Most strikingly,
the condensed phase is in fact completely insulating, at any
temperature.9

To understand these statements, we simply observe that a
background field Aμ for the global boson number symmetry
couples to the phase action as

L = κ

2
(∂τφ − A0)2 + KL

2
(∇2φ − ∇ · A)2

+ KA

2

∑
a

(∇2
aφ − ∇aAa

)2
, (17)

which can be derived by sending ∂μφ → ∂μφ − Aμ and
ϕD → ϕD − A in Eq. (14) (this procedure also produces the

9That systems with dipole conservation must have zero DC con-
ductivity σDC (even if the dipole symmetry is spontaneously broken)
is essentially due to the fact that dipole conservation prevents motion
of the center of mass of the charge carriers. This argument can be
made more rigorous by an analysis similar to the one employed in
the discussion of Bloch’s theorem in Ref. [42].

unimportant term KT (∇ × A)2/2, which simply renormalizes
the electric charge).

We see from Eq. (17) that no mass is generated for the
vector field A, since only spatial derivatives of A appear in the
above Lagrangian—there thus is no Meissner effect, and both
the DC conductivity and superfluid weight vanish, which fol-
lows simply from the absence of the (∇φ)2 term in Eq. (15).
Note that this occurs despite the fact that particle number
conservation is spontaneously broken (at least in d = 3). We
have thus realized a rather remarkable scenario wherein even
though bosons are condensed, the system is insulating, and
incapable of transporting charge. Furthermore, as the average
density changes continuously in the condensed phase, this
system provides an example of a very unusual phase of matter:
a translationally invariant compressible insulator! For these
reasons, we will refer to the single-particle condensed phase
as a Bose-Einstein insulator (BEI).

We note as an aside that compressible translation-invariant
systems (without a microscopic dipole conservation symme-
try) with nonzero resistivity at T = 0 were recently studied in
Ref. [42], where they were made possible by a phenomenon
the authors dubbed “critical drag.” As explained in Ref. [42],
critical drag is operative in the model (15) at T = 0, which
implies that σDC must vanish at zero temperature. The fact that
in the present setting we actually have σDC = 0 for all T is a
consequence of the assumed microscopic dipole symmetry.

Furthermore, it is not just the DC conductivity of the BEI
that vanishes. Indeed, the electromagnetic response kernel
derived from Eq. (17) is

− δ2 lnZ[A]

δAa
ω,qδAb−ω,−q

∣∣∣
A=0

= qaqb(KL + KAδab)

− qaqb

(
KLq2 + KAq2

a

)(
KLq2 + KAq2

b

)
κω2 + KLq4 + KA

∑
c q4

c

, (18)

whose transverse part vanishes in the zero-momentum limit,
in accordance with the vanishing of the superfluid weight.
The kernel in Eq. (18) implies that the conductivity σ (ω, q)
vanishes at zero momentum for all frequencies, viz.

σ (ω, 0) = 0. (19)

This fact is a simple consequence of dipole symmetry, and
holds even if the U (1) particle number symmetry is sponta-
neously broken. Indeed, if ρ(x) is the charge density and Ji(x)
is the charge current, then

[H,

∫
dd x xiρ(x)] = −i

∫
dd x xi∇ jJ

j (x) = i
∫

dd x Ji(x).

(20)
Since this vanishes by dipole conservation, we have that Ji =
0 in any state with uniform current density, thus implying
the vanishing of the conductivity in Eq. (19) (note however
that the conductivity associated with a rank-2 gauge field that
couples linearly to the dipole current will be nonzero).

The finite-momentum conductivity by contrast is generi-
cally nonvanishing (although the ω = 0 response vanishes at
all q unless KA �= 0), and even contains a 1/(ω + i0) Drude-
type pole. Thus, the BEI can behave like a superconductor at
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short distances, but is nevertheless insulating at the longest
length scales.

Since the real part of the conductivity extracted from
Eq. (18) goes as q2 at small frequencies, and since the com-
pressibility of the BEI is nonzero, the charge dynamics in
the BEI is subdiffusive, with a diffusion “constant” going
as q2. The transition between this subdiffusive behavior and
the fully gapped charge response of the Mott insulating and
dipole condensed phases could potentially be used as a way
to identify the BEI in experiment, with subdiffusion being
probed by examining the evolution of the density following
a quench, as in Refs. [23,24].

