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Dynamical magnetic response in superconductors with finite-momentum pairs
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We derive the dynamical magnetic response functions in the Fulde-Ferrell (FF) state of a superconductor with
inversion symmetry. The pair momentum 2q is obtained by minimization of the condensation energy and the
resulting quasiparticle states and spectral functions exhibit the segmentation into paired and unpaired regions
due to the finite q. The dynamical magnetic susceptibility is then calculated in linear response formalism in the
FF state with finite-q condensate resulting from s-wave or d-wave pairing. We show that quasiparticle excitations
inside as well as between paired and unpaired segments contribute to the dynamical response. We discuss its
dependence on frequency and momentum transfer which develops a characteristic symmetry breaking parallel
to q. Furthermore, we investigate the possible influence on Knight shift and in the case of d-wave pairing on the
spin resonance formation in the FF state.
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I. INTRODUCTION

In singlet superconductors with modest orbital pair break-
ing a state with finite momentum may become stable at
low temperature and high fields. In this state Cooper pairs
(−k + q ↑, k + q ↓) with finite common momentum 2q form
the Fulde-Ferrell (FF) [1] phase. A related phase is the
Larkin-Ovchinnikov (LO) [2] state with superposition of
pairs having (q,−q) momenta; only the former state will
be considered here for reasons explained in Sec. II. These
phases have been investigated in detail by various theoretical
techniques, mostly focused on the B-T phase diagram and
its critical curves. Superconductors of different dimensional-
ity [3–7] as well as condensed quantum gases [8,9] have been
studied.

Experimental evidence for this exotic pair state in the
low-temperature and high-field sector is, however, hard to
obtain, possibly caused by sensitivity to impurity scatter-
ing [10–12], in particular in the LO phase [13] and orbital
pair breaking [14,15]. Candidates are found among un-
conventional heavy fermion superconductors [11], organic
materials [16,17], and also Fe pnictides [11,18,19]. The ev-
idence for the FF or LO phases is primarily obtained from
thermodynamic anomalies [20] or NMR experiments [21]
and these results can be used to determine the FFLO phase
boundaries.

Such experiments, however, do not probe the microscopic
nature of the FF state, whose central aspect is the breakup
of the Fermi surface into paired and unpaired segments. This
state is due to a k-dependent trade-off between the loss of
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condensation energy due to the pair kinetic energy associated
with the overall momentum and a gain in Zeeman energy
due to population imbalance of spin states in the external
field [22,23]. The relative size of paired and unpaired seg-
ments depends on the size of the field where the former
vanishes above the critical field. Probing the microscopic
structure of the FF state in practice has rarely been attempted
due to lack of suitable techniques. It was proposed [24,25]
that the scanning tunneling spectroscopy (STM)-based quasi-
particle interference method is a promising candidate for this
purpose.

Another important probe for the FF state may be inelastic
neutron scattering (INS), which probes the dynamical spin
susceptibility. The latter is determined by the quasiparticle
excitations in the FF phase which are considerably different
from the BCS phase for two reasons: (i) the gap amplitude
will be much reduced for states in the paired segments and
(ii) the appearance of unpaired states will lead to additional
low-energy response and a symmetry breaking in momentum
space with respect to the direction of the pair momentum 2q.
Both effects should leave their signature on the dynamical spin
response observable by INS. Spin dynamics has so far been
mostly investigated for the q = 0 BCS phase. It also encom-
passes the possibility of a spin exciton or resonance inside the
gap for an unconventional, e.g., d-wave gap symmetry with
nodal structure [26,27] if quasiparticle exchange interactions
are sufficiently strong. Furthermore, the static or low-energy
spin response determines the Knight shift and NMR relaxation
rate which is also an important means to investigate the super-
conducting gap function. For the application of these methods
to the FF phase it is therefore necessary to have a detailed
theory of the static and dynamical magnetic susceptibility
in this exotic state available for comparison. In the present
work we give a derivation of the magnetic response function
and a discussion of possible observable principal features.
This type of spectroscopic knowledge may contribute to the
microscopic understanding of the peculiar superconducting
states with finite-momentum Cooper pairs.
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II. MODEL GROUND-STATE ENERGY
OF THE FF SUPERCONDUCTOR

In essence the FF superconducting (SC) state is char-
acterized by a coherent superposition of paired (−k + q ↑
, k + q ↓) and unpaired states whose momenta k belong to
different segments of the Fermi surface such that the paired
states have a common center-of-mass (c.m.) momentum 2q.
The formation of this state may be described by a mean-field
pairing Hamiltonian [24]

HSC =
∑

k

ψ
†
kqĥkqψkq +

∑
k

ξ
↓
k+q + N

(∣∣�0
q

∣∣2

V0

)
,

ĥkq =
(

ξk+q↑ −�k
q

−�k∗
q −ξ−k+q↓

)

