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The lowest-energy excitations of superconductors do not carry an electric charge, as their wave function is
equally electron-like and hole-like. This fundamental property is not easy to study in electrical measurements
that rely on the charge to generate an observable signal. The ability of a quantum dot to act as a charge filter
enables us to solve this problem and measure the quasiparticle charge in superconducting-semiconducting hybrid
nanowire heterostructures. We report measurements on a three-terminal circuit, in which an injection lead
excites a nonequilibrium quasiparticle distribution in the hybrid system, and the electron or hole component
of the resulting quasiparticles is detected using a quantum dot as a tunable charge and energy filter. The
results verify the chargeless nature of the quasiparticles at the gap edge and reveal the complete relaxation
of injected charge and energy in a proximitized nanowire, resolving open questions in previous three-terminal
experiments.
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I. INTRODUCTION

The elementary excitations in superconductors (SCs) are
Bogoliubov quasiparticles (QPs), i.e., the superposition of an
electron excitation with amplitude u(E ) and a hole excitation
with amplitude v(E ), where E is the energy of the excitation.
The electron and hole components are energy-dependent and

are given by |u(E )|2 = 1
2 (1 +

√
E2 − �2

SC/E ) and |v(E )|2 =
1
2 (1 −

√
E2 − �2

SC/E ), where �SC is the superconducting en-
ergy gap, and the QP energy obeys E > �SC. The charge of
the excitation, given by q(E ) = e[|v(E )|2 − |u(E )|2], varies
between −e (electron-like) when the excitation energy is far
above the Fermi energy and +e (hole-like) when it is far
below. In the vicinity of the gap, E ≈ �SC, the QPs consist
of nearly equal superpositions of electron and hole parts as
|u(E )| ≈ |v(E )| ≈ 1/

√
2. Therefore, their charge approaches

zero [1].
In thermal equilibrium and when kBT � �SC, where kB

is the Boltzmann constant and T the electron temperature,
the presence of the energy gap ensures that almost no QP
excitations exist in the system. However, external perturba-
tions such as injection of charge can drive the system out
of equilibrium, making its distribution function, f , deviate
from the Fermi-Dirac distribution, fFD. This departure can
be decomposed into several nonequilibrium modes [2]. The
two most discussed modes in a superconductor are energy
and charge nonequilibrium. In transport experiments, inject-
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ing electrons above the SC gap brings extra charge as well
as energy into the system, exciting both modes. Although the
distribution is restored to fFD far away from the perturbation,
each mode relaxes to the equilibrium over different length and
time scales. This process is studied thoroughly for metallic
SCs, both theoretically and experimentally [3–9].

The discussion so far considered intrinsic superconduc-
tors where the energy gap and the electron-hole correlations
are generated by an internal pairing mechanism, such as
electron-phonon coupling. Similar effects are also found
in SC-proximitized semiconducting (SM) systems, where
electron-hole correlations are induced by the proximity effect
instead. Here, similar to the formation of Andreev bound
states (ABSs) in a confined system, Andreev reflection (AR)
on the SM-SC interface pairs states above and below the
Fermi surface in the SM to create a superconducting-like band
structure with an induced gap �ind. Its relative size �ind/�SC,
being between 0 and 1, is directly related to the coupling
strength between the SC and SM [10]. These proximitized
states are also superpositions of electrons and holes with
energy-dependent amplitudes u(E ) and v(E ), respectively.
Similar to intrinsic SC, at E ≈ �ind, the electron and hole
components are nearly equal, driving the charge of the lowest-
energy proximitized states to zero [11–13]. This effect was
measured both for discrete ABSs [14] and proximitized semi-
conducting subbands [15].

