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Time-reversal invariant topological gapped phases in bilayer Dirac materials
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We show that a plethora of topological insulating phases can appear in bilayer Dirac materials, including
first-order topological insulators, topological mirror insulators, and second-order topological insulators. By
considering doping and short-range attractive interactions, we show at a mean-field level that intrinsic odd-parity
superconductivity can arise in such systems. Depending on the number and positions of Fermi surfaces in the
normal state, we find that the resulting odd-parity superconductivity can lead to diverse time-reversal invariant
topological superconducting phases, including topological superconductors and topological mirror superconduc-
tors. Our findings suggest that bilayer Dirac materials could be an excellent platform for investigating topological
phases.
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I. INTRODUCTION

Topological insulators and superconductors have attracted
great attention in the past two decades [1,2]. The great in-
terest in these two classes of materials lies in their host
of novel gapless boundary states enforced by bulk-boundary
correspondence which hold great promise for revolutionizing
future technology and science. Originally, topological insula-
tors and superconductors were classified into ten symmetry
classes according to three internal symmetries [3–5], namely,
time-reversal symmetry, particle-hole symmetry, and chiral
(sublattice) symmetry. Because of the protection from the
internal symmetry, the gapless boundary states are not sen-
sitive to the shape or the orientation of the boundary and
robust against imperfections on the boundary. Later, it was
found that gapless boundary states can also be protected by
various crystalline symmetries [6], accompanied by the birth
of the concept termed topological crystalline insulators and
superconductors [7]. Owing to the richness of crystalline
symmetry, this greatly enriches the topological phases and
brings new features to the gapless boundary states [8–16].
For instance, if the crystalline symmetry is essential for
the definition of a nontrivial bulk topology, robust gapless
boundary states will only exist on the boundaries respect-
ing the exact crystalline symmetry. Remarkably, recently it
was recognized that such an orientation dependence admits
the emergence of gapless states with codimension dc � 2
on the boundary [17–22]. Topological insulators and su-
perconductors displaying such unconventional bulk-boundary
correspondence are categorized as higher-order topological
insulators and superconductors [23–25] to distinguish them
from conventional (also dubbed first-order) topological insu-
lators and superconductors.
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Topological superconductors in fact have a close connec-
tion to topological insulators not only in the mathematical
description but also in their realizations. After the discov-
ery of topological insulators in experiments, the potential
of achieving topological superconductivity and concomitant
Majorana zero modes in superconducting doped topological
insulators has attracted wide interest [26]. The first material
realization of the superconducting doped topological insu-
lator is the three-dimensional topological insulator Bi2Se3

with copper intercalation [27–29]. On the theoretical side,
Fu and Berg theoretically analyzed the potential supercon-
ducting pairings in superconducting doped insulators based
on a two-orbital model and the assumption of short-range
attractive interactions, and they found that an odd-parity
spin-triplet pairing, which can lead to the realization of time-
reversal invariant topological superconductivity, is favored
by the strong spin-orbit coupling [30]. On the experimen-
tal side, soon after the observation of superconductivity in
CuxBi2Se3, the observation of a zero-bias conductance peak
in point-contact experiments in this material had generated
much excitement as it was interpreted as a strong signature
for the emergence of unconventional superconductivity [31].
Later, superconductivity and similar zero-bias peaks had also
been observed in doped SnTe [32], a topological crystalline
insulator [33–39]. More recently, a remarkable experimental
progress along this route was the observation of topological
band structure and signatures for vortex Majorana zero modes
in a series of iron-based superconductors [40–44]. Despite
the fact that the pairings in iron-based superconductors are
generally believed to be of even parity which cannot result
in first-order time-reversal invariant topological superconduc-
tivity with the constraint of inversion symmetry [45], it was
predicted in theory that time-reversal invariant higher-order
topological superconductivity could arise in this class of ma-
terials [45–49].

Despite this remarkable progress in three-dimensional su-
perconducting doped topological insulators, the unequivocal
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detection of topological superconductivity, not to mention
topological phase transitions between distinct topological su-
perconducting phases, has been hindered due to the lack of
efficient methods to tune the parameters of a given system
in a clean and controllable way. In particular, the carrier
density in bulk materials, a key quantity to achieve supercon-
ductivity and control the superconducting pairing and bulk
topology, are generally tuned by doping other elements or
a partial substitution of the constituent elements [50]. Such
a procedure, however, will generally inevitably induce in-
homogeneity to the sample, which may either reduce the
superconducting transition temperature or obscure the de-
tection of topological boundary states by introducing other
energy-close bound states. Compared to three-dimensional
systems, two-dimensional systems show great advantage in
tunability, and accordingly have rapidly grown as one of the
most active fields after the first experimental realization of
monolayer graphene [51]. Remarkably, the carrier density in
two-dimensional systems can be controlled by gate-voltage
methods which are clean and reversible [52]. Moreover, for
van der Waals materials, the number of layers is easy to
control and thus can be applied as a new degree of freedom
to realize novel physics. Given these advantages, supercon-
ducting two-dimensional topological materials appears to be
a better platform to implement and investigate various kinds
of topological superconducting phases [53].

How to realize topological superconductivity in two-
dimensional materials has also been extensively studied over
the past decade [54–57]. Focusing on time-reversal invari-
ant systems, it has been theoretically recognized that the
realization of time-reversal invariant first-order topological
superconductors requires the superconducting pairing to be
unconventional, such as being odd parity or momentum
dependent [48,58–64]. For time-reversal invariant higher-
order topological superconductors, it has been revealed that
a general approach for their realization is to consider het-
erostructures composed of first-order topological insulators
and unconventional superconductors [65–67]. Compared to
first-order and higher-order topological superconductors, we
notice that realistic proposals for time-reversal invariant topo-
logical crystalline superconductors in simple lattices remain
lacking. In Refs. [68,69] the authors proposed that multi-
layer superconductors CeCoIn5 can favor topological mirror
superconducting phases when the ground state takes a pairing-
density-wave order. However, the stabilization of such an
order is shown to require a magnetic field, which breaks
time-reversal symmetry explicitly. Topological crystalline
superconductors stabilized by magnetic field or nonsymmor-
phic symmetry have also been suggested in UPt3 [70,71],
Sr2RuO4 [72], CeRh2As2 [73], UCoGe [74], etc., but re-
main unconfirmed in experiments. Furthermore, we notice
that many studies in the literatures focus on a particular type
of topological superconductors. It will be of great interest if
a single system can host various types of time-reversal invari-
ant topological superconductivity and the transitions between
them can be simply tuned by varying the doping level. In
this work we show that bilayer Dirac materials could be such
systems.

