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The S = 1
2 quantum spin ladder system with the anisotropic ferromagnetic exchange interaction on the rung

under magnetic field is investigated using the numerical diagonalization and the density matrix renormalization
group (DMRG) analyses. It is found that the nematic-spin-correlation-dominant Tomonaga-Luttinger liquid
(TLL) appears in some high magnetic field. It is included in the TLL phase where the two-magnon bound state
is realized. For some suitable parameters, after the field-induced phase transition from this two-magnon-bound
TLL phase to the single-magnon TLL one, the re-entrant transition to the two-magnon-bound TLL phase occurs,
which is confirmed by the magnetization curves by the DMRG. Several phase diagrams on the plane of the
coupling anisotropy versus the magnetization and the magnetic field are presented. The present result is a
proposal of the candidate system which exhibits the spin nematic phase without the biquadratic interaction or
the frustration.
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I. INTRODUCTION

The spin nematic state [1,2] has attracted a lot of interest in
the research field of the quantum spin systems and the strongly
correlated electron systems. It is the long-range quadrapole
order of spins by forming the two-magnon bound state. In the
one-dimensional case, due to the strong quantum fluctuations,
the nematic long-range order is reduced to the nematic quasi-
long-range order, which should be called the spin nematic
Tomonaga-Luttinger liquid (TLL). Namely, the quadrapole
correlation function decays in the power-law in the spin ne-
matic TLL phase.

It was shown that, in the S = 1
2 ladder with different leg

interactions and some anisotropies, two kinds of spin nematic
TLL phases appeared, by using numerical diagonalization cal-
culations, the density matrix renormalization group (DMRG)
method, and perturbation calculations [3]. The spin nematic
TLL phase was found in the simple S = 1 chain with the XXZ
and on-site anisotropies [4–8]. The S = 1 bilinear and bi-
quadratic chain was also theoretically predicted to exhibit the
spin nematic TLL phase by several methods; the perturbation,
[9] the bosonization, [10] the numerical exact diagonaliza-
tion, [8,11] the field theory, [12] the DMRG [13], and the
infinite matrix product state analysis [14]. Furthermore, the
spin nematic TLL phase was revealed to occur in the S = 3

2
bilinear and biquadratic model [9,15]. The spin frustration
is another important mechanism to induce the spin nematic
phase [16]. In order to explain the spin-liquid-like behavior
of the S = 1 triangular magnet NiGa2S4, [17] the spin ne-
matic phase was proposed [18–21]. The frustrated spin chain

which has the ferromagnetic nearest- and the antiferromag-
netic next-nearest-neighbor exchange interactions, are one of
the popular models to exhibit the spin nematic TLL phase. The
external magnetic field induced spin nematic TLL phase was
predicted to occur in the S = 1

2 chain with the ferromagnetic
nearest- and the antiferromagnetic next-nearest-neighbor ex-
change interactions by the bosonization, [22] the numerical
exact diagonalization, [23,24] the DMRG [24–26], and the
field theory [26,27].

Several experimental methods to detect the spin ne-
matic behavior were theoretically proposed, for example,
the nuclear magnetic resonance (NMR), [28–32] the inelas-
tic neutron scattering, [33] the μSR, [31], and the electron
spin resonance (ESR) [34]. One of the suitable candidate
materials to exhibit the spin nematic behavior is LiCuVO4

which is the S = 1
2 quasi-one-dimensional quantum spin sys-

tem with the ferromagnetic nearest- and the antiferromagnetic
next-nearest-neighbor exchange interactions [35]. The NMR
measurements [35,36] on this compound under high magnetic
field detected an evidence of the possible spin nematic order,
as well as the magnetocaloric effect measurement [37]. The
NMR experiment [38] on the similar compound LiCuSbO4

[39] also observed the spin nematic order like behavior. Since
the iron-based superconductors [40–44] were discovered, the
spin nematic physics on the two dimensional systems [45–51]
have been studied extensively, including the bilayer systems
[52–54].