Nonlocal transport is a typical experimental tool to study
nonequilibrium modes and their relaxation. Such a setup uti-
lizes two tunnel junctions: an injector and a detector. The
injector junction injects particles into the system under study,
exciting one or more nonequilibrium modes. The detector
junction is usually unbiased and measures the response of
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FIG. 1. (a)–(c) Illustrations of nonequilibrium modes in proximitized superconductors. (a) Thermal equilibrium with no QP present.
(b) Injection of electrons excites both charge and energy nonequilibrium modes. (c) Pure energy nonequilibrium mode after the charge
mode has relaxed. The illustrations in this paper are not to scale. (d), (e) A scheme of the nonlocal experiment: A 1-μm-long, grounded
superconductor with a gap �SC is attached to the middle section of the nanowire, inducing a proximity gap �ind. On the left side, a tunnel
junction under finite bias injects current. On the right side, a quantum dot filters either electrons (d) or holes (e) depending on its occupation.
Arrows indicate directions of electron hopping. (f) Device schematic and measurement setup. Sketches in the InSb wire segments indicate the
potential landscape created by the finger gates. The voltages applied on each group of finger gates are schematically represented by the height
of the voltage sources in the circuit diagram. Unlabeled voltages are kept constant within each data set. (g) False-colored scanning electron
microscopy image of a lithographically identical device to devices A and B presented in this work. Bottom gate electrodes are colored in red
and separated from the InSb nanowire by a thin layer of atomic-layer-deposited Al2O3 dielectric of around 20 nm (invisible in this image).
The middle section of the nanowire is covered by a thin, superconducting layer of Al film colored in cyan. Two Au ohmic leads are colored in
yellow and form the left and right contacts. Scale bar is 500 nm.

the system at some distance from the injection point. Electron
transport is well suited to measure the charge nonequilibrium
mode [3,16] and can be adapted to measure spin imbalance
[17,18]. However, the energy mode is harder to measure this
way, since electron and hole currents flowing into the unbiased
probe cancel each other out by virtue of the charge neutrality
of this mode [19]. An energy nonequilibrium mode will, how-
ever, generate a measurable charge current if the transmission
probability of the tunnel barrier, T , is energy-dependent and
filters out only one type of carrier [20,21]. A semiconducting
quantum dot (QD), with its single-electron orbitals having
sharply peaked transmission amplitudes only for a particular
charge, energy, and spin, is such a transmission filter. Previ-
ous works have made use of the energy filtering effects of a
QD to probe the nonequilibrium distribution of quantum Hall
edge states [22]. As demonstrated later in this text, similarly
applying the charge filtering capabilities of QDs opens up
new avenues to the study of nonequilibrium in hybrid SM-SC
systems.

Nonlocal conductance (NLC) can also serve to measure the
sign of the charge of ABSs [14,23] and other effects such as
crossed Andreev reflection [23–28]. Recently it was further
suggested as a powerful tool to measure the induced supercon-
ducting gap in semiconducting nanowires [29]. NLC was used
to differentiate bulk-induced gap closing from the presence

of local resonances in tunnel barriers [30,31]. All reported
measurements in such geometries share common characteris-
tic features—e.g., predominantly antisymmetric NLC whose
global sign is heavily influenced by the tunnel barrier on
the current-receiving side. We show that these effects can
arise from the charge and energy dependence of T , which is
ubiquitous in gate-defined tunnel barriers.

In this work, we study NLC in a hybrid SC heterostructure.
Gate-defined QDs separating the ohmic leads from the hybrid
segment are used as charge and energy filters. We detect
independently the electron and hole components of the QP
wave function, observing charge neutrality of the excitations
at the superconducting gap edge. Applying a magnetic field
that closes the induced gap shows that the charge-to-energy
conversion is independent of the presence of an induced spec-
tral gap and only requires Andreev reflection at the SM-SC
interface. Finally, using QDs to inject and detect QPs, we
demonstrate complete relaxation of the detected QPs into the
lowest excited states.