Over the past decade, bilayer Dirac materials with three-
fold or sixfold rotation symmetry have been actively studied

and many novel physics have been found [75–78]. In the
past few years, exotic superconductivity has been observed
in a series of transition metal dichalcogenides with massive
Dirac band structure, such as MoS2 [79–81], NbSe2 [82],
WTe2 [83], etc. More recently, the observation of correlated
insulating phases and superconductivity in twisted bilayer
graphene has generated further excitement [84–88]. With this
experimental progress, potential topological superconducting
phases in bilayer Dirac materials have also been actively in-
vestigated in theory [89–95], but most of these studies focused
on time-reversal symmetry breaking topological superconduc-
tivity.

Compared to the bilayer Dirac systems with threefold or
sixfold rotation symmetry, we notice that bilayer Dirac sys-
tems with simple square lattice structure and fourfold rotation
symmetry have been much less explored. In this work we
consider bilayer Dirac systems with the D4h crystal sym-
metry which can be implemented by either a stacking of
two monolayer spin-orbit-coupled insulators [96] or a reduc-
tion of a three-dimensional spin-orbit-coupled insulator/Dirac
semimetal to the bilayer limit [48]. At the free-particle level,
we find that the normal state can support a plethora of topo-
logical insulating phases. Depending on the band-inversion
parameter and interlayer coupling, the normal-state band
structure can exhibit all three types of time-reversal invariant
topological insulating phases, namely, the first-order topolog-
ical insulator, the topological crystalline (mirror) insulator,
and the higher-order topological insulator. Considering short-
range attractive interactions, we find that, similar to previous
studies on superconducting doped topological insulators, odd-
parity superconductivity can be favored under appropriate
conditions due to spin-orbit coupling [30]. Depending on the
doping level, we find that the odd-parity superconductivity
can result in a diversity of time-reversal invariant topological
superconducting phases protected by the internal symmetry
and mirror symmetry.

The structure of the paper is as follows. In Sec. II we
discuss the topological properties of the normal state, showing
that a plethora of time-reversal invariant topological insulat-
ing phases can emerge by varying the model parameters. In
Sec. III we show that, after considering finite doping, the sys-
tem can favor odd-parity superconductivity under appropriate
conditions. In Sec. IV we show that the odd-parity super-
conductivity can result in time-reversal invariant topological
superconductors protected by internal and mirror symmetries.
Discussion and conclusion are presented in Sec. V.

II. TOPOLOGICAL PROPERTIES OF THE
NORMAL STATE

Adopting a minimal tight-binding model approach, we
consider the following Hamiltonian:

H0(k) = (m − t cos kx − t cos ky)�300 + λ sin kx�130

− λ sin ky�200 + η1(cos kx − cos ky)�112

+ η2 sin kx sin ky�122 − tz�301, (1)

where �i jk = σi ⊗ s j ⊗ ρk with σi, s j , and ρk being the Pauli
matrices (identity matrices for subscript “0”) in orbital, spin,
and layer subspaces, respectively. For notational simplicity,
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the lattice constants are set to unity throughout the paper.
Furthermore, we have assumed that the Hamiltonian has a
nearly perfect particle-hole symmetry, so terms of the form
ε(k)�000 describing particle-hole asymmetry [ε(k) denotes
a real and even function of momentum] are neglected for
simplicity. When 0 < |m| < 2t , the first three terms describe
two decoupled monolayer topological insulators [97]. On
the contrary, when |m| > 2t , the first three terms describe
two decoupled monolayer spin-orbit-coupled trivial insula-
tors. The last three terms describe layer couplings respecting
time-reversal symmetry [T H0(k)T −1 = H0(−k) with T =
i�020K and K the complex conjugate operator], inversion
symmetry [IH0(k)I−1 = H0(−k) with I = �103], C4z rota-
tion symmetry [C4zH0(kx, ky)C−1

4z = H0(ky,−kx ) with C4z =
(�300 − i�030)/

√
2], and mirror symmetry about the middle

plane of the two layers [MzH0(k)M−1
z = H0(k) with Mz =

i�031]. The whole Hamiltonian belongs to the D4h symmetry
group.

Based on the symmetry analysis and the tenfold-way clas-
sification, the Hamiltonian falls into the class AII and thus
follows the Z2 classification if one only considers protection
from the internal time-reversal symmetry [3–5]. Accordingly,
one may naively expect that the stacking of two identical
monolayer insulators should result in a trivial insulator since
“2” is topologically equivalent to “0,” the trivial case. From
the edge-state point of view, this is equivalent to saying that, if
the bilayer system is a stacking of two monolayer topological
insulators, two pairs of helical edge states can hybridize with
each other and be gapped out. However, this scenario is valid
only within the weak-interlayer-coupling regime and when
there is no other symmetry protection. As we will show in
the following, because of the additional protection from the
mirror symmetry Mz, multiple pairs of helical edge states
can also be stable. Moreover, depending on the band-inversion
parameter m and the interlayer-coupling parameters tz and η1,
we find that the bilayer system can realize time-reversal invari-
ant first-order topological insulating phases with helical edge
sates as well as second-order topological insulating phases
with localized bound states at the system’s corners. It is worth
emphasizing that strong-enough interlayer coupling can drive
the bilayer system to be topological even when the monolayer
counterpart is trivial.