IV. NATURE OF THE PHASE TRANSITIONS

We turn now to analyzing the nature of the phase transi-
tions identified within the above mean-field framework. When
d > 1 we will continue to assume that all species of dipoles
condense, with the case where only a single dipole condenses
being treated in Appendix A.

A. Dipole condensation transitions

We first address the simpler case of the transitions that
occur when dipoles condense out of a Mott insulator (dashed
lines in the bottom panel of Fig. 2). For simplicity we will
only consider the case where the dipole hopping is isotropic
in space, so that Kab

D in Eq. (8) is independent of a, b.
For d = 1, the transition into the dipole condensed phase is

simply that of the two-dimensional classical XY model. When
d = 2, one possible critical point is given by two copies of the
three-dimensional classical XY transition (see also Ref. [43]).
The most relevant couplings couple the energy operators on
each copy, and are (barely) irrelevant [44]: Hence, a transition
described by two decoupled three-dimensional classical XY
models can occur. In d = 3 the quartic couplings between
the dipole fields are marginally irrelevant if positive (hence,
yielding a stable decoupled fixed point with mean-field expo-
nents), while if they are sufficiently negative they can be made
marginally relevant, likely producing an instability toward a
first-order transition.

B. Single-particle condensation

More interesting transitions occur when single bosons con-
dense on top of a background dipole condensate (dotted lines
in the bottom panel of Fig. 2). The effective field theory
describing the transition has the Lagrangian

L = sψ†∂τψ + p|∂τψ |2 − μ|ψ |2 + u

2
|ψ |4

+ ρD|(∇ − iϕD)ψ |2 + L0[ϕD], (21)

where ψ is a complex field and L0[ϕD] contains the Gaussian
terms for ϕD. Note that ϕD enters the kinetic term for ψ in the
way that an electromagnetic gauge field would, with the struc-
ture of the derivative coupling |(∇ − iϕD)ψ |2 fixed by dipole
symmetry. Unlike a gauge field however the kinetic term for
ϕD is not invariant under shifts of ϕD by total derivatives, and
there is no corresponding electric potential appearing in the
ψ†∂τψ term.

The nature of the critical point where ψ condenses depends
on the spatial dimension d , as well as whether or not the
transition is generic (occurring at varying density; s �= 0) or
multicritical (occurring at fixed density; s = 0). Since the
analysis in the case of d = 1 requires understanding the ef-
fects of vortices [29], we will restrict to d = 2, 3 in what
follows.

1. s �= 0

Consider first the generic transition with s �= 0, where the
p|∂τψ |2 term is irrelevant and may be dropped. In this case
only particles or holes (but not both) are doped into the dipole-
condensed phase, and the density changes continuously across
the transition. In the absence of the coupling to ϕD, these
transitions would be described by the d-dimensional dilute
Bose gas.

Consider first d = 3. Under z = 2 scaling, the coupling
between ψ and ϕD is irrelevant; consequently the critical point
is simply that of the dilute Bose gas.

In d = 2, u is marginal. Taking KL = KT ≡ K, KA = 0 for
simplicity, the flow to leading order in 1/K and u is

du

dt
= − A

K2
− Bu2, (22)

where A and B are positive constants. Since 1/K is always
marginal (the self energy of ϕD is trivial on account of there
being no production of virtual ψ particles), the first term
means that u is always eventually driven negative, implying
that the transition is likely to generically be rendered first-
order.

On the condensed side of the transition, the usual
mean-field Bogoliubov treatment gives a single mode with
dispersion (setting s = 1 and taking Kab

D = KD independent of
a, b for simplicity)

ω(k) = ωB(k)√
1 + 2ρD〈|ψ |2〉/(KDk2)

, (23)

where ωB(k) =
√

k2ρD

√
k2ρD + 2μ is the familiar Bogoli-

ubov dispersion of the condensate in the absence of the
coupling to ϕD, and where the square-root factor on the
right-hand side of Eq. (23) comes from hybridization with
ϕD. By examining the small k limit of the above expression,
we see that the coupling to ϕD correctly produces the z = 2
dispersion of the BEI, instead of the z = 1 of conventional
superfluids.

