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Chiral fixed point in a junction of critical spin-1 chains
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Junctions of one-dimensional systems are of great interest to the development of synthetic materials that harbor
topological phases. We study a junction of three gapless spin-1 chains described by the SU(2)2 Wess-Zumino-
Wittten model and coupled by exchange and chiral three-spin interactions. We show that a chiral fixed point
appears as a special point on the transition line separating two regimes described by open boundary conditions,
corresponding to decoupled chains and the formation of a boundary spin singlet state. Along this transition line,
the junction behaves as a tunable spin circulator as the spin conductance varies continuously with the coupling
constant of a marginal boundary operator. Since the spectrum of the junction contains fractional excitations such
as Majorana fermions, in this paper, we set the stage for network constructions of non-Abelian chiral spin liquids.
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I. INTRODUCTION

Junctions of multiple one-dimensional (1D) electronic sys-
tems, such as quantum wires and spin chains, are of great
relevance to technological applications because they consti-
tute basic elements in the architecture of quantum devices
[1,2]. Networks of 1D conducting channels also provide ver-
satile platforms to simulate exotic phases of matter [3–7]. On
the theoretical side, junctions of 1D systems offer an amenable
yet nontrivial playground to explore fascinating phenomena
associated with strong correlations. Their transport properties
can be characterized by renormalization group (RG) fixed
points of the low-energy theory that correspond to confor-
mally invariant boundary conditions of the collective charge
or spin modes [8,9]. This approach has been applied to several
quantum impurity problems, a prominent example being the
multichannel Kondo model [10,11].

Different boundary fixed points can be reached depending
on boundary couplings as well as bulk interactions [12]. In the
context of quantum wires, Kane and Fisher [13,14] showed
that electrons are fully transmitted through a weak link if
the electron-electron interactions are attractive and perfectly
reflected otherwise. In another influential work, Chamon et al.
[15] mapped out the phase diagram of a Y junction with an
enclosed magnetic flux. Remarkably, they identified a chiral
fixed point in which the sign of the magnetic flux controls the
asymmetry in the current flow [16,17].

In parallel to these developments, many spin chain models
have been studied as well [18–22]. Buccheri et al. [23,24]
showed that a Y junction of spin- 1

2 antiferromagnetic Heisen-
berg chains features an unstable chiral fixed point that can be
reached by fine tuning a single coupling constant, namely, the
strength of a boundary three-spin interaction that breaks time
reversal symmetry. The intermediate-coupling chiral fixed
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point appears at the transition between two stable fixed points
characterized by decoupled chains and by a spin-chain analog
of the three-channel Kondo model. Precisely at the chiral
fixed point, the junction behaves as an ideal quantum spin
circulator. Since each spin- 1

2 chain is described by an SU(2)1
Wess-Zumino-Witten (WZW) model [25], the chiral junction
also provides a starting point for network constructions of
Abelian chiral spin liquids in higher dimensions [5]. An open
question is whether this chiral fixed point can be generalized
to higher-level SU(2)k WZW models, known to describe crit-
ical points of isotropic chains with spin S � 1 [26–30]. Such
a generalization would pave the way for realizing more exotic
chiral spin liquid states with non-Abelian spinons [31,32] in
networks of gapless spin-S chains.

In this paper, we pursue this generalization by studying a
Y junction of critical spin-1 chains whose continuum limit is
described by three copies of the SU(2)2 WZW model. Each
copy has central charge c = 3

2 and can be represented in terms
of three critical Ising models [33,34]. As a consequence, the
excitation spectrum contains emergent Majorana fermions. To
construct the junction, we coupled the spin chains by ex-
change and three-spin interactions among their end spins. Our
main goal is to locate the chiral fixed point in the boundary
phase diagram by inspecting its instabilities within the effec-
tive field theory. Based on an analysis of the effects of relevant
and marginal perturbations, combined with the picture for
weak and strong coupling limits of the lattice model, we argue
that the chiral fixed point lies on the transition line separating
the regime where the chains are trivially decoupled from the
regime where the boundary spins form a singlet state. Along
this line, we compute spin transport properties by solving a
scattering problem for noninteracting chiral fermions. We find
that the spin conductance tensor can be partially asymmetric,
with a maximal asymmetry at the chiral fixed point.

