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Spin-wave localization on phasonic defects in a one-dimensional magnonic quasicrystal
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We report on the evolution of the spin-wave spectrum under structural disorder introduced intentionally into
a one-dimensional magnonic quasicrystal. We study theoretically a system composed of ferromagnetic strips
arranged in a Fibonacci sequence. We considered several stages of disorder in the form of phasonic defects,
where different rearrangements of strips are introduced. By transition from the quasiperiodic order towards
disorder, we show a gradual degradation of spin-wave fractal spectra and closing of the frequency gaps. In
particular, the phasonic defects lead to the disappearance of the van Hove singularities at the frequency gap
edges by moving modes into the frequency gaps and creating new modes inside the frequency gaps. These
modes disperse and eventually can close the gap, with increasing disorder levels. The work reveals how the
presence of disorder modifies the intrinsic spin-wave localization existing in undefected magnonic quasicrystals.
The paper contributes to the knowledge of magnonic Fibonacci quasicrystals and opens the way to study of the
phasonic defects in two-dimensional magnonic quasicrystals.
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I. INTRODUCTION

Quasicrystals are aperiodic structures characterized by
long-range order and lack of translational symmetry [1,2].
The order can be revealed in the Fourier spectrum of the
structure that has a countable set of Fourier components [3–6].
This property leads to the presence of multiple frequency
gaps (i.e., Bragg gaps) in the spectrum of eigenmodes. The
disorder introduced into the structure generally leads to the
localization of the eigenmodes. The increasing level of disor-
der eventually leads to Anderson localization [7–10] and the
gradual closing of the Bragg gaps. Particularly interesting is
the case of defects in quasicrystals because they possess fine
band structures and already localized modes that are called
critically localized. In this sense, the impact of the disorder
can be more complex.

Due to the structural degrees of freedom in quasicrystals,
the local arrangement of the structure cannot unambigu-
ously determine the global ordering and the identification
of disorder is more difficult than for periodic structures.
The concept of structural degrees of freedom is more un-
derstandable when we notice that the quasicrystals can be
generated from the higher-dimensional crystals defined in ab-
stract higher-dimensional hyperspace or real space but by the
cut-and-projection (C&P) method [3].

The most known one-dimensional (1D) quasicrystal whose
lattice can be generated by the C&P method is the Fi-
bonacci quasicrystal, where lattice points, separated by long
(L = aτ/

√
2 + τ ) and short (S = a/

√
2 + τ ) distances, are

arranged aperiodically (a denotes the period of square lattice
in hyperspace, τ is the golden ratio) [11]. The translation of
the Fibonacci lattice is equivalent to rearrangements/swaps
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within the pairs of neighboring sites, which leads to the ex-
change of the adjacent short and long distances: LS ↔ SL.
These local rearrangements of the lattice are called pha-
sons [12]. The C&P method suggests also how to generate
the positional disorder in the Fibonacci lattice manifested only
by the perturbation of the sequence of L and S. It can be
achieved by the modulation of the shift c of the projection line
y = τ−1x + c(x)—see Appendix A for more details. If this
randomly introduced modulation is long wave and has small
amplitude, then it generates the LS ↔ SL swaps. Such kind of
structural disorder is called phasonic defects.

The phasons (and phasonic defects) are the unique fea-
ture of all quasicrystals and were intensively investigated
in relation to the stability of the atomic lattice of natural
quasicrystals and their phononic properties [13]. In these sys-
tems, phasons are dynamic objects which can be activated
thermally and move diffusely [10,14,15] in the structure of a
quasicrystal. The concept of phasons was already investigated
in photonics including the diffusive character of phasons [16].
Their role was also discussed as static defects, deliberately
introduced into the photonic quasicrystals [17].

In the paper we focus on the general problem of proper
introduction of positional disorder in magnonic quasicrystals
and study the impact of such phasonic defects on the spin-
wave spectra and their localization properties in magnonic
Fibonacci quasicrystals [18,19]. We introduce the static and
spatially uncorrelated phasonic defects, which allow for grad-
ual transition from the nondefected Fibonacci sequence of
strips to the completely disordered system. The static char-
acter of considered phasonic defects means that they are
introduced intentionally (i.e., by design) and not sponta-
neously (i.e., by thermal activation).

The impact of the disorder on magnetization dynamics
was extensively studied in the lattice models [20–23]. In
the case of the continuous model, the impact of the isolated
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defect on the spin-wave spectrum in magnonic crystals was
investigated for 1D structures [24–26], two-dimensional (2D)
magnonic crystals [27–29], and line defects in 2D magnonic
crystals [30]. There were also reports on defect as a magneti-
zation reversal of a single strip in a one-dimensional magnonic
crystal [31]. However, a disorder in magnonic quasicrystals
raises another class of questions, thus, we believe that our
study on phasonic defects and their impact on the spin waves
makes a valuable contribution to the magnonics field of re-
search.

In Sec. II we present the magnonic structure under inves-
tigation, explaining (i) why this structure can be considered
as a decorated Fibonacci lattice and (ii) how we introduce
the uncorrelated phasonic defects. In this section we also
outline the computational method based on the solution of
the Landau-Lifshitz equation by the plane wave method. In
Sec. III we provide a detailed analysis of the impact of the
phasonic defect on the frequency spectra of SWs and local-
ization of the modes, illustrated by the plots of the integrated
density of states, localization measure, and the profiles of
selected modes. Finally, in Sec. IV we conclude our findings.