= (
ξ a

kq + h
)
τ0 +

(
ξ s

kq −�k
q

−�k∗
q −ξ s

kq

)
, (1)

where a two-dimensional (2D) tight-binding (TB) conduction
band εk = −2t (cos kx + cos ky) with hopping element t > 0
and band width 2Dc = 8t will be used. Furthermore, defin-
ing ξk = εk − μ with respect to the chemical potential μ

we will abbreviate the field split conduction-band energies
(b = μBB, σ = ±1 or ↑,↓) and its (anti)symmetrized combi-
nations s(+) and a(−) of dispersions shifted by ±q according
to

ξσ
k = ξk + σb, ξ s,a

kq = 1
2 (ξk+q ± ξk−q). (2)

In Eq. (1) τ0 is the unit in Nambu particle-hole space. Fur-
thermore, �k

q is the gap function and �0
q its amplitude in

the FF state. The effective interaction strength V0 is defined
below in Eq. (6). The above FF Hamiltonian may be diagonal-
ized by Bogoliubov transformation [24,28] (which is different
for paired and unpaired states), leading to a quasiparticle
Hamiltonian

HSC = EG(q,�q) + 1

2

∑
k

(|E+
kq|α†

kαk + |E−
kq|β†

kβk ). (3)

The symmetrized form of the Hamiltonian in Eq. (1) implies
that only the symmetrized dispersions ξ s

kq will appear in the
Bogoliubov transformation but both ξ s

kq, ξ a
kq and b will be

present in the expression for the (positive) quasiparticle ex-
citation energies |Eσ

kq| (σ = ±) which are given by

Eσ
kq = Ekq + σ

(
ξ a

kq + b
)
,

Ekq =
√

ξ s2
kq + ∣∣�k

q

∣∣2
. (4)

Furthermore, the ground-state energy of the FF phase is ob-
tained as [24,28]

EG(q,�q) = N

( |�q|2
V0

)
−

∑
k

(
Ekq − ξ s

k

)

+
∑

k

[E+
kqθ (−E+

kq) + E−
kqθ (−E−

kq)]. (5)

There are two possible cases [28]: When both Eσ
kq > 0 one has

a stable pair state for momentum k with c.m. momentum 2q.
When either E+

kq < 0 or E−
kq < 0 the pair state is unstable and

one has normal quasiparticle states at k with excitation energy

|Eσ
kq| > 0. [The case with both negative Eσ

kq cannot occur
because according to Eq. (4) their sum must be positive.]

We will consider two possible one-dimensional spin-
singlet D4h representations (� = A1, B1) for the gap function
defined by �k

q = �0
q f� (k) with the form factor f� (k) = 1

for the isotropic s-wave case and f� (k) = cos kx − cos ky in
the d-wave case, respectively. The form factors are normal-
ized according to (1/N )

∑
k f 2

� (k) = 1 such that the Brillouin
zone (BZ) averaged gaps 〈�k2

q 〉 1
2 = �0

q are equal in the two
cases. Note, however, that the maximum gap modulus at the
points (π, 0), (0, π ) and equivalents is given by �d

q = 2�0
q

in the d-wave case, which will be used in Sec. III C. The
strength V0 of the corresponding pair interactions V� (k, k′) =
−V0 f� (k) f� (k′) appearing in Eq. (1) is determined via the gap
equation for the BCS case (b = 0, q = 0) as

1

V0
= 1

N

∑
k

f 2
� (k)

2Ekq
. (6)

Here the index � for V0 has been suppressed.
How large the paired and unpaired Fermi segments are

depends on the size of the c.m. pair momentum 2q(b) and
gap size �q(b) in the FFLO state. They are determined by
the minimization of the condensation energy Ec = EG − E0

G
where EG is the ground-state energy of the superconducting
state appearing in Eq. (3) and E0

G = ∑
k(ξk − |ξk|) that of the

normal ground state. One obtains [24,28]

Ec(q,�q) = N

(∣∣�0
q

∣∣2

V0

)
−

∑
k

(Ekq − |ξk|)+
∑

k

(
ξ s

kq − ξk
)

+
∑

k

[E+
kqθ (−E+

kq) + E−
kqθ (−E−

kq)]. (7)

For each field b the minimum energy state characterized by
(q,�q ) has to be found numerically from this condensation
energy functional. We choose the field b = bẑ and spin quan-
tization axis along the z direction and the FF vector q = qx̂
along the x direction which is the antinodal direction in d-
wave case.

The field dependence of the pair (q,�q ) is shown in Fig. 1
for μ = −2.8t where the TB Fermi surface is already dis-
tinctly nonspherical (Fig. 2). At a critical field b∗ the ground
state changes from the zero-q-momentum BCS phase to the
FF phase with finite q and reduced gap size �q. The critical
field for the nodal d-wave gap is somewhat smaller and the
gap reduction less sudden.