This paper is organized as follows. Section II starts with a
review of the low-energy theory for the critical spin-1 chain
that models the junction legs. Having set up the notation, we
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turn to the effective field theory for the junction and discuss
the open-boundary fixed point governing the weak-coupling
regime. In Sec. III, we begin to characterize the chiral fixed
point of our junction by calculating the long-distance decay
of the three-spin correlation. We also address the boundary
operators that render the chiral fixed point unstable. This
leads us to the analysis of Sec. IV, where we examine the
relevant and marginal perturbations. We find that the relevant
operator controls the transition between two phases with open
boundary conditions, while the marginal perturbation by itself
affects the spin conductance of the junction. We argue that
the transition line described by the marginal deformation of
the chiral fixed point terminates at the point where an S = 1
boundary bound state is formed and must be screened by the
Kondo effect. In Sec. V, we draw our conclusions and point
out some future directions. For self-containing purposes, we
also include two appendices. Appendix A summarizes our
conventions for the critical theory of the Ising model and
details the bosonization scheme used in the main text. Finally,
Appendix B shows that a lattice version of the low-energy
problem of Sec. IV C supports our claim of a boundary bound
state in the strong coupling limit.

II. SPIN MODEL

In this section, we define the model of our junction. We
begin with a short review of the SU(2)2 WZW conformal
field theory for a critical spin-1 chain. We then introduce the
Hamiltonian for the junction, discuss the role of the boundary
interactions, and examine the fixed point with open boundary
conditions as a training example.

A. The critical spin-1 chain

The SU(2)2 WZW universality class arises as one of the
generic possibilities for the transition from the Haldane phase
to the dimerized phase in spin-1 chains [35]. For concrete-
ness, we consider the bilinear-biquadratic spin-1 chain, with
Hamiltonian:

H = J
∑

j

[(S j · S j+1) − b(S j · S j+1)2], (1)

where S j are spin-1 operators, J > 0 is the antiferromag-
netic exchange coupling, and the dimensionless parameter b
controls the relative strength of the biquadratic interaction.
This model can be realized with spin-1 bosons in optical lat-
tices [36,37]. The ground-state phase diagram is well known
[38,39]. If we start from the Heisenberg chain with b = 0
and increase b, the transition to the dimerized phase occurs
at the Takhtajan-Babujian point b = 1, at which the spin
Hamiltonian is Bethe ansatz integrable [40,41]. The effective
Hamiltonian for this critical point has the form:

H =
∫

dx

[
πv

2
(J2 + J̄2) − 2πvgJ · J̄

]
, (2)

where v ∼ J is the spin velocity, and J and J̄ are the left-
and right-moving spin currents which obey the SU(2)2 Kac-
Moody algebra [25]. The dimensionless coupling g > 0 is
marginally irrelevant, producing logarithmic corrections to
correlation functions [42]. We can tune g to zero by adding

next-nearest-neighbor interactions to the bilinear-biquadratic
chain [43]. To simplify matters and focus on the essential
physics, hereafter, we neglect the marginal bulk interaction.

The SU(2)2 WZW model is very special because it can be
expressed as a theory of three critical Ising models [25,33,34].
This means all local operators of the theory can be written
as products of Ising operators labeled by a ∈ {1, 2, 3}. The
components of the spin currents take the form:

Ja = − i

2
εabcξ bξ c, J̄a = − i

2
εabcξ̄ bξ̄ c, (3)

where ξ a and ξ̄ a are the chiral Majorana fermions associated
with each Ising model, and εabc is the Levi-Civita symbol.
These currents represent the smooth part of the continuum
representation for the spin operator [26], which reads

S j ∼ J(x) + J̄(x) + (−1) jn(x), (4)

with x = ja0, a0 the lattice constant. The staggered part of
the spin operator is defined in terms of the 2 × 2 matrix field
�(1/2) as

n(x) = Atrτ�(1/2)(x), (5)

where A > 0 is a nonuniversal prefactor, and τ is the vector of
Pauli matrices. The spin- 1

2 field has scaling dimension 3
8 and

also enters into the staggered part of S j · S j+1, from which we
define the dimerization operator d̂ ∝ tr�(1/2). We express the
�(1/2) operator as

tr�(1/2) = σ 1σ 2σ 3, trτ a�(1/2) = iσ aμa+1μa+2. (6)

Here, σ a and μa are the Ising order and disorder operators.
We note that μa is fermionic in our notation. This means that
it anticommutes with all fermion fields and other disorder op-
erators [44]. Another important observation is that our choice
for the representation of �(1/2) is not unique. As revealed by
the duality transformation:

ξ a → ξ a, ξ̄ a → −ξ̄ a, σ a ↔ μa, (7)

we could introduce a dual representation for �(1/2) as well.
The equivalence of this choice can be viewed as a gauge free-
dom, so that adopting the representation in Eq. (6) amounts
to fixing a gauge. We will come back to this point when
discussing how to implement open boundary conditions.