Let us first focus on the Z2 invariant related to time-reversal
symmetry. Because the Hamiltonian also has inversion sym-
metry, it is known that the Z2 invariant is determined by the
Fu-Kane formula [98]

(−1)ν =
∏

n∈occ

∏
i

ξ2n(�i), (2)

where ξ2n(�i) = 〈2n,�i|I|2n,�i〉 refers to the parity of the
nth occupied Kramers bands at the time-reversal invariant
momentum �i. Before explicitly calculating ν, let us first
discuss the topological characterization enriched by the mirror
symmetry. For the bilayer system, since [Mz,H0(k)] = 0 for
an arbitrary k, it means that the Hamiltonian can be decoupled
into two independent blocks according to the two eigenvalues
of the mirror operator Mz = i�031, i.e., H0(k) = H+i

0 (k) ⊕
H−i

0 (k). In the diagonal basis of Mz, one finds

H±i
0 (k) = (m − t cos kx − t cos ky)�30 + λ sin kx�13

−λ sin ky�20 ± η1(cos kx − cos ky)�12

∓η2 sin kx sin ky�11 ∓ tz�33. (3)

While the total Hamiltonian H0(k) has time-reversal symme-
try, each mirror block does not preserve it, and one can easily
find that H±i

0 (k) belong to the A class, indicating that their
band topological properties are respectively characterized by
the first-class Chern number [3–5]. Labeling the Chern num-
ber characterizing H±i

0 (k) as C±i, the time-reversal symmetry
of the total Hamiltonian forces the total Chern number CT =
C+i + C−i to vanish, thus the relation C+i = −C−i is always
held as long as the time-reversal symmetry is preserved. The
relation C+i = −C−i indicates that H+i

0 (k) and H−i
0 (k) carry

an equal number of chiral edge states but with opposite chiral-
ities on the same edge. Following the standard definition [99],
the mirror Chern number is given by

CM = (C+i − C−i )/2. (4)

A nonzero CM dictates the existence of CM pairs of gapless
helical states on the open edges. As CM can take an arbitrary
integer value, this indicates that the Z2 classification is ex-
tended to a Z classification due to the additional protection
from the mirror symmetry Mz. It is worth noting that the
Z2-valued topological invariant ν and the integer-valued CM

are not completely independent. One can easily infer from the
protected helical edge states that the even-odd parities of ν

and CM are equal to each other, i.e.,

(−1)ν = (−1)CM . (5)

When CM is odd, the topological insulator can be viewed
as a dual topological insulator due to the double topological
characterizations [100–103].

The phase diagram of H0(k) can be mapped out by deter-
mining the phase boundaries and the topological invariants in
parameter spaces away from the phase boundaries. Because
the change of first-order topology is associated with the clo-
sure of bulk gap which turns out to be possible only at the four
time-reversal invariant momenta, one can find that the phase
boundaries are determined by the following three equations:

|tz| = |m − 2t |,
|tz| = |m + 2t |,
|tz| =

√
m2 + 4η2

1. (6)

For a given fixed η1/t , we obtain the phase diagram by
numerically calculating CM , as shown in Fig. 1(a). For the
considered tight-binding model, we find that CM ranges from
−2 to 2. In other words, the number of pairs of gapless helical
edge states is up to 2. According to the discussions given
above, CM = ±1 corresponds to a dual topological insula-
tor with a pair of gapless helical states protected by both
time-reversal symmetry and mirror symmetry, as shown in
Fig. 1(b). On the other hand, CM = ±2 merely corresponds
to a topological mirror insulator with two pairs of gapless
helical edge states protected by the mirror symmetry only, as
shown in Fig. 1(c). When CM = 0, remarkably, we find that
the resulting insulating phases can be further delicately classi-
fied as truly topologically trivial insulators and second-order
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FIG. 1. (a) A representative topological phase diagram η1/t =
0.125. The values inside are the corresponding mirror Chern num-
bers. (b)–(d) The energy spectra of the bilayer system with open
boundary conditions in the y direction and periodic boundary con-
ditions in the x direction. In (b)–(d), m is equal to 4, 0, and 2,
respectively, and other parameters are chosen as {t, tz, λ, η1, η2} =
{2, 1, 1, 0.25, 0.25}. The mirror Chern numbers for (b)–(d) are CM =
1, 2, and 0, respectively.

topological insulators. For the latter, while there are no gapless
helical edge states under the cylindrical boundary condition
(one direction is open and the other is periodic) [see Fig. 1(d)],
midgap bound states with codimension dc = 2 are found to
emerge at the system’s corners when both directions of the
system are set to be open, as shown in Fig. 2.

FIG. 2. Second-order topological insulator with corner bound
states. (a) Energy eigenvalues near zero energy for a system
with open boundary conditions in both x and y directions.
The lattice size is Nx = Ny = 30. (b) The probability density
profiles of the eight eigenstates with eigenenergies closest to
zero energy, i.e., |
(i, j)|2 = ∑8

α=1 |
α (i, j)|2. Chosen parameters
are {m, t, tz, λ, η1, η2} = {2, 2, 1, 1, 0.25, 0.25}, corresponding to
CM = 0.

Here the possibility of the emergence of a second-order
topological insulating phase can be intuitively understood via
a perturbation-theory picture [65]. The procedures are as fol-
lows. In the first place, one decomposes the Hamiltonian into
two parts, H0(k) = H1(k) + H2(k), where

H1(k) = (m − t cos kx − t cos ky)�300 + λ sin kx�130

− λ sin ky�200 − tz�301,

H2(k) = η1(cos kx − cos ky)�112 + η2 sin kx sin ky�122. (7)

Second, treat H2(k) as perturbations. Compared to H0(k),
H1(k) has higher symmetry as a consequence of removing
the terms in H2(k). It is easy to find that H1(k) can be
expressed as the direct sum of four two-by-two Hamiltoni-
ans according to the eigenvalues of s3 and ρ1, i.e., H1 =
H1,1 ⊕ H1,−1 ⊕ H−1,1 ⊕ H−1,−1. When H±1,±1(k) all harbor
a chiral edge state crossing the same time-reversal invariant
momentum, they will form two pairs of helical edge states
even though CM = 0. The absence of hybridization among the
four branches of chiral edge states (two counterclockwise, the
other two clockwise) is because they take different quantum
numbers as s3 and ρ1 are conserved in H1(k). After turning
on H2(k), however, both s3 and ρ1 are no longer conserved,
then the hybridization is allowed and a finite energy gap will
be opened on the edges. Interestingly, by projecting H2(k)
onto the Hilbert space spanned by the eigenstates of the two
pairs of helical edge states, one can find that the Dirac mass
reflecting the hybridization induced by the η1 term will have
opposite signs on the x-normal edges and the y-normal edges,
resulting in the formation of domain walls with bound states at
each corner of a square sample with open boundary conditions
along both x and y directions [65]. It is worth noting that if
η2 = 0 and the system size is sufficiently large, the corner
modes will be pinned to zero energy due to the emergence
of chiral symmetry.

We end this part by stressing that the above results indicate
that time-reversal invariant first-order (or dual) topological in-
sulators, topological mirror insulators, as well as second-order
topological insulators can all be achieved in such bilayer Dirac
systems.