III. THE MAGNETIC RESPONSE FUNCTION
FOR THE FF STATE

The static and dynamical spin susceptibility are important
tools to investigate the BCS superconductor using Knight
shift and NMR experiments as well as INS. It is worthwhile
to extend the analysis of this important quantity to the FF
phase. An earlier investigation for the d-wave state with fixed
pair momentum, coexisting spin-density wave (SDW), and
focused on static results was given in Ref. [29]. Here we
consider the FF state with calculated pair momentum and gap
and focus on dynamical properties, in particular with respect
to the question of spin resonance behavior in the FF phase
region.
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FIG. 1. Field dependence of q vector (blue lines) and associated
gap �q(b) (red lines) for Cooper pairing with finite momentum as
a function of applied field for s-wave and d-wave gap functions as
obtained by minimizing the condensation energy in Eq. (7). The
critical fields for BCS to FF transition are at b∗/�0 � 0.7 for s-wave
and b∗/�0 � 0.6 for d-wave. Here �0 = t/2 = Dc/8, μ = −2t with
Dc the half band width. In this and all consecutive figures the energy
unit is chosen as t = 1.

FIG. 2. Possible excitation processes contributing to the dynami-
cal susceptibility in the FF state at zero temperature [Eq. (14)] for the
s-wave case. Unpaired (u) Fermi surface sheets are defined by (ω =
0.1t ) − E−

kq = ω (blue) and E+
kq = ω (red) for b/�0 = 0.81, μ =

−2t . The upper row describes quasiparticle scattering (momenta k
and k′ = k + q̃) between paired (p) and unpaired (u) Fermi surface
segments. The lower row describes quasiparticle destruction or cre-
ation either between paired (p-p, dashed arrows) or unpaired (u-u,
solid arrows) Fermi surface segments. In the BCS case (b = 0, q =
0) the red and blue unpaired quasiparticle segments vanish and only
the dashed processes of the second row survive.

A. Derivation of the general dynamical susceptibility expression

The bare magnetic response function of a superconductor
obtained from the bubble diagram without vertex corrections
is given by [30]

χαα
0q (q̃, iνm)

= −T

4

1

N

∑
knσσ ′

σα
σσ ′σ

α
σ ′σ Trτ [Ĝq(k, iωn)Ĝq(k′, iω′

n)].

(8)

Here τ is the index in particle-hole space of the Nambu
Green’s functions Ĝq(q̃, iωn) of the FF state. Furthermore,
q̃ = k′ − k is the momentum transfer and q the (half) pair
momentum. We perform the spin sum which is isotropic (in-
dependent of α = x, y, z) for singlet pairs and use the explicit
form of the Green’s function matrix,

Ĝq(k, iωn) = (iωn − ĥkq)−1

= 1

Dkq(iωn)

(
iωn + ξ

↓
k−q −�k

q

−�k∗
q iωn − ξ

↑
k+q

)
, (9)

with

Dkq(iωn) = (iωn − ξ
↑
k+q)(iωn + ξ

↓
k−q) − |�q|2

= (iωn − E+
kq)(iωn + E−

kq). (10)

Then we obtain in closed form, suppressing spin index α from
now on,

χ0q(q̃, iνm) = −T

4

1

N

∑
k,n

× (iωn − ζkq)(iωn′ − ζk′q) + ξ s
kqξ

s
k′q + �k

q�
k′
q

(iωn − E+
kq)(iωn + E−

kq)(iωn′ − E+
k′q)(iωn′ + E+

k′q)
.

(11)

Carrying out the summation over the Matsubara frequencies
ωn and analytically continuing to the real axis according to
iνm → ω + iη a lengthy calculation leads to the final result:

χ0q(q̃, ω) = χ sc
0q(q̃, ω) + χac

0q (q̃, ω)

= C̃q
+(kk′)

×
[ f (E+

k′q) − f (E+
kq)

ω − (E+
k′q − E+

kq) + iη
− f (E−

k′q) − f (E−
kq)

ω + (E−
k′q − E−

kq) + iη

]

+ C̃q
−(kk′)

×
[ 1 − f (E−

k′q) − f (E+
kq)

ω + (E−
k′q + E+

kq) + iη
+ f (E+

k′q) + f (E−
kq) − 1

ω − (E+
k′q + E−

kq) + iη

]}
,

(12)

where f (E ) = (exp(E/T ) + 1)−1 is the Fermi function. The
last two terms may also be written differently by using 1 −
f (E ) = f (−E ). Here the generalized superconducting co-
herence factors of magnetic response for the FF phase are
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FIG. 3. Brillouin zone constant ω cuts of spectral function, real part and imaginary part of dynamical susceptibility χ0q(q̃, ω) (from left to
right, respectively) for [(a)–(c)] d-wave BCS state and [(d)–(f)] d-wave FF state and for ω/�0 = 0.60. Parameters (q, �q ) for the FF state are
those at b/�0 = 0.63 in Fig. 1 slightly above the BCS-FF transition. The pockets in (a) are located around nodal positions of the d-wave BCS
state. The features for small and large q̃ in (b) and (c) result from intra- and interpocket virtual excitations in (a). In (e) and (f) the large (blue)
unpaired quasiparticle sheets of the FF phase in (d) also contribute to the large-q̃ response function. In the q̃x direction the response function
becomes asymmetric due to the nonzero pair momentum 2q oriented along the antinodal q̃x direction [see also Figs. 4(c) and 4(d)].

given by

C̃q
±(kk′) = 1

2

[
1 ± ξ s

kqξ
s
k′q + �k

q�
k′
q

EkqEk′q

]
. (13)