II. RESULTS

A. Qualitative description of the experiment

Figure 1(a) sketches a hybrid SC heterostructure at-
tached to a normal lead (N) through a tunnel junction. The
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proximity effect from the SC opens an induced gap �ind. The
system is in equilibrium, and if �ind � kBT , almost no QPs
are excited in the system. When we apply a bias VL such
that −eVL > �ind [Fig. 1(b)], electrons are injected into the
proximitized semiconductor. However, the native excitations
are not electrons, but Bogoliubov QPs with a charge generally
smaller than the elementary charge. Thus, pure electron-like
excitations in the injecting lead are eventually converted in the
SM-SC hybrid to Bogoliubov quasiparticles, i.e., excitations
consisting of a superposition of electron-like and hole-like
particles with amplitudes u(E ) and v(E ), as discussed above.
During this process, the excess charge is drained to the ground
through AR at the interface with Al [Fig. 1(c)]. Until the
eventual recombination of all QPs back into the Cooper pair
condensate, they carry a finite energy excitation [6,9].

To measure the generated nonequilibrium distribution, we
attach another lead on the right, separated by a semicon-
ducting junction. A conventional tunnel junction supports
bidirectional currents, where electrons tunnel to unoccupied
states above EF and holes tunnel to occupied states below it.
When both charge carriers are present, such as in a SC, the
current is proportional to the charge of the QP, q [32], which
is expected to vanish at the gap edge. A QD embedded in a
junction can be tuned to only allow current flow in a single
direction. When the charging energy of the QD is far greater
than other energy scales in the circuit (�ind and bias voltage)
and it is tuned to be near a charge degeneracy between having
N and N − 1 electrons, it can be considered a single isolated
fermionic level. If this level is at �ind > 0 and thus its ground
state is empty [Fig. 1(d)], it allows only electrons to flow from
the SM-SC system to the N lead, with a rate proportional
to the electron component |u|2 of the proximitized states.
Similarly, a level at −�ind, being occupied in its ground state,
only allows holes to tunnel to N with a rate proportional to
|v|2 [Fig. 1(e)]. Thus, a QD is a charge-selective probe that
couples to either the electron or hole component of the QP
wave function depending on its occupation.

B. Methods

The sample was fabricated using the same methods de-
scribed in Ref. [33]. A 3D illustration and a scanning electron
microscope image of the device geometry are shown in
Figs. 1(f) and 1(g). Ti+Pd local bottom gate electrodes were
evaporated on Si substrates followed by HSQ shadow wall
structures and then atomic-layer deposited Al2O3 dielectric.
InSb nanowires were grown by MOVPE [34]. The nanowires
were then transferred using an optical manipulator to the sub-
strate described above. Atomic H cleaning removed the oxide
on InSb, and following in situ transfer in the same e-beam
evaporator, 14 nm of Al thin film was deposited at liquid N2

temperature. The film covers the nanowire middle segment,
proximitizing InSb and forming our galvanically connected
middle lead (S). Finally, the N leads were fabricated by an-
other e-beam lithography step. After patterning, Ar milling
removes the newly formed surface oxide again, and 140 nm
of Cr+Au contact was evaporated to form ohmic contacts to
InSb. The hybrid SC-SM segment in the devices reported here
is 1 μm long, and the typical distance between the centers of
the finger gates forming the QD is 110 nm. Overall, 5 devices

(a)

(b)

(e) (f)

(c)

(d)

FIG. 2. (a) Circuit diagram for local conductance GRR measure-
ment of device A. (b) GRR through the right N-QD-S junction.
Charge occupation numbers are labeled within corresponding
Coulomb diamonds, N being odd. The white box indicates the
zoomed-in area in (e). (c) Circuit diagram for nonlocal conductance
GRL measurements. (d) Energy alignment between the QD and leads
for the four injected vs detected charge type possibilities when
measuring GRL. Directions of electron tunneling are indicated with
arrows. (e) Higher-resolution scan of the local conductance of the
right side GRR near the QD charge degeneracy point marked in panel
(b). Insets: Sketches of the energy alignment between the S, right N,
and the QD level at the Coulomb-diamond tips (circled in white).
(f) The NLC GRL measured on the right side as a function of the
bias on the left side VL and the right dot gate Vdot, with VR = 0.
The correspondence between the four resonant features and the four
situations depicted in panel (d) are circled and labeled with Roman
numerals.

showing the same qualitative behavior were measured. Here
we report on detailed scans of two such devices.