III. SUPERCONDUCTIVITY INDUCED BY ON-SITE
ATTRACTIVE INTERACTIONS

The bilayer system is expected to become superconducting
if it is doped to be metallic and the electrons feel effective
attractive interactions. In the following we focus on on-site
attractive interactions and investigate what kind of pairing or-
der parameters will be favored in this system. The interactions
are assumed to be purely on-site and take the form [30]

Hint = −U
∑
i,ρ

(
n2

i,1,ρ + n2
i,2,ρ

) − 2V
∑
i,ρ

ni,1,ρni,2,ρ, (8)

where U (V ) characterizes the strength of the intraorbital
(interorbital) interaction, and ni,σ,ρ = ∑

s=↑,↓ c†
i,σ,s,ρci,σ,s,ρ

refers to the electron density operator for a given σ orbital
at site i and layer ρ. U and V are assumed to be positive in
this work.

Within the mean-field framework, the on-site attrac-
tive interactions will only result in momentum-independent
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TABLE I. Classification of the pairings according to the irre-
ducible representations of the crystal point group D4h.

Representation Matrix form Explicit form

A1g: �1 �000, �300 c1↑c1↓ + c2↑c2↓, c1↑c1↓ − c2↑c2↓
A1u: �2 �220 c1↑c2↑ + c1↓c2↓
A2u: �3 �210 i(c1↑c2↑ − c1↓c2↓)
Eu: �4 �230, �100 i(c1↑c2↓ + c1↓c2↑), c1↑c2↓ − c1↓c2↑

pairings. After entering the superconducting phase, the system
is described by a Bogoliubov–de Gennes (BdG) Hamiltonian.
In the Nambu basis 


†
k = [ψ†

k , (i�020ψ−k)T ], the Hamilto-
nian has the form H = 1

2

∑
k 


†
kHBdG(k)
k with

ψ
†
k = (ψ†

k;1, ψ
†
k;2 ),

ψ
†
k;α = (c†

k;α,↑,t , c†
k;α,↑,b, c†

k;α,↓,t , c†
k;α,↓,b),

HBdG(k) = τz ⊗ [H0(k) − μ�000] + τx ⊗ �(k), (9)

where �(k) represents the pairing matrix which is 8 × 8 here,
μ is the chemical potential, and τi are the Pauli matrices in
particle-hole space. The subscripts (1,2), (↑,↓), and (t, b)
refer to the orbital, spin, and layer degrees of freedom, re-
spectively. For the pairings, because of the anticommutation
relation between fermionic operators, here only six possible
pairings are allowed. We list them in Table I according to
the representation of the underlying crystal point group D4h.
Among them, the pairings belonging to the irreducible repre-
sentation A1g are of even parity, and the pairings belonging to
A1u, A2u, and Eu are all of odd parity.

To determine which pairing will be favored in energy, one
can first make a rough estimation by taking the mean-field
pairing back into the BdG Hamiltonian and checking whether
the considered pairing results in a gapless or fully gapped
energy spectrum. Simple analysis reveals that the pairing
in the two-dimensional representation Eu will lead to nodal
superconductors, while the pairings in the one-dimensional
representations A1g, A1u, and A2u will lead to fully gapped
superconductors. It is known that, for superconducting insta-
bility under the same condition, a fully gapped superconductor
is in general favored in energy. Therefore, based on this
estimation, the pairings in the three one-dimensional repre-
sentations should win over the ones in the two-dimensional
representation.

To determine the pairing phase diagram on a firmer ground,
we solve the linearized gap equations for the superconducting
transition temperature (Tc) in each pairing channel [30,60].
The linearized gap equations are of the form (see details in
Appendices A–F)

det

[(
Uχ1,11(Tc) Uχ1,12(Tc)
Uχ1,21(Tc) Uχ1,22(Tc)

)
− I2×2

]
= 0,

V χ2(Tc) = V χ3(Tc) = 1, V χ4(Tc) = 1. (10)

Here χi denote finite-temperature superconducting suscep-
tibilities in different pairing channels. Without loss of
generality, by assuming that the normal-state band minima are
located at the time-reversal invariant momentum � = (0, 0),
we find that in the limit of η1 = η2 = 0 their explicit forms

FIG. 3. A representative pairing phase diagram. The parameters
for the normal-state Hamiltonian are chosen as {m, t, tz, λ, η1, η2} =
{6, 2, 1, 1, 0, 0}. The discontinuous jump at μ = 3 is because the
Fermi surface undergoes a Lifshitz transition there.

are given by (see details in Appendices B–E)

χ1,11 = (D1 + D2)χ0,

χ1,12 = χ1,21 = (D1�1 + D2�2)χ0,

χ1,22 = (D1�
2
1 + D2�

2
2)χ0,

χ2 = χ3 = [D1(1 − �2
1) + D2(1 − �2

2)]χ0,

χ4 < χ2 = χ3, (11)

where �1 ≡ (M1 − tz )/μ and �2 ≡ (M2 + tz )/μ, and χ0 =∫
dξ 1

ξ
tanh βξ

2 with β = 1/(kBT ) is the standard supercon-
ducting susceptibility normalized by the density of states at
Fermi energy. The quantities D1 and D2 refer to the density
of states at Fermi energy contributed by the first and second
pair of Kramers bands, respectively. The quantities M1 and
M2 refer to the value M(k) = m − t cos kx − t cos ky on the
two Fermi surfaces and are approximated as constants. If the
Fermi level only crosses the lowest pair of Kramers bands,
there is only one Fermi surface, then D2 = 0 and only D1 is
involved in the superconducting susceptibilities (see details in
Appendix F ). It is worth noting that χi(T ) are monotonically
decreasing functions of T . The fact that χ4 is always smaller
than χ2,3 indicates that �4 always has a lower Tc than �2,3, so
it will not appear in the pairing phase diagram. Furthermore,
it is worth noting that while χ2 and χ3 are degenerate in the
limit of η1 = η2 = 0, we find numerically that �3 will result
in a somewhat lower ground-state energy compared to �2 if
η2 is nonzero. Therefore, we will only show �3 in the pairing
phase diagram.