In most theories of the spin nematic behavior which have
been proposed so far, the mechanism is based on the bi-
quadratic interaction or the spin frustration. In this paper we
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propose a simple theoretical model that exhibits the field-
induced spin nematic TLL, without either the biquadratic
interaction or the frustration. It is the S = 1

2 spin ladder system
with the anisotropic ferromagnetic rung exchange interaction
under magnetic field. In previous work [55] the numerical
diagonalization and the DMRG calculation indicated that the
present model with the same amplitude between the antifer-
romagnetic leg and the ferromagnetic rung interactions gives
rise to the field induced spin nematic TLL phase. In the
present work the critical exponent analysis indicates that the
spin nematic correlation dominant region and the spin den-
sity wave (SDW) correlation dominant region appear in the
two-magnon-bound TLL phase. In addition we present sev-
eral phase diagrams not only in the anisotropy-magnetization
plane, but also in the anisotropy-external field plane, even for
different amplitudes between the leg and rung interactions.
The magnetization curves calculated by the DMRG are also
presented for several typical cases.

II. MODEL

We consider the magnetization process of the S = 1
2

Heisenberg spin ladder with the anisotropic ferromagnetic
rung exchange interaction. The Hamiltonian is given by

H = H0 + HZ , (1)

H0 = J1

2∑

α=1

L∑

j=1

Sα, j · Sα, j+1

+ Jr

L∑

j=1

[
Sx

1, jS
x
2, j + Sy

1, jS
y
2, j + λSz

1, jS
z
2, j

]
, (2)

HZ = −H
2∑

α=1

L∑

j=1

Sz
α, j, (3)

where λ is an anisotropy parameter of the ferromagnetic rung
exchange interaction and H is the external magnetic field. The
ferromagnetic rung interaction constant Jr is set to be −1.
We consider the case of the antiferromagnetic leg interaction
J1 > 0 and the Ising-like anisotropy λ > 1 of the ferromag-
netic rung interaction. For the length L system, the lowest
energy of H0 in the subspace where

∑
i

∑
j Sz

i, j = M is de-
noted by E (L, M ). The reduced magnetization m is defined by
m = M/Ms, where Ms denotes the saturation of the magnetiza-
tion, namely Ms = L. The energies E (L, M ) are calculated by
the Lanczos algorithm under the periodic boundary condition
(Si,L+1 = Si,1).

III. HALDANE-NEEL PHASE BOUNDARY

In the absence of the external field (H = 0), the ground
state of the system is in the Haldane phase with the Haldane
gap for λ ∼ 1, while in the Néel ordered phase for λ � 1. The
phase boundary λc can be estimated using the phenomenolog-
ical renormalization group method [56]. The size-dependent
critical point λc,L+1 is determined from the equation of the
scaled gaps

L�π (L, λc) = (L + 2)�π (L + 2, λc), (4)
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FIG. 1. Scaled gap L�π (L, λ) plotted versus λ for L =8, 10, 12
and 14 in the case of J1 = 0.5.

where �π (L, λ) is the lowest excitation gap with the wave
number k = π . The scaled gap L�π (L, λ) is plotted versus
λ for L =8, 10, 12 and 14 in the case of J1 = 0.5 shown in
Fig. 1. Assuming the size correction proportional to 1/L, we
estimate the phase boundary λc in the infinite length limit as
shown in Fig. 2.

IV. TWO TOMONAGA-LUTTINGER LIQUID PHASES

If the magnetization process begins from the Haldane
phase for λ < λc, a quantum phase transition would occur
at the critical field Hc1 where the spin gap vanishes, and
the gapless TLL phase would appear for H > Hc1, like the
S = 1 antiferromagnetic chain [57–61]. This TLL phase is
called the conventional TLL (CTLL) phase where each step
of the magnetization curve for the finite-size systems should
be δM = δSz

tot = 1. On the other hand, starting from the Néel
ordered phase for λ > λc, the large Ising-like anisotropy sta-
bilizes the states | ↑↑〉 and | ↓↓〉 at each rung pair, which
is nothing but the local two-magnon bound state. These
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� c

FIG. 2. Extrapolation of the Néel-Haldane boundary at m = 0
for J1 = 0.5. We can see that λc,N+1 converges as 1/L. The extrapo-
lated value is λc = 1.134 ± 0.002.
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FIG. 3. Scaled gaps L�1 (black curves), L�2 (blue curves) and
�2kF (red curves) plotted versus λ for L = 8 (dashed curves) and 12
(solid curves) in case of J1 = 0.5 and m = 1/2.