The SU(2)2 WZW model has another scaling field. The
spin-1 field �(1) is a 3 × 3 matrix field with dimension 1. Its
components are fermion bilinears of the form �

(1)
ab = iξ aξ̄ b,

so that its trace is given by the sum of energy operators:

tr�(1) = ε1 + ε2 + ε3. (8)

The SU(2)-invariant trace of �(1) appears in the smooth part
of S j · S j+1 and (S j · S j+1)2. We can use this to learn about the
vicinity of the b = 1 critical point. For |1 − b| � 1, the spin-1
chain of Eq. (1) can be treated as a perturbed conformal field
theory. The effective Hamiltonian includes the perturbation:

δH = m
∫

dx tr�(1), (9)

where m ∝ J (1 − b) is a relevant coupling constant that gov-
erns the Haldane to dimerized transition. In the Ising model
notation, this transition is equivalent to a disorder-to-order
transition in all Ising sectors. For m > 0, the Ising models are
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disordered. Although there are eight different configurations
for 〈μa〉 
= 0, the symmetry transformation:

ξ a → −ξ a, ξ̄ a → −ξ̄ a, σ a → σ a, μa → −μa, (10)

reduces this number to a physical fourfold degeneracy [34].
This corresponds to the Haldane phase, characterized by the
spontaneous breaking of the hidden Z2 × Z2 symmetry that
gives a fourfold-degenerate ground state in an open chain [45].
In contrast, for m < 0, the Ising models are in the ordered
phase. This case corresponds to the dimerized phase with
〈d̂ 〉 ∝ 〈σ 1σ 2σ 3〉 
= 0.

We end this review by noting that our construction based
on the SU(2)2 WZW model is not restricted to the specific
lattice model of Eq. (1). The same critical theory applies, for
instance, to the spin-1 Heisenberg model with an additional
three-site interaction:

H3s = J
∑

j

{(S j · S j+1)

+ β[(S j−1 · S j )(S j · S j+1) + H.c.]}. (11)

This model is critical at β � 0.111 [28,35]. The small critical
ratio makes this a realistic model for the dimerization transi-
tion in actual spin chain materials [28].

B. Y junction

Let us now define the model of our junction. We consider
a Y junction that consists of three semi-infinite spin-1 chains
coupled together only at their first sites. The Hamiltonian is
H = H0 + HB. The first term describes three critical spin-1
chains:

H0 = J
∞∑
j=1

3∑
α=1

[(S j,α · S j+1,α ) − (S j,α · S j+1,α )2], (12)

where S j,α is the spin-1 operator at site j of chain α. The
second term describes the boundary interactions. We require
it to preserve spin SU(2) symmetry and Z3 leg permutation
symmetry, α → α + 1 (mod 3). We thus add to the model a
chiral interaction Jχ and an exchange interaction J ′ between
the end spins:

HB = JχĈ1 + J ′
3∑

α=1

S1,α · S1,α+1, (13)

where Ĉj = S j,1 · (S j,2 × S j,3) is the scalar spin chirality op-
erator at site j. The Jχ interaction breaks parity P : α → −α

and time reversal T : S → −S symmetries, but preserves the
combined PT symmetry. One may note that these symme-
tries also allow for a boundary biquadratic interaction term
J ′

q

∑
α (S1,α · S1,α+1)2. However, we shall see that it suffices to

tune two boundary parameters to reach the chiral fixed point
in the low-energy theory. For this reason, in this paper, we set
J ′

q = 0 to reduce the parameter space of the model.
We now consider the continuum limit of the Y junction. In

the spirit of delayed evaluation of boundary conditions [17],
we write the bulk Hamiltonian in Sugawara form as

H0 =
∑

α

πv

2

∫ ∞

0
dx

(
J2

α + J̄2
α

)
, (14)

FIG. 1. Open-boundary fixed point. The three legs are decou-
pled, and incoming spin modes are fully reflected.

where we dropped the marginal bulk interaction. In terms of
the chiral Majorana fermions, we have

H0 =
3∑

α=1

3∑
a=1

∫ ∞

0
dx

iv

2

(
ξ a
α∇ξ a

α − ξ̄ a
α∇ ξ̄ a

α

)
, (15)

where ∇ denotes the spatial derivative. We observe that, com-
pared with the SU(2)×Z3 symmetry of the lattice model, this
Hamiltonian has an enlarged SO(9)×SO(9) chiral symmetry
[46], which corresponds to rotations of the nine-component
vectors ξ = (ξ1