Note that only the q-symmetrized dispersions ξ s
kq (directly

and implicitly in Ekq) appear in the coherence factors. The
above magnetic response function for the FF phase reduces
to the well-known result [30–32] in the BCS limit b, q = 0
which is given in the Appendix for comparison. We note that
the sequence in which quasiparticle dispersions Eσ

kq appear in
Eq. (12) could not be guessed heuristically from the b, q = 0
BCS expression in Eq. (A2). If we restrict to the case where
k, k′ lie both in the segment with paired states (i.e., E±

kq > 0,

E±
k′q > 0) then the terms in Eq. (12) may be consecutively

interpreted as quasiparticle scattering (χ sc) (first two terms)
and sum (χac) of pair annihilation (third) and pair creation
(fourth) terms. For general k, k′ one has to consider pro-
cesses involving quasiparticles from the paired (p) as well
as the unpaired (u) Fermi surface (FS) segments. To simplify
matters in this general case we consider the zero-temperature
limit when the Fermi function may be expressed by the step
function according to f (E ) = 1 − �(E ) = �(−E ). Then

we obtain

χ0q(q̃, ω) = 1

2N

∑
k

{
C̃q

+(kk′)

×
[

�(E+
kq) − �(E+

k′q)

ω − (E+
k′q−E+

kq) + iη
− �(E−

kq)−�(E−
k′q)

ω+(E−
k′q−E−

kq) + iη

]

+ C̃q
−(kk′)

×
[

�(E+
kq) − �(−E−

k′q)

ω + (E−
k′q + E+

kq) + iη
+ �(−E+

k′q) − �(E−
kq)

ω − (E+
k′q + E−

kq) + iη

]}
.

(14)

If we look at the numerators of the four terms in this equa-
tion we realize that the first two correspond to quasiparticle
scattering processes k ↔ k′ from paired to unpaired FS seg-
ments and vice versa (p-u, u-p), whereas the third and fourth
terms are quasiparticle annihilation and creation, respectively,
containing only processes between the paired (p-p) or un-
paired (u-u) segments. The various possible contributions are
illustrated pictorially in the spectral plot of Fig. 2 and the
resulting bare response function is shown in Figs. 3–5 and
discussed in Sec. IV.

At this point it is appropriate to explain the motives for our
restriction to the FF phase with an order parameter �(r) =
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FIG. 4. Brillouin zone cuts of real and imaginary parts of χ0q(q̃, ω) (ω = 0.30�0 ). [(a), (b)] Along the q̃x direction for BCS states. [(c), (d)]
Along the q̃x direction for the FF state with parameters (q,�q ) corresponding to those at b/�0 = 0.81 for the s-wave case and b/�0 = 0.63
for the d-wave case in Fig. 1. The asymmetry for small q̃x noted in Figs. 3(e) and 3(f) due to the parallel direction of pair momentum 2q is
clearly visible. [(e), (f)] In the perpendicular q̃y direction the reflection symmetry of the BCS case in (a) and (b) is preserved. The sharp peaks
at small momentum transfer are due to small intraband transitions corresponding to small pockets in Figs. 3(a) and 3(d).

�0 exp(iqr) with constant modulus. We did not investigate the
LO state �(r) = �0 cos(qr) [a superposition with (q,−q)
pair momentum] or even more general states with multi-
ple qi pair momenta [33], which all have a gap modulus
that varies in real space and have nodal planes perpendicu-
lar to q. Such states and their stability have been discussed
before using various techniques [6,34,35]. In the simplest
models the spatially modulated states are more stable except
for small sectors in the B-T plane where the FF state is
preferred [34]. However, in noncentrosymmetric and multi-
band superconductors the FF phase (called also the helical
phase in this context) can also be stable in larger sectors of the
phase diagram [36,37]. The nonhomogeneous phases, how-
ever, cannot be treated with the present technique that employs
the microscopic Nambu Green’s functions introduced before.

FIG. 5. Dispersion of spin excitation spectrum along the (1,1)
direction for (a) BCS and (b) FF d-wave case with b/�0 = 0.63 [cf.
Figs. 3(c) and 3(f)]. The central branch is due to intrapocket and the
outer branch (the two parts are connected at larger ω) due to inter-
pocket excitations. In the FF case [see Fig. 3(d)] one small pocket
pair is lost and therefore the outer branch is suppressed (b) whereas
the intensity of the inner branch becomes asymmetric in accordance
with Figs. 4(c) and 4(d).

They rather require an approach using position-dependent
quasiclassical Green’s functions for parabolic (nonperiodic)
bands based on the solutions of Eilenberger equations that can
incorporate the spatial variation of the superconducting order
parameter [6,34,35]. It is not clear, however, how one can
properly formulate the dynamical magnetic response func-
tion in analogy to Eqs. (8) and (12) within the quasiclassical
formalism for the inhomogeneous LO-type phases, such that
lattice periodicity and (generally incommensurate) order pa-
rameter periodicity are included simultaneously on the same
footing. For this reason we have restricted to the discussion
of the homogenous FF phase to avoid this nontrivial technical
problem.