2. s = 0

We now examine the nature of the multicritical points
where μ is tuned to ensure particle-hole symmetry about the
given Mott insulating ground state, so that the condensation
transition occurs at fixed density. In the absence of the ϕD
field, these transitions would be described by the critical point
of the (d + 1)-dimensional classical XY model.

For d = 3, the coupling to ϕD renders the transition first
order, via essentially the same mechanism as in 3d scalar QED
[45–47].

For d = 2, the Lagrangian (21) with s = 0 is in fact ex-
actly equivalent to the field theory describing the nematic to
smectic-A transition, upon identifying imaginary time with
the spatial direction normal to the smectic planes and dropping
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the presumably unimportant anisotropic stiffness term pro-
portional to KA [47,48]. This transition has been extensively
studied experimentally. When continuous, the exponents are
either those of the 3d XY model, or else a slightly anisotropic
version thereof [48].10

The standard Bogoliubov treatment on the BEI side of the
transition yields a massless mode that disperses quadratically
at small k as (setting p = 1)

ω(k) = k2

√
KD

2〈|ψ |2〉 , (24)

while at large k the dispersion goes over to the expected
ω(k) = √

ρDk. Thus, the hybridization with ϕD again ensures
that the condensed phase correctly has z = 2.

V. PARTIAL DIPOLE BREAKING

In this section we consider what happens when only a
subset of the components of the total dipole moment are
conserved. Such a scenario arises quite naturally in the context
of tilted optical lattices, where partial conservation occurs if
one or more principal axes of the lattice are orthogonal to the
tilt direction (and is in fact the situation realized in the experi-
ment of Ref. [23]). The partial conservation of dipole moment
allows for scenarios in which the condensed phases are insu-
lating in some directions and superconducting in others.

A. Two dimensions

In d = 2, we consider the Hamiltonian H = Hhop + Honsite,
with Honsite the standard onsite part of the BHM [as in Eq. (1)],
and with

Hhop = −tsp

∑
i

dx
i − t

∑
i,a

(
dy

i

)†
dy

i+a + H.c, (25)

which conserves only the y-component of the total dipole
moment (in the optical lattice context, such a Hamiltonian
would arise in a lattice tilted along the y direction). In the
following we will sketch the phase diagram of this model as
a function of t/tsp, with the chemical potential and interaction
strength held fixed.

Consider first the limit where the single-particle hopping
vanishes, tsp = 0. In this limit we know from previous sec-
tions what happens: at small t we have a Mott insulator, at
intermediate t a decoupled stack of dipole condensates (with
QLRO at T = 0) stacked along the x direction, and at large t
a decoupled stack of BEIs, with the dipole symmetry on each
BEI spontaneously broken. These phases are all stable with
respect to turning on a small nonzero tsp: in the Mott insulator
and dipole condensate stack the charge gap is nonzero, while
in the stack of BEIs, the single-particle hopping generically
acts via a perturbation to the Lagrangian of the form

δL = tsp

∑
x,m

gm cos(φx − φx+m), (26)

10Whether or not the observed anisotropy is real or simply an
artefact of experimental sensitivity is a longstanding question that
we will not attempt to answer, and simply refer the reader to [48] for
details.

FIG. 4. A rough sketch of a possible phase diagram in the t-tsp

plane for the 2d model that only conserves the y component of
the total dipole moment (with the chemical potential held fixed at
some generic value). “MI” is a Mott insulator, “sDC” a stack of 1d
dipole condensates, “sBEI” a stack of 1d BEIs, “sSF” a stack of 1d
superfluids, and “aSF” an anisotropic superfluid phase discussed in
the main text.

with the x coordinate indexing the BEIs in the stack, and
with gm some function decaying rapidly with |m|. Since
cos(φx − φx+m) has short-range correlations in the BEI phase,
the perturbation δL is irrelevant.