1, ξ 2
1 , . . . , ξ 3

3 ) and ξ̄ = (ξ̄ 1
1 , ξ̄ 2

1 , . . . , ξ̄ 3
3 ). How-

ever, once we impose boundary conditions, the chiral currents
are no longer independent. By varying the boundary interac-
tions, we can drive transitions between different low-energy
fixed points, which must be identified with conformally in-
variant boundary conditions. The simplest example is the open
(O) fixed point corresponding to three decoupled spin chains
for Jχ = J ′ = 0. The boundary conditions in this case are

J̄α (x) = Jα (−x), (16)

meaning there is no flow across the boundary and incoming
spin currents are fully reflected (see Fig. 1).

Let us now show how to deal with the boundary condi-
tions in the Ising model formulation. From Eq. (3), we see
that open boundary conditions can be implemented as either
ξ̄ a
α (x) = ξ a

α (−x) or ξ̄ a
α (x) = −ξ a

α (−x). This sign ambiguity is
a manifestation of the duality transformation in Eq. (7), so that
selecting a sign is equivalent to choosing a representation for
�(1/2). To be consistent with our choice in Eq. (6), we must
use

ξ̄ a
α (x) = ξ a

α (−x). (17)

We derive the behavior of order and disorder operators by
combining two Ising models with the same leg index to define
a bosonic field ϕα for each leg. We employ the bosonization
formulas:

ξ 1
α + iξ 2

α = 1√
π

exp(i2φα ),

ξ̄ 1
α + iξ̄ 2

α = 1√
π

exp(i2φ̄α ), (18)

where φα and φ̄α are the chiral components of the boson
ϕα = φα − φ̄α; see Appendix A for details. From Eqs. (17)
and (18), we deduce that the open boundary conditions can be
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implemented by

φ̄α (x) = φα (−x) + C, (19)

with C = 0 or C = π . Substituting this into the bosonized
expressions:

σ 1
ασ 2

α = cos ϕα, iμ1
αμ2

α = sin ϕα, (20)

we find 〈σ a
α 〉 ∝ x−1/8 and 〈μa

α〉 = 0. Thus, we see that open
boundary conditions are identified with fixed |↑〉 or |↓〉
boundary conditions in the Ising model representation [9].
Note that this leads to a nonvanishing expectation value for
the dimerization, which decays away from the boundary as
〈d̂α〉 ∝ x−3/8. This behavior is consistent with the numerical
study in Ref. [43].

The next step is to analyze the stability of the O fixed
point. If we impose open boundary conditions and express the
local operators in terms of a single chiral component for each
leg, Eq. (4) tells us that boundary spin operators are given by
S1,α ∝ Jα (0). We use this to write down the leading boundary
operators allowed by SU(2)×Z3 symmetry that perturb the O
fixed point:

H (O)
B = κ1

∑
α

Jα (0) · Jα+1(0) + κ2

∑
α

[Jα (0)]2

+ κ3

∑
α

Jα (0) · [Jα+1(0) × Jα−1(0)] + · · · , (21)

where we obtain κ1 ∼ J ′ and κ3 ∼ Jχ at weak coupling. Since
each spin current Jα has scaling dimension 1, all boundary
perturbations in Eq. (21) are irrelevant. We thus conclude that
the O fixed point is stable and governs the low-energy physics
of the junction at weak coupling |Jχ |, |J ′| � J .

To gain some intuition about the other fixed points that
may appear in the strong coupling limit |Jχ |, |J ′| � J , we
can neglect the bulk Hamiltonian and diagonalize the three-
spin Hamiltonian in Eq. (13). Note that the eigenstates of
HB can be labeled by the eigenvalues of the total spin S2

B =
(
∑

α S1,α )2, the z-spin component Sz
B, and the scalar spin

chirality Ĉ1. Let us focus on J ′ > 0. For |Jχ |/J ′ <
√

3, the
ground state of HB is a spin-singlet state with zero chirality
and energy E = −3J ′. Thus, in the limit J � |Jχ | � J ′, a
simple picture for the junction consists of removing the three
boundary spins to form a singlet and coupling the spins at sites
j = 2 by weak interactions generated by virtual transitions
that excite the singlet state. This picture suggests another fixed
point of decoupled chains whose boundary has been shifted by
one site.