II. STRUCTURE AND MODEL

We investigate spin waves (SWs) in a 1D planar magnonic
structure composed of cobalt (Co) and permalloy (Py) strips
of equal widths, being in direct contact and thus forming
a continuous layer. The Co and Py strips are magnetically
saturated by the external field applied along with them. The
strips are arranged in a Fibonacci quasicrystal. It is worth
noting that despite the equal width of the strips, the system
can be understood as a decorated Fibonacci lattice where
Co and Py strips are centered at sequences SLLS and SLS
sharing the shorter sections S between Co and Py with the
ratio (2 − τ )/(2 + τ ). Then, the common width of Co and Py
strips is equal to a( 3

2τ + 1)/
√

τ + 2.
To generate the phasonic defects as the structural perturba-

tions, we use the procedure which is technically simpler than
the C&P method (discussed in Appendix A), although it is
based on a more complex formalism (describing the proper-
ties of the generalized Harper model with incommensurate
modulation of the on-diagonal and off-diagonal elements of
tight-binding Hamiltonian [32]). The general model, which
also describes the Fibonacci quasicrystal, is presented in
Ref. [32]. The authors provide the characteristic equation that
determines the successive elements of the Fibonacci sequence
for given values of the parameter φ, describing the structural
degree of freedom [33,34]:

χn(φ) = sgn

[
cos

(
2πn

τ
+ φ

)
− cos

(π

τ

)]
. (1)

The characteristic function χn takes the values ±1. For our
structure, χn = 1 (χn = −1) selects Py (Co) strip at nth po-
sition in the Fibonacci sequence. The parameter φ is related
to the shift c of the line y = τ−1x + c in the C&P method:
φ = 2πc/a, see Fig. 9 in Appendix A. For infinite range of
the index n, the different values of φ correspond to different
realizations of the Fibonacci crystals which are only shifted by
ñ positions with respect to each other: χn(φ) = χn+ñ(φ + φ̃),
for every n (the change φ̃ of the parameter φ corresponds
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FIG. 1. (a) All possible approximates of a Fibonacci crystal com-
posed of 21 elements. As the phase φ changes [see Eq. (1)], we obtain
21 possible sequences of Co (light yellow) and Py (dark blue)—note
that Co strips can appear in doublets. The solid red line at φ = π/τ

corresponds to the approximate generated by standard substitution
rules: Co → Co|Py, Py → Co, presented in (b)—see also Fig. 2. The
red dashed lines show the range in which the parameter φ is randomly
changed at each position n. The changes of φ which induces the
phasonic defects are marked by green bars. They are responsible for
the substitution Py → Co at position 7 and swap between positions
12 and 13 (Co|Py → Py|Co). A sequence with defects is presented
in (c); note that position of swaps are marked by arrows.

to the shift of the sequence by ñ positions). When n takes
values in the finite range 1, . . . , N , where N is the Fibonacci
number, then the sweep of the parameter φ in the range [0, 2π ]
produces all unique, N-element sequences which can be iden-
tified as the Fibonacci crystal. The number of such unique
approximates of the Fibonacci crystal is equal to N . It is
illustrated in Fig. 1(a) where we presented all 21 approximates
composed of 21 elements (strips). Please note that the charac-
teristic function Eq. (1) is periodic: χn(φ) = χn(φ + 2π ), and
the parameter φ plays a role of phase in Eq. (1).

We arbitrarily selected the structure represented by φ =
π/τ because this approximate is generated by the standard
substitution rules. The phasonic defects can be introduced to
any sequence generated by Eq. (1), because each of them is a
defectless section of the Fibonacci quasicrystal. The approx-
imate for φ = π/τ [red solid line in Fig. 1(a)] is presented
schematically in Fig. 1(b) and a corresponding structure is
visualized in Fig. 2.

To introduce the phasonic defects we add an additional
term φn to the parameter φ: φ → φ + φ̃ + φn [33,34]. This
term is a random number of uniform distribution in the range
−�φ < φn < �φ, where �φ < π . The range �φ can be
understood as a counterpart of thermodynamic temperature
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FIG. 2. The approximate of a Fibonacci quasicrystal correspond-
ing to the φ = π/τ (see Fig. 1), i.e., resulting from the standard
substitution rules: Co → Co|Py, Py → Co. This exemplary structure
is composed of Py and Co flat strips (30 nm thick and 300 nm
wide), aligned side-by-side and being in direct contact. The field
μ0H0 = 0.1 T is applied along the strips. The sequence of tilted
arrows and line in front of them visualizes the spin-wave mode
profile.

in atomistic quasicrystals, where higher temperature leads to
higher probability of defect occurrence. This range is marked
by the red dashed lines in Fig. 1(a) and the exemplary sample
of the random values of φn are denoted by thin vertical bars.
The perturbations φn which induce the phasonic defects (i.e.,
flip the sign of χn) are marked by the green line (positions
n = 7, 12, 13). The ineffective perturbations are marked by
red bars. The perturbed structures with three phasonic de-
fects are shown in Fig. 1(c). Positions of phasonic defects
are marked by arrows below the figure. The defects are not
correlated in space because for each position χn is generated
independently. Thus, the parameter φn does not change grad-
ually, in a wavelike manner, as it is expected for a long wave
(and long-living) phasons in atomic quasicrystals at finite tem-
perature [13,14]. Because of it, along with swaps LS ↔ SL,
we can also observe the substitutions L ↔ S. For �φ = π the
system becomes random, since the probability of a type of
strip at nth position is τ . We discuss this case in Appendix B.
For smaller values of the amplitude �φ, the introduction of
defect is not equally probable at every position. At some
locations (e.g., position 13 in Fig. 1) the generation of the
defect is highly probable, whereas other locations can be quite
robust (e.g., position 7), or even completely inaccessible (e.g.,
position 2) for defects [35].