Now consider the limit where the dipole hopping vanishes,
t = 0. At small tsp we of course have a Mott insulator, while at
large tsp we have a decoupled stack of superfluids (with QLRO
at T = 0) stacked along the y direction. The Mott insulating
phase is stable with respect to turning on a small nonzero t ,
while in the stack of superfluids a small t acts as a perturbation
like

δL = t
∑
y,m,n

gm,n cos
(
�y

m�y
nφy

)
, (27)

where �
y
mφy = φy+m − φy is the discrete derivative, gm,n de-

cays with |m|, |n|, and where the subscript on φ now indexes
the superfluids in the stack. Since eiφy only has QLRO at
T = 0, the relevance of these perturbations depends on the
superfluid density of the superfluids in the stack. At generic
values of μ the superfluid density onsets smoothly from zero
across the transition out of the Mott insulator, and there is
always a regime of tsp for which all of the terms in δL are
irrelevant.11 At large enough tsp, however, Eq. (27) is relevant,
so that infinitesimally small t leads to an anisotropic super-
fluid phase described by the Lagrangian12

L = κ

2
(∂τφ)2 + Kx

2
(∂xφ)2 + Ky

2

(
∂2

y φ
)2

. (28)

It is interesting to note that the physics of this phase is quite
similar to that of a quantum smectic whose layers are oriented
normal to the x̂ direction [22,32]. The above considerations
lead to the schematic phase diagram of Fig. 4.

11If μ is tuned so that the t = 0 transition from the Mott insulator
into the superfluid stack is of BKT type, then the stiffness jumps
across the transition, and the perturbations in Eq. (27) turns out to
always be relevant.

12The term (∂x∂yφ)2 (which is allowed by symmetry) is ignored on
the grounds of it being irrelevant under a scaling for which τ ∼ x ∼
y2.
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By introducing a background electromagnetic field in
Eq. (28), we see that the system is superconducting along
the x direction and insulating along the y direction. In this
phase particle number conservation is spontaneously broken
at T = 0, as can be demonstrated for example by computing
the correlation function

〈eiφ(r)e−iφ(0)〉 = exp

[
−

∫
dω d2k

(2π )3

1 − cos(k · r)

κω2 + Kxk2
x + Kyk4

y

]
,

(29)

which asymptotes to a constant as r → ∞. At T > 0, how-
ever, we see that the above correlator is short-ranged, implying
that particle number is not spontaneously broken. y-dipole
conservation is spontaneously broken at T > 0 however, as
can be seen by calculating the T > 0 correlator of ei∇yφ (done
by multiplying the integrand in Eq. (29) by [1 − cos(kya)]2,
with a the lattice spacing).

B. Three dimensions

In d = 3 we may consider two different scenarios.

1. Two components of dipole moment conserved

In the first scenario, two components of the dipole moment
are conserved. The appropriate hopping term to study is then

Hhop = −tsp

∑
i

dx
i − t

∑
i,a

((
dy

i

)†
dy

i+a + (
dz

i

)†
dz

i+a

)
+ H.c.

(30)
The analysis of the phase diagram at small t is quite similar

to that of the two-dimensional model discussed in the previous
section. Consider instead the limit where tsp = 0. In this limit
we find the usual Mott insulator at small t , an array of two-
dimensional dipole condensates stacked along the x direction
at intermediate t , and a stack of two-dimensional BEIs at large
t , in which charged operators exhibit QLRO at T = 0. The
Mott insulator and dipole condensate stack are stable with
respect to turning on a small tsp, while the stability of the BEI
stack depends on the relevance of the terms

δL = tsp

∑
l,m

gm cos(φl − φl+m), (31)

where l indexes the different layers in the stack. The relevance
of the terms in Eq. (31) depends on the stiffness Kab

D appearing
in the kinetic term Kab

D (∇a∇bφl )2, with the terms in Eq. (31)
being irrelevant at small KD and relevant at large KD. These
considerations lead to the schematic phase diagram shown in
the top panel of Fig. 5.