C. Detection of quasiparticle charge

First, we characterize the QD defined using the three
finger gates in the right junction. Figure 2(a) illustrates
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the circuit used for measurement of the local conductance
GRR ≡ dIR/dVR through the QD when applying VR and vary-
ing Vdot while keeping S and left N grounded. We observe
Coulomb diamonds of varying sizes, typical of few-electron
QDs [Fig. 2(b)]. By comparing the resonance lines with the
constant interaction model of a QD [35], we extract the capac-
itance parameters: gate and bias lever arms and the charging
energy, thus mapping the applied gate voltage to the QD’s
chemical potential μdot(N ) = −eα(Vdot − Vres,N) where α is
the gate lever arm and Vres,N is the gate voltage when the N
and N − 1 charge states are degenerate [36].

The circuit used to measure the nonlocal conductance
GRL ≡ dIR/dVL is sketched in Fig. 2(c). The sign of the
injecting bias determines the type of charge carriers injected
into the hybrid S, electrons if VL < 0 and holes vice versa.
The detected charge, as explained above, is determined by the
receiving QD’s chemical potential μdot (N + 1) being above
or below 0. Figure 2(d) illustrates the four possible injection
versus detection charge combinations when both the left N
and QD are on resonance with the SC gap edge.

Zooming in to the N → N + 1 charge transition
[Fig. 2(b)], we measure the detailed local and nonlocal
conductance structures [Figs. 2(e) and 2(f), respectively]. The
local conductance [Fig. 2(e)] shows QD diamond lines with
the exception that transport is blocked at energies smaller than
�ind ≈ 250 μV [13,23,37–45]. We note that due to the strong
SM-SC coupling, �ind ≈ �SC [10]. QDs coupled to SCs can
form ABSs [13,46]. Such formation requires two-electron
tunneling processes to take place between the QD and the
proximitized segment. By raising the tunnel barriers, we
significantly suppress such two-electron processes and inhibit
the formation of ABSs in the QD. The lack of subgap features
confirms that the QD is not hybridized by the SC and therefore
maintains its pure electron or hole character.

In Fig. 2(f), we vary Vdot through the same resonances
while scanning VL. At subgap energies (|eVL| < �ind), GRL

is similarly 0 due to the absence of subgap excitations.
GRL is also weak when Vdot is far away from the tips
of the Coulomb diamonds [Fig. 2(b)]. Finite NLC is only
obtained when the left bias is aligned with the induced
SC gap edges, eVL ≈ ±�ind, and the QD level is inside
the induced gap: −�ind � μdot(N + 1) � �ind. The NLC
feature around the QD crossing contains four lobes that ex-
hibit a twofold antisymmetry, changing signs under either
opposite bias or dot occupation. This four-lobed structure
corresponds exactly to the four charge combinations in
Fig. 2(d) and shows up in almost all charge degeneracy points
we have measured, including other dot configurations and
devices [47].

Consider the feature marked by “I” in Fig. 2(f) and the
process schematically depicted [Fig. 2(d)]. The electrons in-
jected by the negative left bias into the central region create
both energy and charge nonequilibrium. The resulting QPs
arriving at the right end of the hybrid S must then reach the
right N lead via a QD tuned to μdot(N + 1) ≈ −�ind, which
only allows holes to tunnel out. The presence of this NLC lobe
is thus a result of the hole component of the wave function v.
The inversion of charge in this e → h process results in the
observed positive NLC due to the current-direction conven-
tion. We can also tune the dot to μdot(N ) ≈ +�ind (marked

“III”). Here electrons are still injected into the central region,
but now the QD allows only electrons to tunnel out to the right
lead because its ground state is an unoccupied fermionic level.
We mark this process e → e. The NLC is thus negative, with
a magnitude that relates to u.