For |Jχ |/J ′ >
√

3, the ground state of HB becomes a chiral
spin-triplet state with energy E = −2J ′ − √

3|Jχ |. The triplet
ground state has negative chirality if Jχ > 0 and positive chi-
rality if Jχ < 0. Let us denote by |Bm〉 with m ∈ {+, 0,−}
the three states in the ground state manifold. For Jχ > 0, the
highest-weight state with maximum eigenvalue of Sz

B in this
manifold is

|B+〉 = 1√
6

(|+ + −〉 + ω|− + +〉 + ω2|+ − +〉

+ |00+〉 + ω|+00〉 + ω2|0 + 0〉), (22)

FIG. 2. Spin currents are diverted from chain α to chain α − 1 at
the C− fixed point.

where ω = exp(i2π/3) and {|m1, m2, m3〉} is the basis of
eigenstates of Sz

1,α . The other two states, |B0〉 and |B−〉, can
be readily obtained from the action of the ladder operator
S−
B . Similarly, the time-reversal conjugates of the above states

form the ground state manifold of HB for Jχ < 0. The picture
for the junction in the limit J � J ′ � |Jχ | has an effective
spin 1 at the boundary which must be symmetrically coupled
to the chains at the j = 2 sites. This limit is reminiscent of
the Kondo fixed point for the junction of spin- 1

2 Heisenberg
chains [23], where the gapless bulk modes screen the emer-
gent boundary spin in close analogy with the three-channel
Kondo problem.

III. CHIRAL FIXED POINT

When time reversal symmetry is broken, the junction may
realize one of two chiral fixed points, C+ or C−. These are
characterized by the complete transmission of incoming spin
currents from one chain to the next in rotation. The circulation
sense is determined by the sign of Jχ . A positive Jχ favors
a local negative-chirality state where spin currents circulate
clockwise as shown in Fig. 2. This defines the C− fixed point,
described by the boundary conditions:

J̄α (x) = Jα+1(−x). (23)

The circulation is reversed for negative Jχ . Since both cases
are clearly related by time reversal, without loss of generality,
we consider Jχ > 0 from now on.

At the chiral fixed point, the spin chirality Ĉj acquires a
nonzero expectation value [23]. To see how this follows from
the boundary conditions in Eq. (23), we calculate the large-
distance decay of 〈Ĉj〉. Since in the continuum limit the most
relevant contribution to Ĉj stems from the staggered magneti-
zation fields, the evaluation of this correlator boils down to
considering 〈Ĉj〉 ∼ (−1) j〈n1 · (n2 × n3)〉. We proceed with
the Ising model representation of the staggered components
in Eqs. (5) and (6). Let us then introduce the χ operator
χa

123 = iμa
1μ

a
2σ

a
3 , so that the contribution from the staggered

magnetization fields to Ĉj is written as

Ĉj ∼ A3(−1) j+1
(
χ1

231χ
2
312 + χ1

312χ
2
231

)
χ3

123

+ cyclic perm + · · · . (24)

Next, we use bosonization to compute its expectation value.
As for the O fixed point, we have two ways to implement

064429-4



CHIRAL FIXED POINT IN A JUNCTION OF CRITICAL … PHYSICAL REVIEW B 106, 064429 (2022)

chiral boundary conditions in the Ising model formulation
ξ̄ a
α (x) = ±ξ a

α+1(−x). We stress, once again, that both ways
are equivalent and reflect the gauge transformation in Eq. (7).
However, as we are working in the fixed gauge of Eq. (6), we
adopt

ξ̄ a
α (x) = ξ a

α+1(−x). (25)

In the bosonic representation, the above boundary conditions
are equivalent to imposing

φ̄α (x) = φα+1(−x) + C, (26)

with C = 0 or C = π . We are now in position to compute the
expectation value of a pair of χ operators, which according to
Eq. (20) takes the form:

χ1
123χ

2
123 = − sin ϕ1 sin ϕ2 cos ϕ3. (27)

Plugging the boundary conditions of Eq. (26) into this for-
mula, we obtain 〈χa

123〉 ∝ x−3/8. If we now return to Eq. (24),
we conclude that the spin chirality has the power law decay:

〈Ĉ j〉 ∝ (−1) jx−9/8. (28)

Note that the long-distance decay of this correlation function
is governed by the bulk scaling dimension of Ĉj , as expected
for the chiral fixed point. We remark that, although we may
observe a nonzero 〈Ĉj〉 whenever we have Jχ 
= 0 in the lattice
model, the key feature is that the chiral fixed point has the
slowest decay for 〈Ĉj〉. In the regimes governed by nonchiral
fixed points, the nonzero expectation value of 〈Ĉj〉 depends on
irrelevant boundary operators. For instance, near the O fixed
point, the leading chiral boundary operator has dimension 3,
and standard perturbation theory to the first order in κ3 in
Eq. (21) yields 〈Ĉj〉 ∝ (−1) jx−25/8 instead.