The anisotropic superfluid phase where both t, tsp are large
is described by the Lagrangian

L = κ

2
(∂τφ)2 + Kx

2
(∂xφ)2 + Ky

2
(∂2

y φ)2 + Kz

2
(∂2

z φ)2

+ Kyz

2
(∂y∂zφ)2. (32)

In this phase the system superconducts along the x direction,
but is insulating along y and z. Furthermore, by coupling
Eq. (32) to a gauge field one finds that this phase exhibits
no Meissner effect. This can be understood physically by
recalling that the Meissner effect occurs when circulating

FIG. 5. Schematic phase diagrams for 3d models which conserve
both the y, z components of the total dipole moment (top) and just
the z component (bottom). The labeling of the various phases is as in
Fig. 4.

diamagnetic supercurrents arise to cancel out an applied mag-
netic field. The existence of circulating supercurrents requires
that the system be superconducting in more than one spatial
direction, which is not the case in the present model. Finally,
computations analogous to that in Eq. (29) show that total
charge conservation is spontaneously broken at T = 0 and
has QLRO at T > 0, with dipole conservation being sponta-
neously broken at all T .

2. One component of dipole moment conserved

We may also consider a scenario in which only one compo-
nent of the dipole moment is conserved. In this case, we take
the hopping term to be

Hhop = −tsp

∑
i

(
dx

i + dy
i

) − t
∑
i,a

(
dz

i

)†
dz

i+a + H.c. (33)

The small tsp portion of the phase diagram is similar to that
of the d = 2 anisotropic theory discussed previously. At large
tsp, the stack of 2d superfluids that forms at t = 0 is unstable
to any finite dipole hopping at T = 0, leading to the schematic
phase diagram in the bottom panel of Fig. 5. The condensed
phase at large t, tsp is again an anisotropic superfluid, captured
by the Lagrangian

L = κ

2
(∂τφ)2 + Kx

2
(∂xφ)2 + Ky

2
(∂yφ)2 + Kz

2

(
∂2

z φ
)2

. (34)

Thus, the system superconducts along the x and y directions,
and insulates along the z direction. We also see that the system
exhibits a partial Meissner effect: magnetic fields along the z
direction are screened, while fields along the x and y directions
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are not. As for the pattern of symmetry breaking, one finds that
charge conservation is spontaneously broken for all values
of T .

VI. DISCUSSION

In this paper we have explored the physics of the dipolar
Bose-Hubbard model (DBHM), a simple variant of the con-
ventional Bose-Hubbard model whose dynamics conserves
both total charge and total dipole moment. The latter conser-
vation law has a dramatic effect on the physics, significantly
changing the phase diagram and producing a highly unusual
phase of matter: an insulating Bose condensate, which we dub
a “Bose-Einstein insulator” (BEI). We also studied models in
which only some components of the total dipole moment are
conserved, which were shown to produce phases that super-
conduct in some directions and insulate in others.

Clearly it is important to understand to what extent dipole
moment conservation can be treated as a good symmetry
in experimental platforms capable of simulating the DBHM.
To date, the most promising experimental platforms appear
to be systems of ultracold atoms prepared in tilted optical
lattices [13,23,24] (although existing experiments have only
studied tilted Fermi-Hubbard models). These systems do not
exactly conserve dipole moment, and any realistic micro-
scopic Hamiltonian will possess a nonzero single-particle
hopping term −tsp

∑
i,a bib

†
i+a + H.c. However, as discussed

in Ref. [13], in the presence of a strong tilted potential of
strength V , these systems possess dipole-conserving dynam-
ics over a long prethermal timescale t∗, which is exponentially
large in V/tsp, and which can even become infinite if the
strength of the potential is made to scale with the system
size. When t > t∗ the physics of the DBHM will cross over
to that of a strongly tilted Bose-Hubbard model with con-
ventional hopping terms. However, since the ground state of
the dipole-conserving model has uniform density, the tilted
Bose-Hubbard model describing the dynamics at t > t∗ will
effectively be initialized at an extremely high energy state,
and consequently the detailed behavior at t > t∗ is likely to
be rather messy. Here we simply content ourselves with the
fact that dipole conservation is effectively exact at large tilt
potentials and in finite-sized systems, and leave a quantitative
analysis of the effects of weak dipole breaking to future work.

It is also possible to consider models where the potential
strength V is not the largest energy scale in the problem, but
is rather brought down, e.g., to the level of the onsite repul-
sion U . Previous works analyzing this regime [49,50] have
found an interesting array of phases, with dipolar excitations
remaining the star of the show. It would be interesting to
understand how this physics connects to that of the V � U
regime considered in this paper.