Each strip is assumed to have a width of 300 nm, a thick-
ness of 30 nm, and is infinitely long. The dimensions make the
system in an exchange-dipolar regime, which is already feasi-
ble for experimental realization. For the constituent elements
from which the system is constructed, we consider two widely
used materials, namely Co and Py. The parameters that are
important for SW propagation are magnetization saturation
MS and the exchange length λex. These parameters are equal to
MS,Co = 1445 kA/m, λex,Co = 4.78 nm, MS,Py = 860 kA/m,
and λex,Py = 5.29 nm. We assume that our sample is saturated
by the external magnetic field with value μ0H0 = 0.1 T, and
is directed along the strips. In this geometry a static demagne-
tizing field is equal to zero.

We consider a magnonic quasicrystal that is composed
of two different magnetic materials [36,37]. However, the
magnetic contrast can also be obtained in other ways: By
inducing local anisotropy [38,39], by decorating the uniform
film [40,41], or by thermal gradient [42]. Having said that, the

physics that we present in the paper is not restricted to the
bicomponent material.

When we neglect the damping, the dynamics of the mag-
netization vector can be described by the Landau-Lifshitz
equation (LLE):

∂M
∂t

= −μ0|γ |M × Heff , (2)

where μ0 = 4π × 10−7 H/m is the permeability of vacuum
and γ = 176 rad GHz/T is the gyromagnetic ratio. The ef-
fective magnetic field, which contains all kinds of magnetic
interactions considered in our study, governs the precession
of the magnetization vector. In our case Heff is composed of
the following terms:

Heff (r, t ) = H0 + Hdm(r, t ) + Hex(r, t ), (3)

where H0 stands for the external field, Hdm(r, t ) is the de-
magnetizing field, and Hex(r, t ) is the exchange field. The last
two terms are spatially and temporally dependent since they
are connected with material parameters and magnetization
dynamics at the same time. SWs are usually studied at room
temperatures T . Considered materials have much higher Curie
temperatures TC , e.g., TC ≈ 1400 K for cobalt. In the regime
T � 3/4TC , thermal effects can be neglected, and the usage of
the LLE is fully justified [43].

We use the plane wave method (PWM) to solve the lin-
earized LLE [44], where the magnetization vector M(r, t )
can be decomposed into static part M0(r) and dynamic
m(r)ei2π f t , changing harmonically with the frequency f .
The dynamic part contains two components of magnetiza-
tion vector: min(r, t ) and mout(r, t ), representing in-plane and
out-of-plane oscillation, respectively. The PWM method is
designed for a periodic system, where the Bloch boundary
condition must be used. The PWM is based on the application
of the Fourier transform both to the Bloch functions (dynamic
components of magnetization) and material parameters (satu-
ration magnetization and exchange length). These procedures
allow us to formulate an algebraic eigenproblem which can be
solved numerically with the eigenvalues (being eigenfrequen-
cies) and eigenvectors (being the Fourier coefficients of the
Bloch functions).

Despite the fact that the quasicrystals are not periodic
structures, the PWM can still be used in the so-called super-
cell approach [45]. This application of PWM still assumes
periodicity, but for supercells being copies of the whole sys-
tem, for which we take the periodic boundary condition. In
magnonics, this approach was already used to investigate
defect modes [24], interface modes [46], waveguides [47],
and two-dimensional quasicrystals [48,49]. For the considered
system, the supercells are composed of 377 strips. For such
large supercells the peculiarities of the Fibonacci quasicrystal
are well reproduced, and spurious interface states (which can
appear at the edges of supercells) do not disturb the spectra.
We used 3770 plane waves for expansion into the Fourier
series. This amount was checked for convergence and was
enough to reproduce the Fibonacci spectra [19].
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FIG. 3. Top row: (a), (b), and (c) Integrated density of states as a function of frequency plotted in the inverse form f (IDOS) (blue/green
color), and the dispersion relation for SWs in a homogeneous film with weight averaged material parameters (black color). Please note
that IDOS and dispersion relation has their own abscissa, and shares a common ordinate. The abscissa of each plot has the same scale,
indicated only in the leftmost plot. (a) Results obtained for a perfect Fibonacci sequence composed of 377 strips. (b) Results obtained for a
defected sequence with amplitude �φ/(2π ) = 5% and (c) �φ/(2π ) = 10%. Bottom row: (d), (e), and (f) Bar plot of reciprocal lattice vector
intensities, corresponding to the Bragg peaks, for the structures from (a), (b), and (c), respectively. Phasonic defects destroy the fine structure
of Bragg peaks that in consequence lead to modification of the density of states at the edges of frequency gaps and creates new modes inside
the gaps.

III. RESULTS AND DISCUSSION

To determine the spectral properties of the approximates
of the Fibonacci quasicrystal, we plotted the dependence of
integrated density of states (IDOS) on the frequency. For
a finite system, IDOS( f ) is the number of modes below a
given frequency f , see Refs. [19,48,50]. For the successive
approximates of a 1D crystal or quasicrystal (i.e., taking larger
unit cell), the IDOS is a steplike function where the steps
become finer with the increasing size of the approximates.
Constant frequency ranges in the IDOS( f ) corresponds to the
frequency gap of the system for k = 0. The width of these
ranges converges with larger approximates. The other feature
allowing the identification of the frequency gaps is a specific
character of IDOS( f ) close to the gap’s edges. The changes
of the frequencies for successive modes (i.e., with increasing
IDOS) become extremely small in the vicinity of the gap,
which is the manifestation of van Hove singularities in the
density of states for 1D nondefected systems [51,52]. It is
worth noting that, due to the lack of translational symmetry
in quasicrystals, we cannot easily relate the frequency f to the
wave number k. However, it was shown that for a 1D infinite
system, the IDOS( f ) ∝ k( f ) [53]. Therefore, the IDOS( f )
dependence for large approximates give us insight into the
dispersion relation f (k), see Figs. 3(a)–3(c).