We note, however, that to a certain extent our results may
also be applied to the inhomogeneous case. This rests on
the fact that the superconducting order parameter modulation
appears on a length scale π/q � a much larger than the lattice
spacing a and determined by the coherence length. There-
fore, the inhomogeneity of the order parameter should mostly
affect the low momentum transfer region of the magnetic
spectrum for |q̃| ∼ q whereas for large momentum transfer
|q̃| ∼ π/a � q; e.g., for the regime of resonance formation
in Fig. 8, only the spatially averaged gap 〈�2(r)〉 should
enter the dynamical response function. In particular this may
be expected for inhomogeneous states with domain-wall-like
structure [33] having �(r) � ±�0 where simply 〈�2(r)〉 =
�2

0. Whether this heuristic conjecture is valid can only be
judged by developing a well-controlled theory for the mag-
netic response in the inhomogeneous case.

B. The static susceptibility, Knight shift, and Yosida
function in the FF state

Although the general wave vector q̃-dependent static sus-
ceptibility cannot be directly measured, it is interesting to
derive its formal structure. Setting ω = 0 in Eq. (12) we obtain
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for χ0q(q̃) ≡ χ0q(q̃, 0)

χ0q(q̃) = 1

N

∑
kσ

{
1

2
C̃q

+(kk′)
tanh β

2 Eσ
k′q − tanh β

2 Eσ
kq

Eσ
k′q − Eσ

kq

+ 1

2
C̃q

−(kk′)
tanh β

2 Eσ
k′q + tanh β

2 E σ̄
kq

Eσ
k′q + E σ̄

kq

}
, (15)

where σ̄ = −σ . This may be further simplified for the ho-
mogeneous susceptibility with q̃ = 0. Using C̃q

+(kk) = 1 and
C̃q

−(kk) = 0 it can be derived as

χ0q(0) = 1

2N

∑
kσ

(
− ∂ f

∂Eσ
kq

)
= β

4

1

2N

∑
kσ

(
1

cosh2 β

2 Eσ
kq

)
.

(16)

This q̃ = 0 static susceptibility is therefore proportional to
the T -averaged density of states (DOS) of quasiparticles at
a given temperature and this determines the T dependence of
the Knight shift in an NMR experiment in the superconductor.
Usually, in the zero-field BCS singlet superconducting state
this quantity contains information on the nodal structure of the
SC gap function. In the FF state, however, it is also determined
by the normal quasiparticles in the depaired momentum space
segments and is influenced by them. This problem has also
been considered with a different quasiclassical method for a
spatially inhomogeneous d-wave state [38].

In the parabolic band approximation (for μp = μ + Dc �
Dc) with a 2D DOS N0 = m∗kF /2π and effective mass m∗ =
2/Dc and Fermi vector kF = (2m∗μp)

1
2 this may be written as

χ0q(0, T ) = N0

∑
σ

Y σ
q (T ),

Y σ
q (T ) =

∫
dθk

2π

[
1

4π

∫
dξ

cosh2 β

2 Eσ
kq

]
, (17)

where Y σ
q (T ) is the generalized Yosida function [39] that

describes the temperature dependence of the NMR Knight
shift of the singlet superconductor in the FF phase. For plot-
ting the temperature dependence of the homogeneous static
susceptibility we use a phenomenological temperature depen-
dence of the FF gap �q given by the expression �q(tr ) =
�q tanh[1.74

√
1−tr

tr
] where tr = T/Tc(b) is the reduced tem-

perature referenced to the relevant Tc(b). The comparison of
χ0q(0, T ) in the BCS (q = 0) and FF (q �= 0) cases in the
interval tr ∈ [0, 1] is shown in Fig. 6, together with corre-
sponding DOS curves, and discussed in Sec. IV.

C. Spin resonance excitation in the d-wave FF state

It is known from many examples, in particular from the
f -based heavy fermion superconductors [26,40–42] but also
from high-Tc [27,43] and Fe pnictide [44,45] compounds,
that the dynamic magnetic response for unconventional gap
symmetry can exhibit the spin resonance excitations within
the superconducting gap of the BCS phase, i.e., at a res-
onance frequency ωr/2�d < 1 where �d = 2�0 (Sec. II)
is the maximum d-wave BCS gap value. For a half-filled
(μ = 0) TB band in the d-wave case it is centered around the

FIG. 6. Temperature dependence of static susceptibility (units
1/t) or Yosida function for (a) BCS cases and (b) FF phase (b/�0 =
0.81, Tc(b)/�0 = 0.5) as a function of reduced temperature tr =
T/Tc(b). In (a) the exponential and power-law decay for s- and
d-wave cases are clearly distinct. In the FF phase of (b) unpaired
quasiparticles appear in both cases leading to large values even at
low temperatures. The corresponding quasiparticle DOS is shown in
(c) and (d).

zone boundary vector q̃ ≡ Q = (π, π ). The resonance forma-
tion is due to the peculiar steplike behavior of Imχ0(q̃, ω)
and associated peak in Reχ0(q̃, ω) at the threshold energy
of quasiparticle excitations [more precisely the threshold is
ωr (q̃) < mink∈FS(|�k| + |�k+q̃|) rather than the upper limit
2�d ]. The resonance is observed only for unconventional gap
functions which change sign under translation by the wave
vector q̃ (see the Appendix).