The NLC is also predominantly antisymmetric with respect
to the applied voltage bias. This can be understood by con-
sidering the current-rectifying behavior of the QD at a fixed
occupancy. When μdot > 0, only the flow of electrons from
the S to the N lead is allowed, regardless of the charge of the
injected particles. The current passing through the dot is thus
always positive, forcing the conductance (dI/dV ) to flip its
sign when the bias changes polarity. Similarly, when the dot
is placed at μdot < 0 to allow only holes to flow, the current
is always negative, and the rest follows suit. Antisymmetric
NLC is also a prevalent feature in conventional tunnel junction
measurements without any QD [30]. There, similar to our
observations, the global sign of the antisymmetric NLC is de-
termined by and varies with the gate on the current-detecting
junction. We argue that this ubiquitous antisymmetry with
respect to bias voltage stems from the unintentional charge
selectivity of the semiconducting tunnel junctions [48].

We note that the amplitudes of the GRL peaks are higher
when the ground state contains N + 1 electrons than when
it contains N electrons [Fig. 2(f)], with N being odd in this
setup. This difference in GRL can be attributed to the spin-
degenerate DOS of the dot, which gives rise to different
tunneling rates for even and odd occupation numbers [49,50].
The opposite trend can be observed in the N − 1 → N tran-
sition and the application of a small Zeeman field that lifts
this degeneracy restores the electron’s and hole’s amplitudes
to be nearly equal [51]. Spin degeneracy influences the QD
transmission rates of electrons and holes in a manner unre-
lated to the relative strengths of u and v, thus obscuring the
observation of charge neutrality.

D. Many-electron dots

The few-electron QD discussed above proves to be an
effective charge filter, able to detect separately the electron
and hole components of the QP wave function. However, the
presence of spin degeneracy modifies the tunneling rates of
electrons and holes and complicates direct comparison be-
tween u and v. To overcome this, we turn our attention to
device B, which has a larger QD whose orbital level spacing
is too small to be observed. Here, since multiple orbital levels
contribute to tunneling across, rendering dot and the spin
degeneracy negligible, the tunneling rates for electrons and
holes are nearly equal. Figure 3(a) shows the local conduc-
tance GRR through the QD as a function of the gate voltage,
when applying a bias of VR = ±�ind/e = ±250 μV between
the N and S leads on either side of the QD. We observe
equidistant Coulomb oscillations typical of many-electron
QDs. The magnitude of the oscillations varies from peak to
peak and between positive and negative applied VR, indicating
the mesoscopic details of transport are different under device
voltage changes. We expect such differences to modulate the
NLC as well.

The NLC oscillates as a function of Vdot when applying
VL = ±�ind/e = ±250 μV [Fig. 3(b)]. Every period of the
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(a)

(b)

(c)

FIG. 3. (a) The local conductance GRR of device B as a func-
tion of Vdot, measured with fixed VR = ±250 μV. (b) The nonlocal
conductance GRL of device B as a function of Vdot, measured with
fixed VL = ±250 μV, respectively. The four peaks in one of the
periodic structures are labeled by their injected and detected charge
states being electrons (e) or holes (h). (c) The relative magnitude of
h → h, h → e, e → h, and e → e processes to the magnitude of the
local conductance through the QD in the same configuration. See
details in text.

oscillation has an internal structure where a positive peak
follows a negative peak (green curve) or the opposite (purple
curve). Each peak in the NLC trace represents a different
process in which either electrons (e) or holes (h) are injected
and either the electron (e) or hole (h) component of the wave
function is detected. With a negative applied bias, electrons
are injected into the system. The negative conductance peak
appears first, resulting from the QD detecting the electron
component of the wave function (e → e). After μdot crossed
zero, the QD detects the hole component (e → h), giving rise
to positive conductance. The choice of injected charge does
not affect the charge selectivity of our probe. Thus, injecting
holes instead of the electrons (positive VL) leads to an inver-
sion of the sign of GRL.

In Fig. 3(c) we show the amplitude of GRL relative to the
amplitude of GRR through the QD, as a function of the four
processes, averaged among the multiple resonances shown in
Figs. 3(a) and 3(b). The average relative amplitudes of all
the processes are around 0.1. The differences between ampli-
tudes of the four processes are much smaller than variations
within each process. This is consistent with the BCS picture
discussed above, in which the excited states in a superconduc-
tor at the gap edge are chargeless Bogoliubov quasiparticles,
i.e., |u| = |v|.