The f (IDOS), i.e., inverse function of IDOS( f ), for a non-
defected approximate (composed of 377 strips) is presented
in Fig. 3(a). The solid black line in Figs. 3(a)–3(c) shows the
dispersion relation f (k) for an infinite uniform thin film [54].
Please note the split of the x axis between IDOS and the
wave number. The film was assumed to have effective material
parameters, which are the volume averages of the constituent
material parameters of Co and Py. It is clearly seen that the
f (IDOS) follows the dispersion relation f (k). The agreement
is very good for long SWs, in the so-called metamaterial
regime (k → 0). In this case, SWs are not that sensitive to
a specific configuration of strips. Significant differences are
observed when frequency gaps are opened, which does not ap-
pear in the homogeneous film. Just before and after frequency
gaps, differences between the frequencies of successive states
are very small, and bars in the graph [Fig. 3(a)] form the hori-
zontal lines, which corresponds to the van Hove singularities.

Figures 3(b) and 3(c) show f (IDOS) in the presence of
phasonic defects. We used green color for IDOS to visually
differentiate results from the nondefected case in Fig. 3(a).
We consider two levels of phasonic defects corresponding to
different ranges �φ of the random component of the param-
eter φ, which describes the structural degree of freedom [see,
Eq. (1) and Fig. 1]. We assume the values �φ/(2π ) = 5%
[Fig. 3(b)] and 10% [Fig. 3(c)]. Due to phasonic defects, the
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FIG. 4. Top row: (a), (b), and (c) Integrated density of states as a function of frequency plotted in the inverse form f (IDOS) calculated
for the Fibonacci sequence with introduced defects. Gray areas represents the frequency gaps in an ideal Fibonacci sequence. The amplitude
of phasonic defects �φ/(2π ) are (a) 5%, (b) 10%, and (c) 25%. A histogram of integrated density of states (IDOS) is obtained from 100
configurations of differently introduced defects. Intensity of the green color reflects how often a given position is occupied by an SW mode.
Bottom row: (d), (e), and (f) Localization measure λi as a function of frequency for an SW in a 1D Fibonacci sequence with phasonic
defects. The values of λi are calculated for structures with (d) 5%, (e) 10%, and (f) 25% of defects. Every plot aggregates 100 different system
configurations. λi increases significantly even if a small amount of defects is introduced (d), and consequently increases with amount of defects
(e) and (f).

narrowest gaps are closed, and new modes strongly localized
at defects (see the discussion later in the paper) are induced
[see the red dashed frames in Figs. 3(b) and 3(c), showing the
states within the frequency gaps]. The narrower gaps are much
more susceptible to disappearing with increasing disorder.

In the bottom row of Figs. 3(d)–3(f) we present a Fourier
spectra of the structures considered in Figs. 3(a)–3(c). Forma-
tion of the frequency gaps can be attributed to the fulfillment
of the Bragg condition, i.e., the position of the Bragg peak
(multiplied by two) determines the position of frequency
gaps [55]. However, their intensity does not necessarily de-
termine the width of the frequency gap. We can see in the
unperturbed Fibonacci structure [see Figs. 3(a) and 3(d)] that
the biggest peak (except for a peak at k = 0) is responsible
for the widest frequency gap (12.3–14.3 GHz), however the
second biggest peak opens only a small one, around 15 GHz.
We can see that the Bragg peaks are reduced as the level
of phasonic defect increases. The relative reduction of the
highest peaks (corresponding to wider gaps) is smaller than
for lower peaks (corresponding to narrower gaps). Therefore,

only the highest peaks in the Fourier spectrum are distinguish-
able, and the widest gaps remain opened for a large level of
phasonic defects—see the bottom part of Fig. 3(c) and the
zoomed region, marked by the red dashed frame. Another
effect of the phasonic defects in IDOS is the change of the
slope of f (IDOS) at the edges of frequency gaps. This means
that density of states is not singular anymore at these points.

Figures 3(a)–3(c) show that the f (IDOS) is a useful func-
tion for description of the spectral properties of defected
quasicrystals. However, the spectra presented in Figs. 3(b)
and 3(c) are specific for a given, randomly generated, set of
phasonic defects. To obtain the representative picture, we need
to collect the spectra for many configurations of phasonic de-
fects generated for the same amplitude �φ. Figures 4(a)–4(c)
present the IDOS for 100 different configurations aggregated
on one plot in the form of a 2D histogram. Please note that
figures in two rows of Fig. 4 share the same values of fre-
quency on the horizontal axis. The intensity of the green
color reflects which position in frequency and IDOS appear
more often. Figures 4(a)–4(c) are plotted for �φ/(2π ) =
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5%, 10%, and 25%, respectively. The gray background marks
the frequency gaps of the nondefected Fibonacci sequence.
The general trend of IDOS in the function of frequency pre-
vails even for the most disturbed system. The IDOS curve
is not much dispersed, suggesting the same spectra for the
different realizations of the disorder. However, we can notice
that the green line in Fig. 4(c) is thicker than in Fig. 4(a),
which indicates some frequency shift under strong disorder.
In the range of frequency 10–12 GHz, where IDOS resembles
the dispersion relation of the homogeneous film with weight
averaged material parameters [black line in Figs. 3(a)–3(c)],
defects do not change the picture. The impact of the defects is
strongest around the frequency gaps. Initially, for �φ/(2π ) =
5% the modes appear deeply inside and at the edges of the
gaps. Then, for higher �φ, the modes start occupying other
frequencies within the gaps and gradually fill them. These
effects are more effective for narrower gaps. Finally, we do not
observe the fine structure of the gaps in the spectrum which
was a hallmark of quasiperiodicity. The location of the defect
in the sequence and its neighborhood determines the fre-
quency of strongly localized defect modes. For �φ/(2π ) =
5% [Fig. 4(a)] modes from the widest frequency gaps (i.e.,
the gap around 13 or 16 GHz) are induced by those phasonic
defects which form the sequence of double Py strips. Thus,
their position on IDOS is very specific. Moreover, since such
sequence of strips is common in the defected sequence, the
modes are highly degenerated. For a more distorted sequence
presented in Figs. 4(b) and 4(c), different sequences become
available like triple Py strips, so defect states can occupy other
frequencies.