One of the most interesting aspects of systems whose dy-
namics conserves dipole moment is the strong sensitivity of

the system’s dynamics to the choice of initial state, with it
often being the case that a large fraction of the Hilbert space
is completely inert under time evolution [13]. This however
is not likely to be an issue for performing an experimental
study of the universal aspects of the equilibrium DBHM phase
diagram. This is so because there is always a canonical choice
for the initial state prepared in experiments, which belongs
to an exponentially large sector of Hilbert space in which the
dipolar dynamics act ergodically, in contrast to an inert “shat-
tered” state. For example, in optical lattice realizations, we can
imagine first preparing the system in an un-tilted lattice with
weak intersite tunneling, placing the system deep in a Mott
insulating phase. We can then turn on the tilt potential while
remaining in the Mott insulator, and from here one can subse-
quently increase the tunneling and study the phases that occur
at larger hopping strengths. This procedure sidesteps issues of
nonstandard thermalization due to Hilbert space shattering.
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APPENDIX A: SINGLE DIPOLE CONDENSATE IN d > 1

In this Appendix we consider what happens in d > 1 di-
mensions when interactions favor a scenario in which only a
single species of dipole moment condenses (which we take
without loss of generality to be dx).

The phase where dx dipoles have condensed but individual
bosons are gapped is described simply by a single compact
scalar ϕ, the phase mode of the dipole condensate. More
interesting is the regime in which individual bosons are con-
densed. Because individual bosons in the dipole condensed
phase only possess an effective single-particle hopping along
the x̂ direction, we may analyze this regime by way of a
quasi-one-dimensional description in terms of a coupled array
of Luttinger liquids, in a manner quite similar to the subdi-
mensional critical points considered in Ref. [51].

We will index the Luttinger liquids by a (d − 1)-
dimensional vector λ, which runs over the sites of a (d −
1)-dimensional square lattice. Writing the phase field for the
Luttinger liquid at site λ as φλ, we then define fields Fourier
transformed in the d − 1 directions normal to x̂ as φp(x, τ ) =∑

λ e−iλ·pφλ(x, τ ). The most general action we may write
down for the φp, ϕp fields is

S =
∫

dτ dx

[
1

2

∫
dd−1 p

(2π )d−1

(
Jp|∂τφp|2 + Kp|∂xφp − ϕp|2 + Mp|∂xφp|2

)
+

∑
{Np}

cos

(∫
dd−1 p

(2π )d−1
Npφp

)]
+ S0,ϕ. (A1)
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where ϕ is the phase of the condensed dipole field, S0,ϕ is the
free spin-wave action for ϕ, and where the integrals over all
components of p run from −π/a to π/a, with a the lattice
spacing.

The functions J ,K,M,N appearing in S are required to
respect the symmetries of the square lattice, and to be compat-
ible with charge and dipole conservation. Dipole conservation
imposes that M0 = 0, but hopping in directions normal to
x̂ nevertheless allows for the single derivative terms |∂xφp|2
to be present for all p �= 0. Conservation of charge, dipole
moment, and compactness of φ requires that Np be the Fourier
transform of an integer-valued function such that N0 = 0 and
( ∂N

∂ pa )|p=0 = 0. In real space, the simplest terms appearing

in the Mp term are (∂x�bφ)2 with �b the discrete lattice
derivative along b̂ �= x̂, while the simplest terms appearing in
the cosine are �a�bφ, with â, b̂ �= x̂.13

As in the analysis of case where all of the da condense,
the dipole phase field ϕ can effectively be dropped, since after
shifting ϕp by ∂xφp we generate a mass term for ϕp, along
with unimportant terms that either are irrelevant, or can be
absorbed by a redefinition of Mp. Performing this shift, we
then write the free term for φp as

S0,φ =
∫

dd−1 p

(2π )d−1

R2
p

4π

∫
dτ dx

(
1

vp
|∂τφp|2 + vp|∂xφp|2

)
,

(A2)
where we have defined

R2
p ≡ 2π

√
JpMp, vp ≡ √

Mp/Jp. (A3)