E. Presence of particle-hole correlation after the closing
of the induced gap

The three-terminal setup we employ allows us to measure
the induced gap independently from possible localized ABSs
in the vicinity of the junction. The topological phase transition
predicted to take place in this system would manifest as the
closing and reopening of the induced gap in response to the
application of a magnetic field or a change in the chemical
potential at a finite magnetic field [29]. In Figs. 4(a)–4(d),
we show the full conductance matrix G = (GLL GLR

GRL GRR
) as a

function of a magnetic Zeeman field BX applied along the
nanowire direction. While the local conductance on the left
side, GLL, shows a local subgap state crossing zero bias
at a finite field, GRR lacks such features. The bulk-induced
gap, seen in the nonlocal conductance, closes at B = 0.8 T
without reopening. The lack of gap reopening is consis-
tent with past measurements of the nonlocal conductance in
three-terminal geometry [30] and most likely results from the
presence of disorder as the dominating energy scale in these
nanowires [52].

In a conventional superconductor, the presence of charge-
less excitations and the existence of an energy gap are
correlated (except for a small region in the phase space char-
acterized by gapless superconductivity [1]). In a proximitized
system, both effects arise separately from Andreev reflection
at the SM-SC interface. To see this, we measure the nonlocal
conductance using a detector QD at different values of BX

[Fig. 4(e)]. Since the size of the induced gap decreases upon
increasing magnetic field, we apply a constant DC bias of
200 μV and AC excitation of 180 μV rms to ensure the in-
duced gap edge always lies within the measured bias window.
All of the nonlocal scans taken with BX < 2.5 T show a pos-
itive and a negative peak arising from the h → e and h → h
process, respectively, as discussed above. Taking the maximal
positive value of GRL(BX) as the amplitude of the h → e
process, and the maximal negative value as the amplitude of
the h → h process, we track the evolution of both as a function
of BX [Fig. 4(f)]. Both processes survive well above the gap
closing field of 0.8 T. Only above 2 T, the critical field of the
Al film, we observe a decay in the NLC amplitude. At higher
fields the h → e process that must involve superconductivity
is absent, and the remainder of the h → h process may be
attributed to voltage-divider effects [53]. The observation of
positive nonlocal conductance up to 2 T shows that electron-
hole correlations persist as long as Andreev reflection between
the wire and superconducting film is possible. This effect is
independent of the presence of an induced gap in the DOS of
the proximitized system.

F. Detecting energy relaxation using QDs

A commonly observed feature in the three-terminal setup
we study is the presence of significant NLC when applying
a bias greater than the gap of the parent SC, |eV | > �SC

[14,30]. This is unexpected since the injected particles can di-
rectly drain to the ground via the available states in the Al film
at such energies, and thus should not be able to emerge at the
other side of a long enough nanowire. To study the behavior
of the injected QPs at high energies, we tune the finger gates
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FIG. 4. (a)–(d) Conductance matrix G as a function of in-plane
magnetic field (BX) and bias. GLL (a) and GRL (c) are measured as a
function of VL. GRR (b) and GLR (d) are measured as a function of VR.
(e) GRL as a function of μdot (N ) at different values of BX measured
in device A. The line traces are normalized to the maximum value of
each: GRL(BX)/max[|GRL(BX)|]. (f) Amplitude of the NLC for the
h → e (positive NLC; blue) and h → h (negative NLC; orange) as a
function BX. The colored markers show the values of BX where the
line scans in panel (a) are taken. The B fields at which the spectral
gap in InSb closes, BC,InSb, and at which the superconductivity in Al
vanishes, BC,Al, are indicated by corresponding vertical lines.