Based on Eqs. (10) and (11), the pairing phase diagram
can be mapped out. In Fig. 3 we present one concrete case
for illustration. According to the pairing phase diagram, it is
readily found that odd-parity pairing is favored in the small
U/V limit, which is physically consistent with the fact that
only V leads to interorbital pairings.
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IV. TOPOLOGICAL PROPERTIES OF THE BILAYER
SYSTEM WITH ODD-PARITY SUPERCONDUCTIVITY

While the pairing phase diagram contains both even-parity
and odd-parity pairings, the even-parity pairing will only re-
sult in topologically trivial phases as the system has both
time-reversal symmetry and inversion symmetry [104]. There-
fore, below we focus on �3 and study the potential topological
superconductivity. Write down the BdG Hamiltonian explic-
itly,

HBdG(k) = (m − t cos kx − t cos ky)�3300 + λ sin kx�3130

−λ sin ky�3200 + η1(cos kx − cos ky)�3112

+η2 sin kx sin ky�3122 − tz�3301 − μ�3000

+�3�1210, (12)

where �i jkl = τi ⊗ σ j ⊗ sk ⊗ ρl . Within the BdG framework,
it is known that the Hamiltonian has an intrinsic particle-
hole symmetry (the corresponding symmetry operator is
� = �2020K). Accordingly, the time-reversal invariant BdG
Hamiltonian belongs to the DIII class which follows a Z2

classification in two dimensions [3–5]. On the other hand,
since the pairing respects all crystal symmetries, the BdG
Hamiltonian can also be decomposed into two independent
blocks according to the two eigenvalues of the mirror sym-
metry operator. It is worth noting that the form of the mirror
symmetry operator now becomes Mz = i�3031. In the diag-
onal basis of Mz, one finds HBdG(k) = H+i

BdG(k) ⊕ H−i
BdG(k),

where

H±i
BdG(k) = (m − t cos kx − t cos ky)�330 + λ sin kx�313

−λ sin ky�320 ± η1(cos kx − cos ky)�012

±η2 sin kx sin ky�011 ∓ tz�033 − μ�300

+�3�121. (13)

It is easy to find that the time-reversal symmetry is bro-
ken while the particle-hole symmetry (the symmetry operator
becomes � = �202K) is preserved in each mirror sector. Ac-
cording to the tenfold way classification, each mirror sector
belongs to the D class and follows a Z classification in two
dimensions [3–5]. As the topological invariant characterizing
the D class is also the first-class Chern number, the topological
analysis for the BdG Hamiltonian can be done just like the
normal state. Because the BdG Hamiltonian has inversion
symmetry and the pairing is odd parity, in the weak-coupling
limit the Z2 invariant characterizing the full BdG Hamilto-
nian is simply determined by the parity of the number of
time-reversal invariant momentum enclosed by the Fermi sur-
face [30,105],

(−1)νs =
∏

i

(−1)N (�i ), (14)

where N (�i ) refers to the number of unoccupied bands at �i

in the normal state. When the Fermi surface of the normal
state encloses an odd (even) number of time-reversal invariant
momenta, νs = 1(0), corresponding to a time-reversal invari-
ant topological (Z2-trivial) superconductor with an odd (even,
including zero) number of pairs of helical Majorana edge
states. Taking into account the mirror symmetry Mz, a mirror

FIG. 4. A representative phase diagram of the odd-parity super-
conductor. η1/t = 0.125 and tz/t = 0.5 are fixed. we have labeled
the values of the mirror Chern number inside each parameter region.

Chern number can be similarly defined as

CM,s = (C+i
s − C−i

s )/2. (15)

When CM,s is nonzero, the superconductor is also a topological
mirror superconductor with CM,s pairs of helical Majorana
edge states [106]. Apparently these two topological invariants
also have the relation

(−1)νs = (−1)CM,s . (16)

This relation suggests that the phase diagram can be unitedly
determined by the mirror Chern number. The phase bound-
aries can also be simply determined by checking the condition
for the closure of bulk energy gap. Simple analysis reveals that
the bulk energy gap can only close at time-reversal invariant
momenta and the phase boundaries are determined by the
following equations:√

�2
3 + μ2 = |±(m − 2t ) ± tz|,√

�2
3 + μ2 = |±(m + 2t ) ± tz|,√

�2
3 + μ2 =

∣∣∣±
√

m2 + 4η2
1 ± tz

∣∣∣. (17)

By numerically determining the mirror Chern number, we
provide a representative phase diagram in Fig. 4. According
to the phase diagram, the mirror Chern number can take val-
ues {−2,−1, 0, 1, 2}, suggesting that the number of pairs of
robust helical Majorana edge states is up to two in this model.
Similar to the normal state, the bulk-boundary correspondence
indicates that when CM,s = ±1, the superconductor carries a
pair of helical Majorana edge states, and corresponds to a
first-order internal-symmetry-protected topological supercon-
ductor as well as a topological mirror superconductor. When
CM,s = ±2, the superconductor carries two pairs of helical
Majorana edge states and is purely a topological mirror super-
conductor. Remarkably, as we will show below, two pairs of
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FIG. 5. Fermi surfaces of the normal state and the edge states of the corresponding odd-parity superconducting phases. From (a)–(d),
{m, μ} = {5, 1}, {0, 4}, {1, 3}, and {4, 2}, respectively. The black dots in (a)–(d) represent the locations of the four time-reversal invariant
momenta in the two-dimensional Brillouin zone. The dashed blue/solid red lines refer to the Fermi surfaces contributed by the first/second pair
of conduction Kramers bands. Other parameters are chosen as {t, tz, λ, η1, η2, �3} = {2, 1, 1, 0.25, 0.25, 0.5}. For the chosen parameters, The
mirror Chern numbers for (a)–(d) are CM = 1, 2, 1, and 0, respectively. (e)–(h) Energy spectra for a sample with periodic boundary conditions
in the x direction and open boundary conditions in the y direction. The parameters in (e)–(h) are the same as in (a)–(d), respectively. In (e), the
midgap crossing at kx = 0 is of fourfold degeneracy. In (f), the midgap crossings at kx = 0 and kx = π are both of fourfold degeneracy. In (g),
the midgap crossing at kx = 0 is of fourfold degeneracy, but the one at kx = π is of eightfold degeneracy. In (h), the midgap crossing at kx = 0
is of eightfold degeneracy.

helical Majorana edge states can show up even when CM,s = 0
as a consequence of the existence of additional symmetries on
certain high symmetry lines in the Brillouin zone.