We now turn to the stability of the chiral fixed point.
The boundary perturbations are determined by the operator
content of the conformal field theory. The leading bound-
ary operators respecting SU(2)×Z3 symmetry are constructed
from the trace of the primary matrix fields. For the junction of
SU(2)2 WZW models, the boundary operators that we must
pay attention to are

H (C)
B = λ1

3∑
α=1

tr�(1/2)
α (0) + λ2

3∑
α=1

tr�(1)
α (0). (29)

The first term is a relevant perturbation of dimension 3
8 , and

the second one is a dimension-1 marginal perturbation. Here,
we neglect irrelevant boundary operators written in terms of
the chiral currents.

We can understand how the leading boundary operators
are generated in our model by approaching the problem from
weak coupling. We first look at the chiral boundary interaction
Hχ = JχĈ1. We separate the contributions with different fac-
tors of uniform or staggered components of the spin operators
contained in Ĉ1. The contribution with three factors of the
staggered magnetization generates the marginal perturbation:

H (nnn)
χ ∼ Jχ

A3

4

[
−3 + π

3∑
α=1

tr�(1)
α (0)

]
+ · · · . (30)

Its leading term is proportional to the identity, which is con-
sistent with the fact that Hχ should favor the formation of a

chiral boundary state. To obtain this result, we expanded the χ

operators in Eq. (24) around x = 0 and then used bosonization
to show that

χ123(0) ∼ ± 1
2 {1 − π [ε1(0) + ε2(0) − ε3(0)]} + · · · . (31)

Here, we have omitted the spin index for brevity. Note that,
due to the duplication of the model, there is an overall sign
which is not fixed by bosonization. In the face of this, we
choose the sign so that the total energy is lowered 〈Hχ 〉 < 0.
The chiral boundary interaction also generates the relevant
operator from the contribution that mixes the staggered mag-
netization with chiral currents:

H (JJn)
χ ∼ −Jχ

[
Jx

1 (0)J̄y
2 (0) − Jy

1 (0)J̄x
2 (0)

]
nz

3(0)

+ cyclic perm. (32)

Imposing the chiral boundary conditions in Eq. (23), we can
rewrite this term as a product of operators with the same leg
index:

H (JJn)
χ ∼ −Jχ

[
J̄x

3 (0)Jy
3 (0) − J̄y

3 (0)Jx
3 (0)

]
nz

3(0)

+ cyclic perm. (33)

This trick is helpful if Jα and J̄α are independent for a given
α, so we can use the standard operator product expansions
(OPEs) for a single spin chain. We obtain the relevant pertur-
bation:

H (JJn)
χ ∼ Jχ

A

8π2

3∑
α=1

tr�(1/2)
α (0) + · · · . (34)

As a result, the chiral three-spin interaction produces both
relevant and marginal boundary operators. Next, we consider
the exchange boundary interaction H1 = J ′ ∑

α Sα · Sα+1. The
latter only produces the relevant boundary operator at the first
order. From the fusion of the staggered magnetization fields,
we obtain

H (nn)
1 ∼ J ′ 3A2

√
8

3∑
α=1

tr�(1/2)
α (0) + · · · . (35)

We thus write symbolically λ1 ∼ Jχ + J ′ and λ2 ∼ Jχ .
This result indicates that the chiral fixed point cannot

appear at weak coupling because it is destabilized by a
relevant perturbation. However, it can still appear as an
intermediate-coupling fixed point associated with a boundary
phase transition in our model. To reach the chiral fixed point,
we need to tune two parameters in the lattice model so that
both λ1 and λ2 vanish. Let us assume that λ1 and λ2 are smooth
functions of the boundary couplings Jχ and J ′ and that the
chiral fixed point is realized at some critical values (Jχ,c, J ′

c).
Near this putative point, the effective couplings behave as

λ1 ≈ −c1(Jχ − Jχ,c) − c2(J ′ − J ′
c),

λ2 ≈ −c3(Jχ − Jχ,c). (36)

Here, ci are nonuniversal positive constants so that λ1 and λ2

are positive at weak coupling, in agreement with the pertur-
bative expressions. To connect the effective field theory with
chiral boundary conditions to the picture for the weak and
strong coupling limits discussed in Sec. II B, we next address
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FIG. 3. Schematic boundary phase diagram for the junction. The
chiral fixed point is denoted by a red dot and lies on the transition
line that separates the decoupled and singlet phases. In addition to
these, there is a Kondo-like phase in the large-Jχ limit.

what happens when λ1 and λ2 change sign across the chiral
fixed point.