in device A to transform the current-injecting junction from
a tunnel barrier into a second QD, so that QPs are injected
only at controlled energies into the SC [Fig. 5(a)]. We fix the
bias on the injecting side to Vinj ≡ VL = 1 mV and vary the
energy of the injected electrons by scanning the potential of
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FIG. 5. (a) A sketch of the energy relaxation experiment when
the device is operated under negative bias voltage on the left side.
(The situation of a positive bias voltage, as the case with the data
shown in the following panels, can be similarly represented using
a vertically mirrored sketch.) Dots are formed on both sides of the
nanowire. The bias is fixed on the right side, and injection energy
is determined by the energy of the left dot. The nonlocal current is
collected by the right dot. The applied bias is fixed to be Vinj = 1
mV. (b), (c) Dependence of Iinj (b) and Idet (c) vs μinj for fixed μdet ≈
−240 μV [see corresponding color in panel (d)]. (d) Idet as functions
of the chemical potentials of the QDs on the left μinj and right μdet.
The red vertical bar marks the gap edge and detector QD voltage
under which curves in panels (b) and (c) are taken. Horizontal bars
mark the line cuts shown in panel (e). (e) Normalized line scans of
Idet vs μdet for different injection energies [see corresponding color
in panel (d)]. Lines are vertically offset for clarity.

the injecting dot μinj. We verify that both inelastic tunneling
and elastic cotunneling across the injector dot are negligible in
our device [54]. Thus, the QDs are operated not only as charge
filters, but also as energy filters for both injected and detected
electrons.

Next, we show the simultaneously measured currents
through the injector dot (Iinj) and the detector dot (Idet) as
a function of the injection filter energy μinj [Figs. 5(b) and
5(c)], when the detector dot is fixed to the gap edge. The local
current, Iinj, is higher at μinj ≈ �ind and decays to a plateau,
a result of the high DOS at the gap edge combined with the
tunneling out of the QD being primarily elastic. Iinj depends
only on μinj, showing that coherent effects such as crossed
Andreev reflection are negligible [23–28] [55]. The nonlocal
current [Idet; Fig. 5(c)] is smaller than Iinj by two orders of
magnitude. It also has a peak when current is injected directly
at the gap edge, but persists when injection energy is higher.

The nonlocal current depends strongly on both μinj and
μdet [Fig. 5(d)]. Remarkably, we see that while the injection
energy modulates the magnitude of the detector current, it
does not influence the energy range in which finite Idet can be
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measured. Figure 5(e) shows Idet vs μdet for different values
of μinj, normalized by their maximal values. They all follow
the same trend—regardless of the injected electrons’ energy,
the nonlocal signal is only collected at energies comparable
to or smaller than |�ind|. The observation that electrons in-
jected at energies larger than �ind are detected only at the gap
edge implies inelastic relaxation plays an important role in
nonlocal conductance. Electrons injected above the gap are
either drained by the grounded SC or decay to the gap edge,
after which they are free to diffuse and reach the detector
junction. This observation explains why we do not observe
a finite QP charge even though they are only neutral at the gap
edge while the QDs have a finite energy broadening—as long
as the linewidth of the QD is smaller than �ind, the only QPs
available for transport are those with energy �ind.

III. DISCUSSION

Summing up our observations of charge and energy re-
laxation above, the emerging microscopic picture of nonlocal
charge transport in three-terminal nanowire devices thus con-
sists of four (possibly simultaneous) processes. First, a charge
is injected at some given energy into the nanowire. Second,
some of the injected electrons/holes are drained to the ground
via the superconducting lead and the remaining relax to the
lowest available state at the induced gap edge. Third, through
Andreev reflection, the charged electrons are converted to
chargeless Bogoliubov QPs. Finally, the QPs diffuse toward
the other exit lead, where they are projected onto a charge
polarity determined by the receiving junction.