The qualitative determination of localization is challenging
because the profiles of the SW modes can be localized in many
regions, so the rate of spatial decay cannot be determined
unambiguously. Therefore, we decided to introduce the global
measure of localization λi that is calculated for each ith SW
mode mi(x):

λi = − 1

L

∫ L

0
|mi,out (x)| log |mi,out (x)|dx, (4)

where L denotes the width of the whole sequence. For com-
putational simplicity we considered only the out-of-plane
component mi,out (x) of the dynamic part of magnetization
mi(x). During the calculations, the profiles are normalized:
1
L

∫ L
0 |mi,out (x)|dx = 1. The formulation of this measure is

done with the analogy to the Shannon information en-
tropy [56,57], where the SW profile plays a role of probability
distribution—the uniform distribution (and Dirac delta dis-
tribution) corresponds to the highest entropy and complete
absence of localization: λi = 0 (the lowest entropy and maxi-
mum localization: λi = −∞).

In Figs. 4(d)–4(f) we present the localization measure λi

for successive modes, calculated on the same data set as IDOS
calculation. They are ordered with increasing frequency, sim-
ilarly to the IDOS spectrum. We can see that localization
is significantly enhanced as the amplitude of the phasonic
defects is increasing [green 2D histogram in Figs. 4(d)–4(f)],
especially if we compare it to the case of the nondefected
system [blue points in Figs. 4(d)–4(f)]. We can identify the
strongly localized defect modes with a large value of |λi|

(a)

(b) mode 9, 10.57 GHz

mode 9, 10.67 GHz

m
ou

t
m

ou
t

FIG. 5. The evolution of the bulk mode under the presence of
the defects. (a) In the absence of defects the mode is not local-
ized, its amplitude is more concentrated in Py than in Co. (b) For
�φ/(2π ) = 10% the defects (marked by arrows below the plot) lead
to the formation of double Py strips and can concentrate the SW
dynamics.

inside the frequency gap. It is worth noting that the local-
ization of the modes at frequencies close to the edges of
gaps with enhanced λi suggests that some of the critically
localized modes [58–61] become defect modes. To inspect
the localization of the SW modes directly, we plotted the
profiles of selected modes. We chose one of the configurations
for �φ = 10% that corresponds to an intermediate disorder
level, presented in Figs. 4(b) and 4(e). All the modes are
normalized to the maximum absolute value in the whole struc-
ture. Figures present only fragments of them, and the location
can be deduced from strip numbers. All modes, which were
selected for plotting, are also marked in the spectra [Figs. 3(a)
and 3(c)]. We start the analysis by checking the impact of
the disorder on the bulk modes. Figure 5 presents the com-
parison of one mode, labeled No. 9 at 10.67 and 10.57 GHz
in nondefected and defected structures, respectively. Looking
at Fig. 4(e) suggests significant modification of the profile.
The envelope in Fig. 5(a) is not localized and the mode has
several nodal points (one of them is visible close to strip No.
120). The visible nonuniformity of amplitude is related to
the oscillatory and evanescent behavior in Py and Co strips,
respectively, thus SW amplitude is concentrated in Py strips.
Figure 5(b) presents mode No. 9 after introducing the defects,
where double Py strips are formed. SW is localized on the
defects, around the strips No. 90 and No. 110 that have a
similar local arrangement.

In nondefected Fibonacci quasicrystals, the critically local-
ized modes exist close to the edges of the gaps—see mode
No. 136 at 12.57 GHz in Fig. 6(a) and its frequency marked
in Fig. 3(c). The profile of this mode exhibits the pattern with
amplitude concentrated on parts of the structure possessing
locally the same arrangement of strips. For very large struc-
tures, these modes can reveal a self-similar pattern [58,61].
By adding the defects, we can shift critically localized modes
to the frequency gap. Then, their frequencies are changed
significantly, and the profiles are extremely strongly localized
at defects, see Fig. 6(b). The SW in Fig. 6(b) is localized in
double Py, and since such defects occur several times within
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mode 136, 12.57 GHz

mode 136, 13.29 GHz

(a)

(b)
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FIG. 6. The transition of the mode No. 136 from critically lo-
calized at the edge of the frequency gap to strongly localized in the
frequency gap induced by phasonic defects. The critically localized
mode (a) enters into the gap and (b) becomes strongly localized, due
to the presence of defects �φ/(2π ) = 10% which is accompanied
by a significant change in frequency from 12.57 to 13.29 GHz.

the considered structure, the mode can occupy different de-
fects leading to multiple degenerations.