To demonstrate the bulk-boundary correspondence, we
consider a sample of the geometry with periodic boundary
conditions in the x direction and open boundary conditions
in the y direction. Figures 5(a) and 5(e) show when there is
only one piece of Fermi surface enclosing one time-reversal
invariant momentum in the normal state, the superconductor
harbors one pair of helical Majorana edge states, in agreement
with the Z2 invariant given by Eq. (14). The property of
the edge states indicates that the superconductor is a time-
reversal invariant first-order topological superconductor. In
comparison, Figs. 5(b) and 5(f) show when there are two
pieces of Fermi surfaces enclosing two distinct time-reversal
invariant momenta, the superconductor harbors two pairs of
helical Majorana edge states. By calculating the mirror Chern
number contributed by all negative energy bands, we find
CM,s = 2, which is consistent with the number of pairs of
helical Majorana edge states, indicating that the resulting su-
perconductor is a topological mirror superconductor. These
two cases show explicitly that if each piece of Fermi surfaces
only encloses one time-reversal invariant momentum, the par-
ity of the number of pairs of helical Majorana edge states is
equal to the parity of the number of pieces of Fermi surfaces,
i.e., Eq. (14). In Figs. 5(c), 5(d) 5(g), and 5(h) we further
consider two cases for which there are two pieces of Fermi

surfaces enclosing the same time-reversal invariant momen-
tum. In Figs. 5(c) and 5(g) the midgap crossing at kx = π is
of eightfold degeneracy and the one at kx = 0 is of fourfold
degeneracy, suggesting the existence of three pairs of helical
Majorana states on one edge. By calculating the mirror Chern
number, however, we find CM,s = 1, which is not equal to the
number of helical Majorana edge modes. Similarly, Figs. 5(d)
and 5(h) show the existence of two pairs of helical Majorana
edge states, even though the mirror Chern number turns out
to be zero. Here the discrepancy between the number of pairs
of helical Majorana edge states and the mirror Chern number
does not mean the breakdown of bulk-boundary correspon-
dence. As we will explain below, the existence of additional
pairs of helical Majorana edge states is a result of the existence
of additional symmetries on high symmetry lines.

Let us take the result in Figs. 5(d) and 5(h) for illustra-
tion. The crossing at kx = 0 is of eightfold degeneracy. If
one views the BdG Hamiltonian HBdG(kx = 0, ky) as a one-
dimensional Hamiltonian, the eightfold degeneracy at kx = 0
is equivalent to the existence of two Majorana Kramers pairs
(four Majorana zero modes) per end in the one-dimensional
system. However, the DIII class in one dimension also follows
a Z2 classification and can only support one robust Majorana
Kramers pair per end [3–5]. According to the tenfold clas-
sification, only the three chiral symmetry classes follow a Z
classification in one dimension and thus can support more
than two zero-energy bound states per end. By analyzing the
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symmetry of HBdG(kx = 0, ky), we find that the Hamilto-
nian has an additional spinless time-reversal symmetry (the
symmetry operator is T ′ = �0030K). Accordingly, HBdG(kx =
0, ky ) also belongs to the BDI class which permits multiple
Majorana zero modes per end. Besides, as the Hamiltonian
also has the mirror symmetry Mx (the operator is i�0010),
on the high symmetry line kx = 0, the Hamiltonian can also
be decoupled into two independent parts according to the
two eigenvalues of Mx. We find that each mirror sector
also belongs to the BDI class. By adding a term of the
form γ sin ky�3222 which preserves Mz and the spinful time-
reversal symmetry but breaks T ′ and Mx, we find that the
counterintuitive eightfold degeneracy is no longer protected,
suggesting that the gapless nature of the edge states for
the case with CM,s = 0 is protected by these symmetries.
The less robustness of the helical Majorana edge states for
the case with CM,s = 0 implies that such edge states are in
principle gappable even without breaking the time-reversal
symmetry and mirror symmetry Mz. Once the Dirac masses
hybridizing two pairs of helical Majorana edge states on two
near-neighbor edges take opposite signs, the superconductor
will evolve into a second-order topological superconductor
with Majorana Kramers pairs at the corners of the system.

V. DISCUSSION AND CONCLUSION

We have shown that a bilayer Dirac system belonging
to the D4h symmetry group can support diverse topological
insulating phases, including time-reversal invariant first-order
topological insulators, topological mirror insulators, and
second-order topological insulators. For topological mirror
insulators, the mirror symmetry Mz is essential. If the mirror
symmetry is broken, for example, by substrate effects, an even
number of pairs of helical edge states no longer have sym-
metry protection. Nevertheless, this does not mean that the
topological mirror insulator will always transform to a trivial
insulator after the lifting of mirror symmetry. In principle,
it is also possible that the helical edge states hybridizes in
a nontrivial way, leading to the emergence of higher-order
topology. In experiments, these distinct types of topological
insulating phases can be detected and distinguished by mea-
suring the local density of states on the boundary [107,108]
and the quantized conductance contributed by the helical
edge states [109,110]. Taking advantage of the exceptional
controllability of two-dimensional systems, topological phase
transitions among them may also be accessible via methods
such as strain and pressure.

When the bilayer system becomes metallic after doping,
based on group-theoretical analysis and solving the linearized
gap equations at the mean-field level, we found that the system
favors odd-parity superconductivity when the short-range at-
tractive interorbital interaction dominates over the intraorbital
interaction. Depending on the number and positions of Fermi
surfaces in the normal state, we find that the time-reversal
invariant odd-parity superconductor can be a first-order topo-
logical superconductor, a topological mirror superconductor,
or an exotic superconductor with an even number of pairs of
helical edge states even though both the Z2 invariant and the
mirror Chern number are trivial.

In conclusion, our results show that bilayer Dirac mate-
rials can support diverse topological gapped phases both in
the insulating state and in the superconducting state. Given
the high controllability of two-dimensional materials and the
experimental progress [111,112], our results reveal that bi-
layer Dirac materials could serve as a fertile playground
for the study of topological phases and related topological
phenomena.
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APPENDIX A: LINEARIZED GAP EQUATIONS
AND SUPERCONDUCTING SUSCEPTIBILITY

We begin with the Hamiltonian with on-site attractive in-
teractions

H =
∑

k


†(k)[H0(k) − μ]
(k) − U
∑
i,ρ

(
n2

i,1,ρ + n2
i,2,ρ

)

−2V
∑
i,ρ

ni,1,ρni,2,ρ . (A1)

Here we have adopted a mixed description, with the free-
particle Hamiltonian expressed in momentum space and the
interactions expressed in real space. As introduced in the main
text, U (V ) refers to the strength of the intraorbital (interor-
bital) interaction and ni,σ,ρ = ∑

s=↑,↓ c†
i,σ,s,ρci,σ,s,ρ refers to

the electron density operator for a given σ orbital at site i and
layer ρ. In order to enter a superconducting phase, at least one
of U and V is demanded to be positive.