IV. BOUNDARY PHASE DIAGRAM

In this section, we analyze the effects of the relevant and
marginal perturbations to the chiral fixed point. Our aim is
to substantiate the phase diagram sketched in Fig. 3, which
places the chiral fixed point on a transition line between two
phases governed by open-boundary fixed points.

A. Relevant operator

We first examine the relevant boundary operator. Under
the RG, the effective coupling λ1 flows monotonically to-
ward strong coupling, dominating the infrared behavior of
the junction. When this happens, we must abandon the chiral
boundary conditions and pin the boundary fields to minimize
the term λ1

∑
α tr�(1/2)

α (0). Since the trace of the spin- 1
2 ma-

trix field defines the dimerization d̂ ∝ tr�(1/2), we see that
λ1 leads to a nonzero expectation value for the boundary
dimerization 〈d̂α (0)〉 
= 0. This behavior is representative of
the O fixed point discussed in Sec. II B.

To understand what happens when λ1 changes sign, we
recall that the expectation value of the dimerization controls
the relative strength of even and odd bonds in the spin chains:

〈S j,α · S j+1,α〉 = Cunf (x) + (−1) j〈d̂α (x)〉, (37)

where Cunf (x) < 0 denotes the uniform part of the spin-spin
correlation, which is a smooth function of x. The sign of
〈d̂α (x)〉 depends on the sign of λ1, which flows to either
λ1 → ∞ or λ1 → −∞. At weak coupling, we have λ1 > 0.
This corresponds to the O fixed point of trivially decoupled
chains, at which the first bond of each chain is stronger
than the second bond. In contrast, for λ1 < 0, the second
bond becomes the strongest. This case is compatible with the
regime of dominant J ′ > 0 discussed in Sec. II B. The sign
change of λ1 can then be associated with the formation of a
boundary spin singlet, which is weakly coupled to the rest of
the chains in the limit J ′ � Jχ , J . This picture bears resem-
blance to the two-impurity Kondo model in the presence of
particle-hole symmetry [47,48]. In the latter, a quantum phase
transition separates two disconnected phases corresponding to

the regime where each impurity is screened by its neighboring
chain and the regime where the pair of impurities forms a
singlet state. We note that the two-impurity Kondo model
in spin chains was studied in Refs. [19,20]. Based on these
observations, we claim that the relevant coupling λ1 drives
a transition from the decoupled to the singlet phase of our
junction, see Fig. 3.

B. Marginal operator and spin conductance

We now move away from the chiral fixed point along
the phase transition line, so that the only perturbation is
the marginal boundary interaction. The effective Hamilto-
nian with λ1 = 0, λ2 
= 0 takes a rewardingly simple form
in the Ising model representation. Since the trace of �(1) in
Eq. (8) does not mix different spin components, the Majorana
fermions with different spin indices are all independent, and
we can treat them separately. The effective Hamiltonian for a
single spin component reads

Hc =
∑

α

∫ ∞

−∞
dx

[
iv

2
ξα∇ξα + iλ2δ(x)ξαξα+1

]
, (38)

where we have used the chiral boundary conditions to unfold
the space interval and omitted the spin index in the Majorana
fermions to lighten the notation. This Hamiltonian describes
three left-moving Majorana fermions with a pointlike scatter-
ing amplitude at x = 0. Since the Hamiltonian is quadratic, we
can diagonalize it exactly and use the result to calculate the
spin transport properties of the junction along the transition
line.