The bulk modes can also increase their localization due to
partial confinement between the defects. Figure 7(a) presents
the critically localized mode No. 359 at 16.96 GHz, which
has an enhanced amplitude on the sequences Co|Co|Py|Co
(or on their reversed copies Co|Py|Co|Co). After introducing
the defects, the mode amplitude is redistributed among these
strips, which leads to the partial confinement of this mode
between the defects, see Fig. 7(b).

The most typical kind of localization, existing in both
periodic and quasiperiodic structures, is an exponential local-
ization on defects, which are observed within the frequency
gaps. We selected two wide gaps, around the frequency 13.5
or 16 GHz (Figs. 3 and 4), to investigate the profiles of defect
modes. The selected modes (shown in Fig. 8) are localized
at the defects, which have the form of double Py strips. We
arbitrary chose the modes with one phase flip inside the single
defect [Figs. 8(a) and 8(b)], and three phase’s flips inside the
defect [Figs. 8(c) and 8(d)]. The defect modes are located at a
single or few positions in the structure. Due to strong localiza-

(a)

(b)

mode 359, 16.96 GHz

mode 359, 16.92 GHz
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ou
t

FIG. 7. (a) The critically localized mode (No. 359 at 16.96 GHz)
which increases its localization and slightly changes its frequency
to f = 16.92 GHz due to partial confinement between defects (b) at
�φ/(2π ) = 10%.

mode 135, 13.28 GHz(a)

(b) mode 138, 13.29 GHz

mode 291, 16.03 GHz

mode 292, 16.03 GHz

(c)

(d)
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FIG. 8. The defect modes from the two largest frequency gaps
shown in Figs. 3 and 4. (a) and (b) Modes No. 135 and No. 138 with
frequency 13.28 and 13.29 GHz. (c) and (d) Modes No. 291 and No.
292 with frequency 16.03 GHz. The modes are strongly localized
at one of few locations but have the same profile, differing only
in phase (flipped upside down) [see (a) and (b)] or reversed along
with the structure (flipped left-right) [see (c) and (d)]. Due to strong
localization, the modes are practically degenerated. The results are
shown for the structure with �φ/(2π ) = 10%.

tion and low probability of overlapping between the profiles
concentrated at selected defects, the modes are degenerated—
there are many modes of very similar frequencies occupying
similar sequences in different locations of the quasicrystal.
We discussed earlier the position-dependent susceptibility for
inducing the defects, where we showed that some locations in
the structure are very resistant or even completely robust to
the introduction of defects at the low value of the amplitude
�φ [35]. This is an additional factor supporting the isolation
of the SW dynamics at defects and contributing to the nonuni-
form distribution of the frequencies for defect modes within
the frequency gaps.

IV. SUMMARY

It is known that magnonic quasicrystals offer additional
possibilities in designing artificial magnonic band structures
as compared to magnonic crystals. The increased complex-
ity of the spin-wave spectrum and the appearance of bulk
localization of the spin-wave modes are the main effects of
the quasiperiodicity. In the paper we show additional steps
towards customization, namely the introduction of the dis-
order in the form of phasonic defects, and demonstrate their
impact on spectral properties and localization of the spin-wave
modes. To explore the role of disorder in quasicrystals, we
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studied many randomly generated configurations of defects.
We focused on selected configurations to discuss the profiles
of representative eigenmodes exhibiting the critical localiza-
tion at the edges of the frequency gaps, and strong localization
on phasonic defects inside the gaps. In particular, we show
that smaller gaps are closed under a small perturbation of the
quasiperiodicity, while wide ones are relatively robust to a dis-
order. It is assisted by transition from bulk modes to critically
localized modes, and finally to the modes strongly localized
on the defects. Interestingly, the modes from the frequency
gap edges become strongly localized by the introduction of
phasonic defects to the structure, which is correlated with the
disappearance of van Hove singularities.

We demonstrated that in the complex magnonic system,
where both short-range exchange interactions and long-range
dipolar interactions come into play, the effects like closing
the small gaps and enhancement of the modes’ localization
are reproduced for spin waves. The study opens the route
for the investigation of phasonic defects in two-dimensional
magnonic quasicrystals, which recently attracted interest due
to their application potential in magnonics signal process-
ing [49,62].
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FIG. 9. The illustration of the cut-and-projection (C&P) method
and the induction of phasonic defect. The array of dots represent the
square lattice in a 2D hyperspace. The Fibonacci lattice (black and
blue crosses) is generated by the projection of a square lattice from
the belt between solid and dashed lines onto the line y = τ−1x + c of
irrational slope, being the inverse of the golden ratio τ . The visible
(21-element) section of the Fibonacci lattice corresponds to the se-
lection of φ = 2πc/a = 0.8, see Fig. 1. For a defect-free Fibonacci
lattice the belt (between solid blue and dashed blue line) is straight.
By bending the belt (limited here by solid green and dashed green
lines), we can induce the phasonic defects in the Fibonacci lattice
(black and green crosses).

APPENDIX A: CUT-AND-PROJECT METHOD: PHASONS

The Fibonacci lattice can be generated from the square
lattice of the period a by the C&P method [3]. The lat-
tice points r = a(mx̂ + nŷ), where m, n are integers, are
projected onto the line y = τ−1x + c from the belt, below
this line, of the width a(cos α + sin α) = a(τ + 1)/

√
τ + 2,

where α = arccot(τ ) is the angle between the line and the
x direction, and τ is the golden ratio. This procedure gener-
ates the proper sequence of long (L = a cos α = aτ/

√
τ + 2)

and short distances (S = a sin α = a/
√

τ + 2) between lat-
tice points projected onto the line y, forming the Fibonacci
lattice, see Fig. 9. The position of the line (given by the
constant c) and the related shift in the perpendicular direction√

τ + 2(−x̂ + τ ŷ) express the structural degree of freedom in
defining a Fibonacci lattice. Regardless, on the value of this
shift, we always obtain the defectless lattices, differing only
in some uniform translation of the lattice sites along the real
(parallel) direction

√
τ + 2(τ x̂ + ŷ).