At the mean-field level, the superconducting order parame-
ter near the critical temperature is determined by the linearized
gap equation [89,113]

�i = Vi

∑
j

χi j� j, (A2)

where the subscript i labels the representation of the super-
conducting order parameter in the given Nambu basis. For
this model, Vi = U or V , depending on whether �i is induced
by the intraorbital or interorbital interaction. The sum over j
means a sum of all possible representations. The supercon-
ducting susceptibility is given by

χi j = − 1

β

∑
iωn,k

Tr[�†
i Ge(k, iωn)� jGh(k, iωn)], (A3)

where β = 1/kBT with kB being the Boltzmann constant and
T being the temperature, and the electron and hole Matsubara-
Green functions are given by

Ge(k, iωn) = {iωn − [H0(k) − μ]}−1,

Gh(k, iωn) = {iωn + [H0(k) − μ]}−1. (A4)
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The sum of the imaginary frequency in χi j is calculated by

1

β

∑
iωn,k

F (iωn, k) =
∑

k

−1

2π i

∫
C

fD(z)F (z)dz

=
∑

k

−1

2π i
2π i

∑
j

Res[ fD(z j )F (z j )]

= −
∑

k

∑
j

Res[ fD(z j )F (z j )],

which will be used in the following calculations.
There are four distinct eigenvalues for H0(k) at each k.

We label them as ±ε1(k) and ±ε2(k). Below for simplic-
ity we focus on the limit with η1 = η2 = 0, accordingly

ε1(k) =
√

[M(k) − tz]2 + λ2(sin2 kx + sin2 ky) and ε2(k) =√
[M(k) + tz]2 + λ2(sin2 kx + sin2 ky), where M(k) = m −

t cos kx − t cos ky. Each of the eigenvalues is doubly
degenerate.

APPENDIX B: SUPERCONDUCTING SUSCEPTIBILITIES
FOR PAIRINGS IN THE A1g REPRESENTATION

The two pairing order parameters belonging to the A1g

representation both originate from the intraorbital interac-
tion, hence Vi = U . The linearized gap equations for �1 =
(�1,1,�1,2)T become

�1,1 = Uχ1,11�1,1 + Uχ1,12�1,2,

�1,2 = Uχ1,21�1,1 + Uχ1,22�1,2. (B1)

Here the first subscript 1 of �1,i means that the two kinds
of pairings both belong to the A1g representation, and the
second subscript corresponds to the label of these two kinds of
pairings. The above gap equations can be rewritten in a matrix
form:

�1 =
(

Uχ1,11 Uχ1,12

Uχ1,21 Uχ1,22

)
�1. (B2)

In the weak-coupling regime, it is known that only a small
energy window near the Fermi surface takes part in the su-
perconducting instability, so one can make the approximation
ε1 ≈ ε2 ≈ μ if the Fermi level crosses both bands with energy
ε1(k) and ε2(k). Here, without generality, we consider μ > 0,
assuming electron doping. The superconducting susceptibili-
ties are given by

χ1,11 = − 1

β

∑
iωn,k

Tr[�†
1,1Ge(k, iωn)�1,1Gh(k, iωn)]

≈ 1

β

∑
k

1

ξ1
tanh

βξ1

2
+ 1

ξ2
tanh

βξ2

2
,

χ1,12 = χ1,21

= − 1

β

∑
iωn,k

Tr[�†
1,1Ge(k, iωn)�1,2Gh(k, iωn)]

≈ 1

β

∑
k

�1

ξ1
tanh

βξ1

2
+ �2

ξ2
tanh

βξ2

2
,

χ1,22 = − 1

β

∑
iωn,k

Tr[�†
1,2Ge(k, iωn)�1,2Gh(k, iωn)]

≈ 1

β

∑
k

�2
1

ξ1
tanh

βξ1

2
+ �2

2

ξ2
tanh

βξ2

2
, (B3)

where ξ1 = ε1(k) − μ and ξ2 = ε2(k) − μ, �1 = [M(k) −
tz]/μ, and �2 = [M(k) + tz]/μ.

APPENDIX C: SUPERCONDUCTING SUSCEPTIBILITY
FOR THE PAIRING IN THE A1u REPRESENTATION

The pairing in the A1u representation originates from the in-
terorbital interaction, so Vi = V for this case and the linearized
gap equation is given by

�2 = V χ2�2, (C1)

where

χ2 = − 1

β

∑
iωn,k

Tr[�†
2Ge(k, iωn)�2Gh(k, iωn)]

≈
∑

k

1 − �2
1

ξ1
tanh

βξ1

2
+ 1 − �2

1

ξ2
tanh

βξ2

2
. (C2)

APPENDIX D: SUPERCONDUCTING SUSCEPTIBILITY
FOR THE PAIRING IN THE A2u REPRESENTATION

The pairing in the A2u representation also originates from
the interorbital interaction, hence Vi = V for this case and the
linearized gap equation is given by

�3 = V χ3�3, (D1)

where

χ3 = − 1

β

∑
iωn,k

Tr[�†
3Ge(k, iωn)�3Gh(k, iωn)]

≈
∑

k

1 − �2
1

ξ1
tanh

βξ1

2
+ 1 − �2

2

ξ2
tanh

βξ2

2
. (D2)

The result reveals χ2 = χ3. This degeneracy is a result of the
considered limit η1 = η2 = 0 and will be lifted once they are
nonzero. By numerically calculating the ground-state energy
under the same condition, we find that �3 will result in a
smaller ground-state energy in comparison with �2 when η1

and η2 are both nonzero, indicating that �3 will win over �2.