The IR theory described by the above free action contains
fields which disperse in a quasi-1d fashion. This quasi-1d
behavior will persist so long as cosines containing discrete
derivatives along directions normal to x̂ are irrelevant. The
simplest of these cosines are cos(�2

aφ) with â �= x̂ in d = 2, 3
and cos(�y�zφ) in d = 3, which have scaling dimensions
determined by

�cos(�a�bφ) = 8
∫

dd−1 p

(2π )d−1

sin2(pa/2) sin2(pb/2)

R2
p

. (A4)

Note that while dipole conservation imposes M0 = 0 ⇒
R2

0 = 0, the small-p behavior of the numerator means that
the integral is still finite. However, the integral diverges in
the absense of the sines in the numerator, meaning that the
scaling dimension of, e.g., cos(φ) is infinite (as is the case for
all operators which do not conserve dipole moment).

R2
p generically increases as we proceed deeper into the

single-boson condensed phase, hence the above terms will
eventually become relevant (which happens when their scal-
ing dimensions drops below 2, for the same reasons as
explained in Ref. [52]). When this happens we may replace
the discrete derivatives with continuum ones and Taylor ex-
pand the cosines, so that the quasi-1d theory (with z = 1)
crosses over to the z = 2 QLM theory of the BEI discussed
in the main text.

13If either of â, b̂ are equal to x̂, then they can be replaced with a∂x ,
and the cosine can then be Taylor expanded—the resulting term then
simply makes a contribution to the Mp term.

The nature of the transitions where single bosons condense
depend as usual on whether or not the transition occurs at
fixed density. For the special case where the transition occurs
at fixed density, the transition can presumably be identified by
determining when the smallest-dimension cosine involving θp,
the field dual to φp, becomes irrelevant. Since the bosons are
at fixed integer filling, the simplest such translation-invariant
cosine is simply cos(θ ), which has scaling dimension

�cos(θ ) = 1

2

∫
dd−1 p

(2π )d−1
R2

p. (A5)

Due to the quasi-1d nature of the problem it seems reasonable
to expect that in this case, the transition where cos(θ ) becomes
irrelevant is of BKT character.

For the generic case of variable density, the transitions
are described by a coupled array of dilute Bose gasses, with
Lagrangian

L =
∑

λ

(
ψ

†
λ∂τψλ + 1

2m
|(i∇x − ϕ)ψλ|2 − μ|ψλ|2

)
+

∑
λ,λ′

Vλ,λ′ |ψλ|2|ψλ′ |2

+
∑

λ

(∑
a �=x

Pλ,aψ
†
λ−âψ

2
λψ

†
λ+â +

∑
b�=a �=x

Qλ,a,bψ
†
λψλ+âψ

†
λ+â+b̂

ψλ+b̂ + H.c.

)
+ L0,ϕ, (A6)

where again λ indexes coordinates transverse to x̂. The cou-
pling to ϕ appears to complicate the analysis of the fixed point
slightly, and we defer a detailed RG analysis to future work.

APPENDIX B: EFFECTIVE DIPOLE ACTION

In this Appendix we derive an effective action for the
dipole fields Da which is valid in the Mott insulating phases,
and which allows us to map out at a mean-field level the
transitions from the Mott insulators into the dipole condensed
phases.

We begin by writing the hopping term in the microscopic
DBHM Hamiltonian (1) as

Hhop = −
∑
i, j,a

b†
i bi+a[Aa]i jb

†
j+ab j, (B1)

where the matrix A is defined as

[Aa]i j =
∑

b

[tδa,b + t ′(1 − δa,b)](δi, j+b + δi, j−b). (B2)
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As in the main text, we may then decouple the hopping term
in terms of dipole fields Da

i as

Hhop = −
∑
i,a

[
b†

i bi+aDa
i + (

Da
i

)†
b†

i+abi

]

+
∑
i, j,a

(
Da

i

)†
[Aa]−1

i j Da
j . (B3)

We are now interested in integrating out the boson fields
bi to produce an effective IR action for the dipole fields. On
general grounds we may write the dipole action as

S =
∫

dτ

(
w

2

∑
a

|∂τ Da|2 + 1

2

∑
a,b

Kab
D |∇aDb|2

+ r
∑

a

|Da|2 + 1

2

∑
a,b

uab|Da|2|Db|2
)

+ · · ·

≡ S2 + S4 + · · · , (B4)

where Sn denotes the terms containing n powers of the dipole
fields. These are given explicitly by

S2 = −C2 +
∫

dτ
∑
i, j,a

(
Da

i

)†
[Aa]−1

i j Da
j ,

S4 = −C4 + 1
2C2

2 , (B5)

where

Cn ≡ 1

n!