Here we investigate how the spin resonance appearance is
modified in the FF phase of a d-wave superconductor. First,
if the external field is appreciably larger than b∗ the reduced
gap �d

q (b) in the FF phase (Fig. 1) will push any prospective
surviving resonance to an energy ωr/2�d

q < 1 in this case.
But the coherence factors and the segmentation of Fermi sur-
face sheets should also influence the resonance features of the
collective response. For this purpose we consider the random
phase approximation (RPA) susceptibility χRPA

q (q̃, ω) = [1 −
Jq̃χ0q(q̃, ω)]−1χ0q(q̃, ω), assuming that low-energy quasipar-
ticles have an effective spin exchange interaction given by
Jq̃. We mention again that q̃ is the momentum transfer in the
magnetic response function whereas q is the overall (half) mo-
mentum of Cooper pairs in the FF phase. Then the dynamical
structure function S(q̃, ω) investigated in INS is proportional
to the imaginary part of the collective RPA susceptibility as
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FIG. 7. Frequency dependence of susceptibility at momentum
transfer q̃ = (0.4π, 0.4π ): [(b), (d)] s-wave BCS and FF cases. [(a),
(c)] d-wave BCS and FF phases. In the FF phase the (q, �q ) parame-
ter corresponds to b = 0.71�0 for s wave and b = 0.63�0 for d wave
in Fig. 1. [(a), (b)] In the s-wave case the frequency dependence is
featureless but in the d-wave BCS case (a) a steplike increase in the
imaginary part and peak in the real part appear due to the behavior
of the d-wave coherence factor C̃−(k, k + q̃). The peak in the real
part can lead to the spin resonance according to Eq. (19) for suitable
1/Jq̃ � 0.16. In the FF phase the peak is strongly suppressed and so
will be the resonance.

given explicitly by

ImχRPA
q (q̃, ω) = Imχ0q(q̃, ω)

(1 − Jq̃Reχ0q(q̃, ω))2 + J2
q̃ (Imχ0q(q̃, ω))2 .

(18)

The INS cross section will therefore develop a peak at ωr

when the resonance condition

1

Jq̃
= Reχ0q(q̃, ωr ) (19)

is fulfilled for sufficiently small imaginary part at this fre-
quency. From the d-wave BCS case (see the Appendix) it
is known [26] that for perfect nesting FS (μ = 0) when
�k+Q = −�k for all k the resonance peak appears at Q.
In the FF phase the resonance will appear at a frequency
ωr (q̃, b) < 2�d

q (b) which depends on the field implicitly
through the FF momentum q(b) and gap amplitude �d

q (b) =
2�q(b) [Fig. 1(b)]. Examples of the frequency dependence of
the bare susceptibility χ0q(q̃, ω) and the issue of the resonance
condition are presented in Figs. 7 and 8 and discussed below.

FIG. 8. Change of spin resonance peak characteristics when
moving from the (a) BCS to (b) FF phase in the d-wave case. In
the BCS case, the resonance appears prominently in the momentum
space region around q̃ = (0.5π, 0.5π ) showing some dispersion. In
the FF case the resonance moves to the zone boundary q̃ = (π, 0)
with lower intensity and is strongly localized.

IV. DISCUSSION OF NUMERICAL RESULTS:
THE DYNAMICAL SPECTRAL FUNCTIONS

AND STATIC MAGNETIC RESPONSE

One way to observe the profound influence of finite-
momentum pairs on the magnetic response function is
comparison of spectral function (constant frequency cuts of
the dispersions |Eσ

kq|) and the real and imaginary parts of the
dynamical susceptibility. This is shown in Figs. 3(a)–3(c) for
the d-wave BCS phase and in Figs. 3(d)–3(f) for the FF phase.
In the former the nodal pockets around the (π, π ) direc-
tion in Fig. 3(a) lead to corresponding susceptibility features
which result from intrapocket (small momentum transfer q̃)
and interpocket (large momentum transfer q̃) excitations. The
constant-frequency cuts of the susceptibility in the BZ exhibit
the fourfold symmetry of the spectral function. In contrast, in
the FF phase [Figs. 3(d)–3(f)] the finite q momentum parallel
to the antinodal q̃x direction destroys the reflection symmetry
with respect to this axis. This is seen in the spectral function
[Fig. 3(d)] by the merging of q̃x > 0 pockets into a large
combined sheet (blue), whereas the q̃x < 0 pockets survive.
It is particularly evident for the small momentum transfer
peaks in the imaginary part [Fig. 3(f)]. For larger momentum
transfer the features localized at (π, 0), (π, π ) and equiva-
lents merge into a weak ring-shaped structure that also lacks
reflection symmetry along q̃x. Note that in the real part the
symmetry breaking is primarily evident from the shifting of
the maximum from the (1,1) direction in Fig. 3(b) to the (1,0)
direction parallel to q in Fig. 3(e). This has implications for
the spin resonance formation discussed below in connection
with Fig. 8.