two states can be expressed by the T = 1/2 pseudo-spin
with |T z = +1〉 = | ↑↑〉 and |T z = −1〉 = | ↓↓〉. Then the
magnetization process will be similar to the Ising-like T =
1/2 XXZ single antiferromagnetic chain. This TLL phase is
called the two-magnon-bound TLL phase, where each step
of the magnetization curve should be δM = 2. The gap-
less quasiparticle excitation is different between these two
TLL phases. Namely, it is the single magnon excitation for
the CTLL, while it is the two-magnon excitation for the
two-magnon-bound TLL. We note that the single magnon
excitation is gapped in the two-magnon-bound TLL. Thus the
cross points between these two excitation gaps given by the
forms

�1 = E (L, M + 1) + E (M − 1) − 2E (M ), (5)

�2 = E (L, M + 2) + E (L, M − 2) − 2E (M ), (6)
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FIG. 4. Two-magnon binding energies �B are plotted versus λ

for J1 = 0.5 and m = 1/2.
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FIG. 5. Two-magnon binding energies �B as functions of λ for
various M in case of J1 = 0.5 and L = 14.

will be the phase boundary λc in the infinite L limit for each
magnetization M. At the half of the saturation magnetization
m = 1/2 for J1 = 0.5, the scaled gaps L�1(black curves) and
L�2 (blue curves) are plotted versus λ for L = 8 (dashed
curves) and 12 (solid curves), respectively in Fig. 3. It indi-
cates that �1 is gapless for smaller λ but gapped for larger λ,
while �2 is always gapless.

Considering the gapless 2kF excitation, we can use another
method to estimate the phase boundary. Since the wave num-
ber 2kF is different between two TLL phases, this excitation
in the two-magnon-bound TLL phase (2kF = 2mπ ) is gapped
in the CTLL phase, while gapless in the two-magnon-bound
TLL phase. Thus the behaviors of the 2kF excitation gap
for the two-magnon-bound TLL phase �2kF and �1 are just
switched at the critical point. The scaled gap L�2kF (red curve)
is also plotted versus λ for L =8 and 12 in Fig. 3. The cross
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FIG. 6. The cross points between �1 and �2 (black squares), and
those between �1 and �2kF (red circles) are plotted versus 1/L2 in
the case of J1 = 0.5 and m = 1/2. The points where �B = 0 are also
plotted (blue triangles). The first and third points converge as 1/L,
whereas the second poins as 1/L2. The L → ∞ extrapolated value
of the second points is λc = 1.623 ± 0.002.
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FIG. 7. Critical exponents ηz and η2 for L =12 and 14 are plotted
versus M/Ms for J1 = 0.5 and λ = 2.5. The product η2ηz is also
plotted for L = 14.

point of �1 and �2kF would be also the phase boundary λc in
the infinite L limit.

We also calculate the two-magnon binding energy [62]
defined by

�B = {E (L, M + 2) − E (L, M )}
− 2{E (L, M + 1) − E (L, M )}

= E (L, M ) + E (L, M + 2) − 2E (L, M + 1), (7)

which should be positive in the CTLL phase while negative in
the two-magnon-bound TLL phase. Therefore the point �B =
0 would be the phase transition point in the L → ∞ limit.
The behavior of �B for J1 = 0.5 and m = 1/2 is shown in
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FIG. 8. Behaviors of Cz(r) and C2(r) in the case of J1 = 0.5, λ =
2.5 and m = 2/14 in the SDW2TLL region. The dotted and dashed
lines in (b) are guide for the eye. We see that Cz(r) is predominant
over C2(r).
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FIG. 9. Behaviors of Cz(r) and C2(r) in the case of J1 = 0.5, λ =
2.5 and m = 10/14 in the NTLL region. The dotted and dashed lines
in (b) are guide for the eye. We see that C2(r) is predominant over
Cz(r).