∫ n∏
i=1

dτi

〈
T

[
n∏

j=1

HDb(τ j )

]〉
, (B6)

with HDb ≡ −∑
i,a b†

i bi+aDa
i + H.c., and where the expecta-

tion value above is taken with respect to the ground state
of the site-diagonal Mott insulating Hamiltonian Honsite =∑

i[−μni + Uni(ni − 1)/2]. In what follows we will assume
μ is chosen so that the ground state of Honsite is a Mott
insulator with n > 0 bosons per site.

We first calculate C2 as

C2 =
∫

dω

2π

∑
i,a

∣∣Da
i (ω)

∣∣2
∫

dτ eiωτ 〈T [(b†
i bi+a)(τ )(bib

†
i+a)(0)]〉

=
∫

dω

2π

∑
i,a

∣∣Da
i (ω)

∣∣2
∫

dτ eiωτ
∑

l

(
�(τ )e−τ (El −E0 )|〈0|b†

i bi+a|l〉|2 + �(−τ )eτ (El −E0 )|〈0|b†
i+abi|l〉|2

)

=
∫

dω

2π

∑
i,a

∣∣Da
i (ω)

∣∣2 ∑
l

|〈0|b†
i bi+1|l〉|2

(
1

iω + El − E0
+ 1

−iω + El − E0

)
, (B7)

where E0 is the ground-state energy of Honsite and l runs over
all of Honsite’s eigenstates. Since the energy of a particle hole
excitation above the Mott insulator is always U regardless of
n or μ, we may expand in small ω � U and write

C2 = 2n(n + 1)

U

∫
dω

2π

∑
i,a

|Da
i (ω)|2

(
1 − ω2

U

)
. (B8)

This determines the coefficient w of the time derivative term
appearing in Eq. (B4) as

w = 4n(n + 1)

U 2
. (B9)

Note that as claimed, no linear time derivative term of the form
(Da)†∂τ Da appears, due to the particle-hole symmetry present
in the expression for C2.

To derive r and Kab
D , we use the fact that

∑
j,m

[Aa]−1
j,meij·q+im·p = δq,−p

2
∑

b [tδa,b + t ′(1 − δa,b)] cos(pb)

(B10)
to obtain

r = 1

2[dt + (d − 1)t ′]
− 2n(n + 1)

U
(B11)

and

Kab
D = 1

dt + (d − 1)t ′

[
tδab + t ′

2
(1 − δab)

]
. (B12)

Now for C4. For the purposes of determining the most
relevant terms in S4, we may select out the part of C4 which
is local in time. This is the part that provides the fourth-order
correction to the ground-state energy of Honsite when perturb-
ing in powers of HDb, and a straightforward calculation gives

S4 =
∫

dτ

( ∑
lmn �=0

O0lOlmOmnOn0

E0lE0mE0n
−

∑
lm �=0

|O0l |2|O0m|2
E2

0l E0m

)
,

(B13)

where E0p ≡ E0 − Ep and where we have defined the operator

O ≡
∑
i,a

(b†
i bi+a)(0)Da(τ ) + H.c. (B14)

The evaluation of S4 by way of Eq. (B13), hence the de-
termination of uab, is straightforward but tedious, and here we
only quote the result. Dropping derivatives of Da and writing
uab = δabud + (1 − δab)uo, we find

ud = n(n + 1)[4 + n(n + 1)]

3U 3
,

uo = −4n(n + 1)[10 + 19n(n + 1)]

3U 3
. (B15)

Note that uo < 0, so that in mean field the system favors
condensation of all components of Da, and that |uo| > ud ,
so that the potential as derived in mean field is unbounded
from below, most likely leading to a first-order transition (this
conclusion is of course nonuniversal, however).
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