APPENDIX E: SUPERCONDUCTING SUSCEPTIBILITIES
FOR PAIRINGS IN THE Eu REPRESENTATION

The two pairing order parameters belonging to the Eu

representation both originate from the interorbital interac-
tion, hence Vi = V . The linearized gap equations for �4 =
(�4,1,�4,2)T are

�4 =
(

V χ4,11 V χ4,12

V χ4,21 V χ4,22

)
�4. (E1)

where

χ4,11 = − 1

β

∑
iωn,k

Tr[�†
4,1Ge(k, iωn)�4,1Gh(k, iωn)]
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≈
∑

k

λ2 sin2 ky

μ2ξ1
tanh

βξ1

2
+ λ2 sin2 ky

μ2ξ2
tanh

βξ2

2

≈ χ3

2
,

χ4,22 = − 1

β

∑
iωn,k

Tr[�†
4,2Ge(k, iωn)�4,2Gh(k, iωn)]

≈
∑

k

λ2 sin2 kx

μ2ξ1
tanh

βξ1

2
+ λ2 sin2 kx

μ2ξ2
tanh

βξ2

2

≈ χ3

2
,

χ4,12 = − 1

β

∑
iωn,k

Tr[�†
4,1Ge(k, iωn)�4,2Gh(k, iωn)] = 0,

χ4,21 = − 1

β

∑
iωn,k

Tr[�†
4,2Ge(k, iωn)�4,1Gh(k, iωn)] = 0.

(E2)

Above, the relation χ4,11 = χ4,22 can be inferred from the
C4z symmetry of the Hamiltonian. For the relation χ4,11 =
χ4,22 ≈ χ3/2, it can be inferred from the fact that near the
Fermi surface, according to the energy spectrum, one has
1 − �2

1,2 ≈ λ2(sin2 kx + sin2 ky)/μ2. This relation indicates
that the pairings in the Eu representation will not be favored.

APPENDIX F: PAIRING PHASE DIAGRAM

Here we consider a concrete case to show how to determine
the pairing phase diagram. Without loss of generality, we con-
sider that the band minimum of the energy spectrum is located
at the time-reversal invariant momentum (kx, ky) = (0, 0). To
analytically estimate the superconducting susceptibilities, we
expand the Hamiltonian to the second order in momentum.
Accordingly, we have

ε1,2 =
√

[M(k) ± tz]2 + (sin2 kx + sin2 ky)λ2

≈
√

(m − 2t + tk2

2
± tz )2 + λ2k2, (F1)

where k2 = k2
x + k2

y . Near the two Fermi surfaces, the energies
satisfy ε2

1,2 ≈ μ2, accordingly, we can solve k2 on the Fermi
surface. Therefore, the approximated M(k) near the two Fermi
surfaces are given by

M1 = −λ2 +
√

2tλ2(m − 2t − tz ) + λ4 + t2μ2

t
+ tz,

M2 = −λ2 +
√

2tλ2(m − 2t + tz ) + λ4 + t2μ2

t
− tz. (F2)

Using the substitution
∑

k → ∫
D(ξi)dξi, we obtain

χ1,11 =
∫

dξ1
D(ξ1)

ξ1
tanh

βξ1

2
+

∫
dξ2

D(ξ2)

ξ2
tanh

βξ2

2
,

χ1,12 = χ1,21 =
∫

dξ1
D(ξ1)�1

ξ1
tanh

βξ1

2

+
∫

dξ2
D(ξ2)�2

ξ2
tanh

βξ2

2
,

χ1,22 =
∫

dξ1D(ξ1)
�2

1

ξ1
tanh

βξ1

2

+
∫

dξ2D(ξ2)
�2

2

ξ2
tanh

βξ2

2
,

χ2 = χ3 =
∫

dξ1D(ξ1)
1 − �2

1

ξ1
tanh

βξ1

2

+
∫

dξ2D(ξ2)
1 − �2

2

ξ2
tanh

βξ2

2
,

χ4,11 = χ4,22 = χ3

2
,

χ4,12 = χ4,21 = 0, (F3)

where �1 = (M1 − tz )/μ and �2 = (M2 + tz )/μ. The density
of states is given by

D(ξi) =
∫

d2k

(2π )2
δ(ξ − ξi )

=
∫

dξi

(2π )2

(2πk)dk

dξi
δ(ξ − ξi )

= m∗
i

2π
, (F4)

where we have used
∫

d2k = ∫ +∞
0 kdk

∫ 2π

0 dθ =
2π

∫ +∞
0 kdk and the approximation ξi ≈ ξ0 + k2

2m∗
i
. Series

expansion of ε1,2 gives rise to

m∗
1 = |m − 2t − tz|

(m − 2t − tz )t + λ2
,

m∗
2 = |m − 2t + tz|

(m − 2t + tz )t + λ2
. (F5)

For the convenience of discussion, we introduce the following
notations:

D1 = D(ξ1) = m∗
1

2π
,

D2 = D(ξ2) = m∗
2

2π
. (F6)

Only one independent equation is reserved for �4 when
considering Eq. (F3). Hence we simplify the notation χ4 =
χ4,11 = χ4,22, and all of the linearized gap equations become

det

[(
Uχ1,11

(
T �1

C

)
Uχ1,12

(
T �1

C

)
Uχ1,21

(
T �1

C

)
Uχ1,22

(
T �1

C

)
)

− I2×2

]
= 0,

V χ2
(
T �2

C

) = 1,

V χ3
(
T �3

C

) = 1,

V χ4
(
T �4

C

) = 1, (F7)

where

χ1,11 = (D1 + D2)χ0,

χ1,12 = χ1,21 = [D1�1 + D2�2]χ0,

χ1,22 = [
D1�

2
1 + D2�

2
2

]
χ0,

χ2 = χ3 = 2χ4 = [
D1

(
1 − �2

1

) + D2
(
1 − �2

2

)]
χ0,

(F8)
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with χ0 = ∫
dξ 1

ξ
tanh βξ

2 being the standard superconducting
susceptibility normalized by density of states. With the upper
and lower limits of the integration fixed, χ0 is a monotonically
increasing function of the inverse temperature β. By solving
the equations in Eq. (F7), one can determine which pairing
channel has the highest critical temperature. Apparently, since

χ4 < χ2 = χ3, the superconducting pairing �4 always has a
lower critical temperature than �2 and �3, i.e., T �4

C < T �2
C =

T �3
C . On the other hand, we have mentioned previously that

�3 will win over �2 when η1 and η2 are both nonzero, so the
pairing phase boundary is determined by χ1(T �1

C ) = χ3(T �3
C ),

which gives the typical form shown in Fig. 3.
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