The introduction of phasonic defect can be described by
bending the belt. It is equivalent to the perturbation of struc-
tural degree of freedom, which can be expressed here as a
position-dependent shift of the belt: c(x). When this depen-
dence is small and smooth at the distances larger than the
lattice constant a, then the phasonic defects have a form of

(a)

(b)

FIG. 10. (a) Integrated density of states for SWs in the randomly
generated sequence of Co and Py, where the ratio between types
of strips is kept as for a Fibonacci quasicrystal, i.e., it corresponds
to the golden ratio. The dark-green color represents a histogram of
aggregated results obtained from 100 different random sequences
(the color scale is the same as in Fig. 4). Light-green points stand
for one specific structure for which the bar of the Fourier transform
(b) are plotted.
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the swaps between neighboring short and long distances in
the Fibonacci lattice (S ↔ L).

APPENDIX B: RANDOM SYSTEM

In Fig. 10(a) we show the IDOS spectrum of the SW
eigenmodes in a randomized sequence of Co and Py with
the same parameter as in the paper. To keep the same aver-
aged composition, we used 144 Py and 233 Co strips. We
generated 100 different configurations, and the intensity of
the green color reflects how often a specific position is oc-
cupied on the plot. By light green we plotted one selected
configuration, for which Fourier spectrum is presented below.
The IDOS spectrum of this exemplary configuration coincides
with the SW dispersion relation for a uniform ferromagnetic
layer with the volume averaged material parameters (i.e., with

the weights 1/τ and 1 − 1/τ ), except for a small deviation
around 14 GHz. The IDOS does not show any signatures
of the frequency gaps. It is also reflected in the Fourier
spectrum [Fig. 10(b)] of this random structure that do not
have any distinctive peaks except the peak at wave number
k = 0, which corresponds to the average value of the spatial
distribution of material parameters. The absence of Bragg
peaks is the signature of the lack of (quasi)crystal long-range
order.

The introduction of a phasonic defect for large approx-
imates of the Fibonacci quasicrystal does not change the
average number of Co and Py strips (it is obvious for the
swaps Co ↔ Py, whereas the substitutions Co → Py and
Py → Co are equally probable, see Fig. 1). In the limit �φ →
2π the IDOS spectrum approaches the spectrum of the disor-
dered system, as shown in Fig. 10(a).

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic
Phase with Long-Range Orientational Order and No Transla-
tional Symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[2] D. Levine and P. J. Steinhardt, Quasicrystals: A New Class of
Ordered Structures, Phys. Rev. Lett. 53, 2477 (1984).

[3] C. Janot, Quasicrystals: A Primer (Oxford University Press,
Oxford, 2012).

[4] Z. V. Vardeny, A. Nahata, and A. Agrawal, Optics of photonic
quasicrystals, Nat. Photonics 7, 177 (2013).

[5] L. Dal Negro, Optics in Aperiodic Structures: Fundamentals
and Device Applications (CRC, Boca Raton, FL, 2014).

[6] T. Janssen, G. Chapuis, and M. De Boissieu, Aperiodic Crystals
From Modulated Phases to Quasicrystalss (Oxford University
Press, Oxford, 2007).

[7] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[8] L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela,
and M. Segev, Disorder-enhanced transport in photonic qua-
sicrystals, Science 332, 1541 (2011).

[9] M. Segev, Y. Silberberg, and D. N. Christodoulides, Anderson
localization of light, Nat. Photonics 7, 197 (2013).

[10] J. A. Kromer, M. Schmiedeberg, J. Roth, and H. Stark, What
Phasons Look Like: Particle Trajectories in a Quasicrystalline
Potential, Phys. Rev. Lett. 108, 218301 (2012).

[11] A. Jagannathan, The Fibonacci quasicrystal: Case study of hid-
den dimensions and multifractality, Rev. Mod. Phys. 93, 045001
(2021).

[12] E. Maciá, The role of aperiodic order in science and technology,
Rep. Prog. Phys. 69, 397 (2006).

[13] J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phonons,
phasons, and dislocations in quasicrystals, Phys. Rev. B 34,
3345 (1986).

[14] M. de Boissieu, Phonons, phasons and atomic dynamics in
quasicrystals, Chem. Soc. Rev. 41, 6778 (2012).

[15] J. Wolny, I. Buganski, and R. Strzalka, Phononic and phasonic
Debye-Waller factors for 1D quasicrystals, Acta Phys. Pol. A
130, 836 (2016).

[16] B. Freedman, R. Lifshitz, J. W. Fleischer, and M. Segev, Phason
dynamics in nonlinear photonic quasicrystals, Nat. Mater. 6,
776 (2007).

[17] M. A. Bandres, M. C. Rechtsman, and M. Segev, Topological
Photonic Quasicrystals: Fractal Topological Spectrum and Pro-
tected Transport, Phys. Rev. X 6, 011016 (2016).

[18] C. H. Chen, R. Z. Qiu, C. H. Chang, and W. J. Hsueh, Strongly
localized modes in one-dimensional defect-free magnonic qua-
sicrystals, AIP Adv. 4, 087102 (2014).

[19] J. Rychły, J. W. Kłos, M. Mruczkiewicz, and M. Krawczyk,
Spin waves in one-dimensional bicomponent magnonic qua-
sicrystals, Phys. Rev. B 92, 054414 (2015).