The D4h symmetry breaking of the magnetic spectrum
becomes even more evident by comparing χ0q(q̃, ω) for q̃
directions parallel and perpendicular to the pair momentum
direction (1,0) as shown in Fig. 4 for a constant ω = 0.3�0.
It presents cuts along (1,0) and (0,1) directions for BCS
[Figs. 4(a) and 4(b)] and FF [Figs. 4(c) and 4(d)]; and in
Figs. 4(e) and 4(f) for s- and d-wave gaps, respectively.
In the BCS case the cuts along the two momentum axes
are equivalent and both symmetric with respect to reflection
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(q̃x → −q̃x ). It still holds for the perpendicular direction (01)
[Figs. 4(e) and 4(f)]. For the BCS case due to ω � �0 the
s-wave spectrum (imaginary part, blue) vanishes whereas only
small peaks appear for the d-wave case due to intra- and
internodal low-energy excitations. In the FF phase more low-
energy quasiparticle excitations are possible due to depaired
regions, and pronounced spectral peaks for both s- and d-wave
cases appear. Significantly in the FF phase the spectrum and
the associated real part (red) become quite asymmetric for
the (1,0) direction due to the finite parallel pair momentum
2q. One may conjecture that this symmetry breaking of the
magnetic excitation spectrum in the FF phase may be observ-
able in constant-ω cuts obtained from INS. One should note,
however, that from such observation it does not seem possible
to obtain a direct measure of pair momentum 2q which enters
into the magnetic spectrum in a rather complicated manner via
the quasiparticle excitation energies.

A complementary way to view the change of the magnetic
excitation spectrum across the critical field b∗ separating BCS
and FF phases is presented in Fig. 5 for the d-wave case. Here
the dispersion of the excitation continuum in the (q̃, ω) plane
is shown for the q̃ ‖ (1, 1) direction. In the BCS phase the
two �(0, 0) centered branches corresponding to the butterfly
in Fig. 3(c) and one branch corresponding to the lens close
to M(π, π ) appear symmetrically. At higher energy they are
merging. In the FF phase the innermost branch is still present
but the intensity is asymmetric under q̃x → −q̃x whereas the
outer branches become blurred into a low-intensity contin-
uum.

Besides the dynamics discussed above which is relevant
for INS, the static homogeneous susceptibility is also an im-
portant quantity because it is proportional to the Knight shift
observed in NMR experiments [39]. We show its temperature
dependence in Figs. 6(a) and 6(b) using the model param-
eters described in Sec. III B. In the BCS case one can see
the well-known distinction between exponential s-wave decay
and d-wave power-law behavior of the Yosida function. In
the FF phase a finite quasiparticle DOS appears in both cases
[Figs. 6(c) and 6(d)] due to the depaired momentum space
regions leading to a finite low-temperature susceptibility and
Knight shift. The distinction between s- and d-wave cases is
then much less pronounced.

Finally we discuss the possibility of the spin-resonance
phenomenon in the d-wave case as outlined in Sec. III C. We
present the real and imaginary parts of the susceptibility for
a constant q̃ vector as function of frequency in Fig. 7. In
the s-wave case [Figs. 7(b) and 7(d)] due to the lack of sign
change property in the gap function the real and imaginary
parts in BCS as well as FF phase are featureless and the
spin resonance cannot form. For the d-wave case we choose
q̃ = (0.4π, 0.4π ) in the vicinity of the maximum in Fig. 3
which connects states of the (b = 0) nodal Fermi surfaces
which lie on opposite sides of the nodal (1, 1), (−1, 1) lines
leading to a sign change in the gap function (Sec. III C).
Therefore, a step in the imaginary part and associated peak
in the real part at the threshold energy [Fig. 7(a)] appear. If
the spin exchange interaction between quasiparticles is suffi-
ciently large, i.e., if 1/Jq̃ is sufficiently small as indicated in
this figure, the resonance condition of Eq. (19) will be satisfied
and a pronounced resonance peak in the collective response

spectrum [Eq. (18)] of the d-wave BCS state is created in
the vicinity of this wave vector. When we enter the FF phase,
Fig. 7(d) shows that the peak in the real part at the threshold
is much diminished such that the resonance condition may no
longer be fulfilled. Therefore, the collective response in the
FF phase will be subdued and/or moved to a different wave
vector q̃. For a suitably sized 1/Jq̃ = 0.16 this may happen
as illustrated in Fig. 8. In the BCS case (b = 0, q = 0) the
dispersive resonance appears around (0.5π, 0.5π ) [Fig. 8(a)],
close to the maximum of the real part in Fig. 7(a). In the
FF case this resonance peak is suppressed and it reappears
at the zone boundary q̃ = (π, 0) at a rather lower energy
and a more localized intensity [Fig. 8(b)]. In any case the
quasiparticle sheets in the FF phase exhibit less distinct sign
change properties like in the BCS case for the gap function
and consequently lead to a less favorable situation for the spin
resonance formation.