Fig. 4. We also show the binding energies as functions of λ

for various M in case of J0 = 0.5 and L = 14 in Fig. 5.
The behaviors of the gaps and the two-magnon binding

energy are most basic properties to distinguish the CTLL and
two-magnon-bound TLL phases. Thus the phase transition
between these two phases is directly confirmed by Figs. 3
and 4. The cross points of �1 and �2 (black squares), and
that of �1 and �2kF (red circles) as well as the points �B = 0
(blue triangles) for L = 4, 8, and 12 are plotted versus 1/L2

in Fig. 6. The first and third points converges with respect
to L almost as 1/L, while the second ones almost as 1/L2.
Since the phase boundary depends on the magnetization M,
we use the cross point of �1 and �2kF for largest L as the
phase boundary at each M.
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FIG. 10. (a)(b) Behavior of C1(r) in case of J1 = 0.5, λ = 1.0,
and m = 2/14 in the CTLL phase. (c)(d) Behavior of C1(r) in case
of J1 = 0.5, λ = 2.5, and m = 2/14 in the SDW2TLL region. The
broken lines are guide for the eye.
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FIG. 11. (a)(b) Behavior of C1(r) in the case of J1 = 0.5, λ =
1.0, and m = 10/14 in the CTLL phase. (c), (d) Behavior of C1(r) in
case of J1 = 0.5, λ = 2.5, and m = 10/14 in the NTLL region. The
dashed lines are guide for the eye.

V. SPIN CORRELATIONS

In the two-magnon-bound TLL phase the following spin
correlation functions exhibit the power-law decay:

Cz(r) ≡ 〈Sz
α,0Sz

α,r〉 − 〈Sz〉2 ∼ cos(2kFr)r−ηz , (8)

C2(r) ≡ 〈S+
1,0S+

2,0S−
1,rS−

2,r〉 ∼ r−η2 . (9)

The former corresponds to the SDW spin correlation parallel
to the external field and the latter corresponds to the nematic
(quadrapole) spin correlation perpendicular to the external
field. Comparing the exponents ηz and η2, the smaller de-
termines the dominant spin correlation. The area for η2 < ηz

in the parameter space should be called the nematic correla-
tion dominant TLL (NTLL) region, and that for η2 > ηz the
SDW dominant TLL (SDW2TLL) region. According to the
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FIG. 12. Phase diagram with respect to the anisotropy and the
magnetization for J1 = 0.5. For the green triangle � and blue triangle
�, see the text.

1 1.5 2 2.5 3

�
0

0.2

0.4

0.6

0.8

1

M
/M

s

L=10 �
c

L=12
L=14
�
2
=�z

CTLL
NTLL

SDW
2
TLL

FIG. 13. Phase diagram with respect to the anisotropy and the
magnetization for J1 = 1.0.

conformal field theory, these exponents can be estimated by
the forms

η2 = E (L, M + 2) + E (L, M − 2) − 2E (L, M )

Ek1 (L, M ) − E (L, M )
, (10)

ηz = 2
E2kF (L, M ) − E (L, M )

Ek1 (L, M ) − E (L, M )
, (11)

for each magnetization M, where k1 is defined as k1 = L/2π .
The exponents η2 and ηz estimated for L=12 and 14 are plot-
ted versus M/Ms for J1 = 0.5 and λ =2.5 in Fig. 7. It suggests
that the SDW correlation is dominant for small M, while the
nematic one for large M. Since the cross point of η2 and ηz is
not so strongly dependent on L, the cross point of L = 14 is
used as the crossover point between the NTLL and SDW2TLL
regions. The product of η2ηz is also plotted in Fig. 7. The
characteristic condition of the TLL theory η2ηz = 1 is well
satisfied around the cross point.

We show the behaviors of Cz(r) and C2(r) in Figs. 8 and 9.
As already stated, Cz(r) is predominant over C2(r) in the
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FIG. 14. Phase diagram with respect to the anisotropy and the
magnetization for J1 = 1.5.
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TABLE I. Result of the Shanks transformation applied to the se-
quence Hc2 = [E (L, 2) − E (L, 0)]/2 twice for J1 = 0.5 and λ = 2.0.

L PL P′
L P′′

L

6 0.4320515
8 0.4138989 0.3920970
10 0.4039936 0.3873292 0.3832358
12 0.3977810 0.3851267
14 0.3936142

SDW2TLL region and vice versa in the NTLL region. We can
see that this situation is realized in Figs. 8 and 9, although
the precise determination of the critical exponents ηz and η2 is
difficult. Thus we think that these figures provide the direct
confirmation of the difference between the SWD2TLL and
NTLL regions.