In contrast to the QP continuum investigated here, previous
works have examined NLC produced by transport through
discrete subgap Andreev bound states in similar N-S-N hybrid
devices [14,32]. Distinctly from chargeless Bogoliubov QPs
at the gap edge, the BCS charge of these subgap states is
in general nonzero and varies drastically with gates. These
works concluded that the NLC produced by such states is
proportional to their BCS charge, implying GLR = GRL = 0
when |u| = |v|. However, as observed here and in accor-
dance with other works detecting NLC of the QP continuum
[30], antisymmetric NLC is still consistently detected even at
the gap edge where BCS charge of the QPs is expected to
vanish. We argue that finite NLC of chargeless QPs stems
from nonideal tunnel barriers that transmit electrons and holes
with nonequal, energy-dependent probabilities, a generic
property of semiconducting junctions. As the N-S tunnel junc-
tions also exhibit a preference for a certain charge (see Fig. S3
in the Supplemental Material), even when |u| = |v|, the tunnel
barrier transmits more electrons than holes. Thus, the resulting
NLC, being proportional to the difference between these two
transmission amplitudes [32], becomes finite and antisym-
metric. To put the above into the scattering formalism, the
commonly used framework to describe electron transport in
this system, the NLC is given by

Gi j (E ) = e2

h

(
T eh

i j − T ee
i j

)
, (1)

where T ee
i j and T eh

i j are the energy-dependent transmission
amplitudes from an electron in lead i to an electron or a hole
in lead j �= i [29]. The presence of charge and energy filters,

such as the QDs employed in this work, significantly modi-
fies these transmission amplitudes. When the QD’s chemical
potential is tuned above the Fermi level, T eh

i j is suppressed,
whereas when the QD’s chemical potential is tuned below the
Fermi level, T ee

i j is suppressed. We further note that although
one is tempted to associate the NLC observed in our system
directly with the relevant transmission amplitudes expressed
here, the scattering formalism itself is insufficient to model
some important aspects of the actual transport. The scattering
formalism assumes that the motion of the QPs in the system
conserves energy [56], but this assumption does not hold in
our system since we observe that energy relaxation plays
an important role in NLC. We thus conclude that while the
presence or absence of NLC can serve as a useful tool in the
determination of the induced gap, a quantitative analysis of
NLC should go beyond the scattering formalism.

IV. CONCLUSIONS

In conclusion, by measuring the nonlocal conductance in
a three-terminal device with well-controlled QDs at the ends,
we can detect the electron and hole components of nonequi-
librium quasiparticle wave functions. Our results reveal a
population of fully charge-relaxed neutral BCS excitations
at the gap edge in a proximitized nanowire under nonlo-
cal charge injection. We further show that the conversion of
injected charge to correlated electron-hole excitations does
not require an induced gap. By injecting particles at specific
energies, we observe the inelastic decay of injected charges
to the lowest excited states, the gap edge. We show that the
combined effect of charge neutral excitation and a tunnel
barrier with energy selectivity leads to a current-rectifying
effect. These results allow us to understand the ubiquitous
antisymmetry of the nonlocal conductance observed in pre-
vious reports [30] and suggest that the correct framework
to discuss such experiments is in terms of nonequilibrium
superconductivity. Crucially, we show that inelastic decay
of injected quasiparticles dominates nonlocal transport and
therefore should be taken into account when attempting to
model the system.

The results observed here are in very good agreement with
the results obtained by Denisov et al. [15], measuring the
nonlocal response of Al-covered InAs nanowires. There, the
problem of detecting the charge-neutral mode was resolved
by measuring the nonlocal shot noise response, showing
the charge neutrality of the excitations within the hybrid
nanowire. The alternative approach presented here, utilizing
QDs as as energy- and charge-selective injectors and detec-
tors, supplements the shot noise measurements by uncovering
the relaxation processes taking place in the transport process.
It can further allow the study of nonequilibrium distribu-
tion functions in proximitized semiconducting systems with
spectral resolution. In the presence of discrete ABSs or QPs
occupying a wide energy range, the energy resolution of a QD
allows one to excite and probe different energies as desired.
We further propose that in the presence of magnetic fields,
QDs can also serve as efficient bipolar spin filters [57], al-
lowing us to directly measure the spin-polarized density of
states of proximitized SC, triplet SC correlations, and extract
the relevant relaxation rates and mechanisms.
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All raw data in the publication and the analysis code used
to generate figures are available [58].
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