V. CONCLUSION AND OUTLOOK

We have investigated the dynamical magnetic response
in the Fulde-Ferrell superconducting phase characterized by
Cooper pairs with finite center-of-mass momentum 2q. We
have derived general analytical expressions for the dynamical
magnetic susceptibility and shown that it reduces to the well-
known result for the BCS phase with q = 0. In the latter only
excitations between gapped quasiparticles on the completely
paired Fermi surface contribute. In the FF phase excitations
between paired and unpaired quasiparticle states contribute as
well where the latter are gapless.

As an explicit model we consider a single-orbital tight-
binding band and s- and d-wave singlet pairs. By minimiza-
tion of the total condensation energy we determine the field
dependence of (half-)pair momentum q(b) and associated
FF gap �q(b) as input quantities for the two quasiparticle
branches Eσ

kq that determine the magnetic response function.
We find that the presence of finite-momentum pairs breaks

the fourfold D4h symmetry of the susceptibility in the square
BZ with only twofold rotations and reflections perpendicular
to the (half-)pair momentum q remaining. This is particularly
evident for the d-wave case in the small-momentum-transfer q̃
regime and should be observable by constant-ω scans as well
as in the dispersive continuum excitations in the (q̃, ω) plane
accessible by INS in the FF phase.

The static susceptibility determines the Knight shift, and
its temperature dependence shows the well-known distinction
between exponential and power-law dependence for s- and
d-wave cases, respectively, at low temperature for the BCS
phase. It was found that the gapless unpaired states appearing
in the FF phase lead to a rapid appearance of a large residual
low-temperature Knight shift.

We also considered the fate of a possible in-gap collective
spin resonance that may appear in a d-wave BCS state when
entering the FF phase. We observe that the condition for the
resonance formation, i.e., the presence of a large peak in the
real part of the dynamical susceptibility, is harder to fulfill in
the FF case. Therefore, one may expect a suppression of the
resonance and/or a shift to different wave vectors in this state.
This would be an interesting subject to explore with inelastic
neutron scattering.
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APPENDIX: LIMITING BCS CASE
OF THE RESPONSE FUNCTION

It is worthwhile to see whether the generalized FF
dynamical response derived in Eq. (12) reduces to the well-
known result for the BCS case. First we reformulate χ sc

0q in
Eq. (12) due to quasiparticle scattering by using the symmetry
C̃+(kk′) = C̃+(k′k) of coherence factors and the equivalence
of summation over k or k′ in the BZ. This leads to the form

χ sc
0q(q̃, ω) = 1

2N

∑
kσ

C̃q
+(kk′)

f
(
Eσ

k′q

) − f
(
Eσ

kq

)
ω − (

Eσ
k′q − Eσ

kq

) + iη
. (A1)

Setting b = 0, q = 0 we have ξ s
k = ξk and ξ a

k = 0. Fur-
thermore, with �k

q = �k
0 ≡ �k this leads to E±

kq = Ek0 ≡
Ek = [ξ 2

k + �2
k]

1
2 . This is the quasiparticle energy for the

BCS case for all wave vectors since the pairing is sta-
ble for all values of k and there is no more segmentation
of the Fermi surface in paired and unpaired regions as
in the FF case. This leads to a greatly simplified re-
sponse function that only depends on the momentum transfer
q̃ and no longer on the FF pair vector q. We obtain
from Eqs. (12) and (A1)

χ0(q̃, ω) = 1

2N

∑
k

{
2C̃+(kk′)

f (Ek′ ) − f (Ek )

ω − (Ek′ − Ek ) + iη
+ C̃−(kk′)

[
1 − f (Ek′ ) − f (Ek )

ω + (Ek′ + Ek ) + iη
+ f (Ek′ ) + f (Ek ) − 1

ω − (Ek′ + Ek ) + iη

]}
. (A2)

The coherence factors now also simplify to

C̃±(kk′) = 1

2

[
1 ± ξkξk′ + �k�k′

EkEk′

]
. (A3)

This expression agrees with the result in Refs. [30–32]. For
zero temperature and positive frequency only the last term in
Eq. (A3) contributes and the response function reduces to

χ0(q̃, ω) = 1

2N

∑
k

C̃−(kk′)
�(−Ek′ ) − �(Ek )

ω − (Ek′ + Ek ) + iη
. (A4)

In the case of the sign-changing unconventional gap function
with �k+Q = −�q where, e.g., Q = (π, π ) for the d-wave

gap function the coherence factor C̃−(k, k + Q) � 1 close
to the gap threshold where ξk = −ξk+Q � 0 (half filling)
and mink∈FS (|�k| + |�k′ |) ≈ 2�d . On the other hand, for
the s-wave case with �k+Q = �q = �0 the coherence fac-
tor C̃−(k, k + Q) � 0 is vanishingly small. This results in a
steplike increase of Imχ0(Q, ω) for ω > 2�d in the d-wave
case and only gradual increase for ω > 2�0 for the s-wave
gap. This is associated with a peak or no peak in the real
part in both cases, respectively. Therefore, a spin resonance
in the collective RPA susceptibility at ωr (Q) < 2�d develops
according to Eq. (19) for the d-wave gap but not for the s-wave
case [26] [see Figs. 7(a) and 7(b)].
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