We also calculate the two-spin correlation function defined
by

C1(r) ≡ 〈S+
α,0S−

α,r〉, (12)

which is expected to decay in the power law in the CTLL
phase while in the exponential law in the two-magnon bound
TLL phase. The behavior of C1(r) is shown in Figs. 10 and 11.
In both figures the magnitudes of C1(r) are much larger in
the CTLL phase than in the two-magnon bound TLL phase
(SDW2TLL and NTLL regions). Also the decay patterns of
C1(r) are consistent with the above expectation. Therefore
Figs. 10 and 11 provide the direct confirmation of the phase
transition between the CTLL phase and the two-magnon
bound TLL phase.

VI. PHASE DIAGRAMS

Now we present several phase diagrams including the field-
induced NTLL and SDW2TLL regions. At first the phase
diagrams on the plane of the anisotropy λ and the reduced
magnetization m = M/Ms for J1=0.5, 1.0 and 1.5 are shown
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FIG. 15. Phase diagram with respect to the anisotropy and the
magnetic field for J1 = 0.5. The phase denoted by H is the Haldane
phase.
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FIG. 16. Phase diagram with respect to the anisotropy and the
magnetic field for J1 = 1.0.

in Figs. 12–14, respectively. The phase boundary between the
CTLL and the two-magnon-bound TLL phases is obtained as
the cross of �1 and �2kF at each M for L =10 (diamond),
12 (circle) and 14 (square). The two-magnon-bound TLL
phase is divided into the NTLL and SDW2TLL regions by the
crossover line (broken red curve) determined by η2 = ηz. The
critical point between the Haldane and Néel phases at M = 0
determined by the phenomenological renormalization group
method is given as a green triangle �. The phase boundary
(blue triangle �) at m = M/Ms = 1 is the point where the
saturation field changes from Hs1 = E (L, L) − E (L, L − 1) to
Hs2 = [E (L, L) − E (L, L − 2)]/2, which is almost indepen-
dent of L. The dashed curve is the guide for the eye for the
phase boundary between CTLL and the two-magnon-bound
TLL phases.

The phase diagrams with respect to the external magnetic
field H would be much more useful for experimentalists. The
external field H giving the magnetization M is estimated by
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FIG. 17. Phase diagram with respect to the anisotropy and the
magnetic field for J1 = 1.5.

064433-6



FIELD-INDUCED SPIN NEMATIC TOMONAGA-LUTTINGER … PHYSICAL REVIEW B 106, 064433 (2022)

  0.0   0.5   1.0
  0.0

  0.5

  1.0

H/Hs

m

FIG. 18. Magnetization curve obtained by the DMRG for J1 =
0.5 and λ = 1.50.

the form

H = [E (L, M + 1) − E (L, M − 1)]/2 (13)

at each phase boundary and by the form

H = [E (L, M + 2) − E (L, M − 2)]/4 (14)

at each crossover point. The phase boundary between the
Haldane (H) and CTLL phases is estimated by the Shanks
transformation [63,64] applied to the critical field H (1)

c1 given
by

H (1)
c1 = E (L, 1) − E (L, 0) (15)

calculated for L = 6, 8, 10, 12, and 14. The boundary between
the Néel and the two-magnon-bound TLL phases is estimated
by the same method applied to H (2)

c1 given by

H (2)
c1 = [E (L, 2) − E (L, 0)]/2. (16)
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  0.0
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m

FIG. 19. Magnetization curve obtained by the DMRG for J1 =
0.5 and λ = 1.55.
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FIG. 20. Magnetization curve obtained by the DMRG for J1 =
0.5 and λ = 1.60.

The Shanks transformation applied to a sequence {PL} is
defined as the form

P′
L = PL−2PL+2 − P2

L

PL−2 + PL+2 − 2PL
. (17)

The result of this transformation applied to Hc2 for J1 = 0.5
and λ = 2.0 is shown in Table I. The phase diagrams in the
λ-H plane for J1 = 0.5, 1.0, and 1.5 are shown in Figs. 15–17,
respectively. In all the cases the NTLL region appears only in
the magnetization process from the Néel ordered phase.