[20] J. Ding, M. Kostylev, and A. O. Adeyeye, Magnonic Crystal as
a Medium with Tunable Disorder on a Periodical Lattice, Phys.
Rev. Lett. 107, 047205 (2011).

[21] M. Evers, C. A. Müller, and U. Nowak, Spin-wave localization
in disordered magnets, Phys. Rev. B 92, 014411 (2015).

[22] M. Evers, C. A. Müller, and U. Nowak, Weak localization
of magnons in chiral magnets, Phys. Rev. B 97, 184423
(2018).

[23] P. Buczek, S. Thomas, A. Marmodoro, N. Buczek, X.
Zubizarreta, M. Hoffmann, T. Balashov, W. Wulfhekel, K.
Zakeri, and A. Ernst, Spin waves in disordered materials,
J. Condens. Matter Phys. 30, 423001 (2018).

[24] R. A. Gallardo, T. Schneider, A. Roldán-Molina, M. Langer,
A. S. Núñez, K. Lenz, J. Lindner, and P. Landeros, Symmetry
and localization properties of defect modes in magnonic super-
lattices, Phys. Rev. B 97, 174404 (2018).

[25] V. S. Tkachenko, V. V. Kruglyak, and A. N. Kuchko, Spectrum
and reflection of spin waves in magnonic crystals with different
interface profiles, Phys. Rev. B 81, 024425 (2010).

[26] V. V. Kruglyak, M. L. Sokolovskii, V. S. Tkachenko, and A. N.
Kuchko, Spin-wave spectrum of a magnonic crystal with an
isolated defect, J. Appl. Phys. 99, 08C906 (2006).

[27] H. Yang, G. Yun, and Y. Cao, Point defect states of exchange
spin waves in all-ferromagnetic two-dimensional magnonic
crystals, J. Appl. Phys. 111, 013908 (2012).

[28] H. Yang, G. Yun, and Y. Cao, Coupling characteristics of point
defects modes in two-dimensional magnonic crystals, J. Appl.
Phys. 112, 103911 (2012).

[29] H. Yang, G. Yun, and Y. Cao, Effects of point defect shapes on
defect modes in two-dimensional magnonic crystals, J. Magn.
Magn. Mater. 356, 32 (2014).

064430-9

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1038/nphoton.2012.343
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1126/science.1202977
https://doi.org/10.1038/nphoton.2013.30
https://doi.org/10.1103/PhysRevLett.108.218301
https://doi.org/10.1103/RevModPhys.93.045001
https://doi.org/10.1088/0034-4885/69/2/R03
https://doi.org/10.1103/PhysRevB.34.3345
https://doi.org/10.1039/c2cs35212e
https://doi.org/10.12693/APhysPolA.130.836
https://doi.org/10.1038/nmat1981
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1063/1.4892164
https://doi.org/10.1103/PhysRevB.92.054414
https://doi.org/10.1103/PhysRevLett.107.047205
https://doi.org/10.1103/PhysRevB.92.014411
https://doi.org/10.1103/PhysRevB.97.184423
https://doi.org/10.1088/1361-648X/aadefb
https://doi.org/10.1103/PhysRevB.97.174404
https://doi.org/10.1103/PhysRevB.81.024425
https://doi.org/10.1063/1.2164419
https://doi.org/10.1063/1.3673333
https://doi.org/10.1063/1.4766907
https://doi.org/10.1016/j.jmmm.2013.12.039


MIESZCZAK, KRAWCZYK, AND KłOS PHYSICAL REVIEW B 106, 064430 (2022)

[30] D. Xing, H. Yang, and Y. Cao, Waveguide properties in two-
dimensional magnonic crystals with line defects, J. Magn.
Magn. Mater. 377, 286 (2015).

[31] K. Baumgaertl, S. Watanabe, and D. Grundler, Phase con-
trol of spin waves based on a magnetic defect in a one-
dimensional magnonic crystal, Appl. Phys. Lett. 112, 142405
(2018).

[32] Y. E. Kraus and O. Zilberberg, Topological Equivalence be-
tween the Fibonacci Quasicrystal and the Harper Model, Phys.
Rev. Lett. 109, 116404 (2012).

[33] A. Dareau, E. Levy, M. B. Aguilera, R. Bouganne, E.
Akkermans, F. Gerbier, and J. Beugnon, Revealing the Topol-
ogy of Quasicrystals with a Diffraction Experiment, Phys. Rev.
Lett. 119, 215304 (2017).

[34] E. Levy, A. Barak, A. Fisher, and E. Akkermans, Topological
properties of Fibonacci quasicrystals: A scattering analysis of
Chern numbers, arXiv:1509.04028.

[35] G. G. Naumis, Phason hierarchy and electronic stability of
quasicrystals, Phys. Rev. B 71, 144204 (2005).

[36] Z. K. Wang, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, S.
Jain, and A. O. Adeyeye, Observation of frequency band gaps
in a one-dimensional nanostructured magnonic crystal, Appl.
Phys. Lett. 94, 083112 (2009).

[37] S. Choudhury, S. Saha, R. Mandal, S. Barman, Y. Otani, and A.
Barman, Shape- and interface-induced control of spin dynam-
ics of two-dimensional bicomponent magnonic crystals, ACS
Appl. Mater. Interfaces 8, 18339 (2016).

[38] A. Wawro, Z. Kurant, M. Jakubowski, M. Tekielak, A.
Pietruczik, R. Böttger, and A. Maziewski, Magnetic Properties
of Coupled Co/Mo/Co Structures Tailored by Ion Irradiation,
Phys. Rev. Applied 9, 014029 (2018).
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