VII. MAGNETIZATION CURVES

The magnetization curves are calculated by the DMRG
method for L = 96 under the open boundary condition with
fixed J1 = 0.5 for λ = 1.50, 1.55 and 1.60 shown in Figs. 18–
20, respectively. The region with δM = 1 corresponds to the
CTLL phase, while that with δM = 2 the two-magnon-bound
TLL phase. These three magnetization curves are consistent
with the phase diagrams in Figs. 12 and 15. In Fig. 18 the
field-induced transition from SDW2TLL to CTLL phases oc-
curs at H/Hs ∼ 0.7. In Fig. 19 the first transitions from the
SDW2TLL to the CTLL phases occurs at H/Hs ∼ 0.7 and
the second one to the NTLL phase appears just before the
saturation. In Fig. 20 the crossover from the SDW2TLL to
the NTLL regions is expected to occur, which does not bring
about any change of the magnetization step. At any field
induced transition or crossover, the magnetization curve does
not exhibit any significant anomalous behavior, such as the
magnetization plateau, jump, or kink etc.

VIII. DISCUSSION

In order to propose the experiments to observe the field
induced NTLL phase, we should look for the S = 1

2 spin
ladder systems with the ferromagnetic rung interaction. Possi-
ble candidate materials are as follows: (CH3)2CHNH3CuCl3,
[65–70] Li2Cu2O(SO4)2 [71] and the organic spin ladder 3-I-
V[3-(3-iodophenyl)-1,5-diphenylverdazyl] [72]. Among three
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compounds the first and the second ones were revealed to have
the spin gap which suggests the Haldane state at zero magnetic
field. Thus they have no chance to observe the NTLL. On the
other hand, for the third one the Néel order was observed at
H = 0 and a kind of multipolar order was observed near the
saturation of the magnetization process. Some more extensive
analyses on this material would be interesting.

In order to detect the spin nematic TLL phase, the NMR
measurement is one of suitable methods. The critical exponent
of the spin correlation function ηz calculated in the Sec. V can
be estimated from the temperature dependence of the NMR re-
laxation rate [28,29]. The region for ηz > 1 at low temperature
is expected to be in the spin nematic TLL phase. Actually the
spin nematic behavior of the frustrated spin chain compound
LiCuSbO4 was observed by this experimental method [73].
The NMR measurement on some spin ladder materials would
be also quite interesting. Furuya [74] showed that a character-
istic angular dependence of the linewidth of the paramagnetic
resonance peak in the ESR absorption spectrum occurred in
the two-magnon-bound TLL phase. This experiment is also
strongly desirable.

IX. SUMMARY

The S = 1
2 spin ladder system with the anisotropic ferro-

magnetic rung interaction under magnetic field is investigated
using the numerical diagonalization for finite-size clusters and
the DMRG analyses. The critical exponent analysis reveals
that, in the field-induced two-magnon-bound TLL phase, the
NTLL region appears for large H , while the SDW2TLL one
for small H . The magnetization curves calculated by the
DMRG indicates that after the field-induced phase transition
from the SDW2TLL to the CTLL phases, the transition to
the NTLL phase would possibly occur, for some suitable
parameters. Several phase diagrams with respect to the cou-
pling anisotropy, the magnetization, and the magnetic field

are presented. It would be a good proposal of the candidate
system that exhibits the field-induced spin nematic liquid
phase, without the frustration or the biquadratic exchange
interaction.

The field-induced nematic liquid phase in the unfrustrated
system has been found in S = 1 models [8,75] and the S =
1
2 ladder model with ferromagnetic rung interactions [55].
The key point for the realization of the field-induced ne-
matic liquid phase in the former models is the easy-axis
on-site anisotropy which chooses the |Sz = ±1〉 states over
the |Sz = 0〉 state. For the latter model the key point is the
Ising-like XXZ anisotropy of the ferromagnetic bond which
prefers the | ↑↑〉 and | ↓↓〉 states to the (1/

√
2)| ↑↓ ± ↓↑〉

states of the spin pair connected by the ferromagnetic in-
teraction. These key points are essentially the same as each
other as can be seen by mapping the latter model onto the
S = 1 model. Thus the field-induced nematic liquid phase is
expected in models in which the above key point is satisfied.
In fact, recently we have found the field-induced nematic
liquid phase in the S = 1

2 ferromagnetic-antiferromagnetic
bond-alternating chain [76] and in the S = 1

2 �-chain with
ferromagnetic interactions [77].
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