To solve the scattering problem, it is convenient to change
basis. Using the three Majorana fermions, we construct one
real fermion ξ0 and one complex fermion ψ . The real fermion
is defined as

ξ0 = 1√
3

(ξ1 + ξ2 + ξ3). (39)

The complex fermion and its conjugate are written as

ψ = 1√
3

(ξ1 + ωξ2 + ω2ξ3),

ψ† = 1√
3

(ξ1 + ω2ξ2 + ωξ3). (40)

Note that ξ0 is invariant, while ψ† transforms as ψ† → ωψ†

under cyclic leg permutations α → α + 1. In terms of the new
fermions, the Hamiltonian is decomposed into two indepen-
dent terms:

Hc = i

2

∫
dx ξ0∇ξ0 +

∫
dx ψ†[i∇ + γ δ(x)]ψ, (41)

with γ = √
3λ2 and v set to unity. The first term describes

a free, left-moving Majorana fermion, which evolves in real
time as

ξ0(x, t ) =
∫

dk

2π
bk exp[−ik(t + x)], (42)

where k is the momentum. The reality condition on ξ0 im-
plies that the normal-mode operators satisfy b−k = b†

k with
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{bk, b†
k′ } = 2πδ(k − k′). The second term in Eq. (41) de-

scribes the potential scattering of the complex fermion at the
origin. The equation of motion is

i(∂t − ∇ )ψ = γ δ(x)ψ. (43)

Since ψ satisfies a free equation of motion for x 
= 0, we can
write the solution in terms of two plane waves, one for x < 0
and the other for x > 0. To match the solutions on both sides,
we integrate the equation of motion over the infinitesimal
interval x ∈ (−ε,+ε) and obtain

ψ (0+) = 1 + i γ

2

1 − i γ

2

ψ (0−). (44)

As a result, the mode expansion for the complex fermion takes
the form:

ψ (x, t ) = exp[2iδ�(x)]
∫

dk

2π
ck exp[−ik(t + x)], (45)

with {ck , c†
k′ } = 2πδ(k − k′) and �(x) the Heaviside step

function. The phase shift δ is set by the condition tan δ = γ /2,
saturating at δ → ±π/2 as we send the coupling to γ →
±∞. Furthermore, for small γ , we can approximate δ ≈ γ /2.
Importantly, the phase shift is a smooth function of γ , and
there is no discontinuity across the chiral fixed point where γ

changes sign.
The seemingly innocuous phase shift controls the trans-

mission rate of Majorana modes across the junction. To see
that, we return to the original Majorana basis and consider
two-point functions of the form 〈ξ̄α (z̄)ξβ (w)〉, where z and
z̄ are complex coordinates in Euclidean space-time, defined
as z = τ + ix and z̄ = τ − ix for imaginary time τ . Under
the chiral boundary conditions of Eq. (25), these correlators
correspond to 〈ξα+1ξβ〉 with operators taken at opposite sides
of the origin. Using the mode expansions for ξ0 and ψ , we
obtain

〈ξ̄α (z̄)ξβ (w)〉 = tαβ

2π (z̄ − w)
, (46)

where the coefficients tαβ are functions of the phase shift:

t11 = 1 + 2 cos
(
2δ + 2π

3

)
3

,

t21 = 1 + 2 cos
(
2δ − 2π

3

)
3

,

t31 = 1 + 2 cos(2δ)

3
. (47)

The other components of tαβ can be obtained by cyclic permu-
tation of the indices. Note that, for δ = 0, we correctly recover
t31 = 1 and t11 = t21 = 0, as expected for the C− fixed point.

We are now ready to address the spin transport of the chiral
fixed point deformed by the marginal interaction. The central
quantity here is the spin conductance tensor [24], which can
be probed by measuring the response of the junction to the
application of a spin chemical potential Bα at the end of chain
α. Within linear response theory, we have〈

Ia
α

〉 =
∑
b,β

Gab
αβBb

β, (48)

FIG. 4. Components of the spin conductance tensor, in units of
G0 = 1/2π , as a function of the phase shift δ.

where Iα (x) = Jα (x) − J̄α (x) is the spin current flowing into
the junction from chain α, and Gab

αβ are the components of
the spin conductance tensor. The spin conductance can be
obtained from the Kubo formula [17]:

Gab
αβ = − lim

ω→0+

1

ωL

∫ L

0
dx

∫ ∞

−∞
dτ

× exp(iωτ )
〈
Ia
α (x, τ )Ib

β (y, 0)
〉
, (49)

with arbitrary y > 0. For instance, let us compute the spin con-
ductance between two distinct chains α 
= β. Our calculations
follow closely those of Ref. [49]. The nonzero contribution
to the two-point function 〈Ia

α Ib
β〉 comes from the left-right

correlations:〈
Ia
α (x, τ )Ib

β (y, 0)
〉 = −[〈

Ja
α (x, τ )J̄b

β (y, 0)
〉

+ 〈
J̄a
α (x, τ )Jb

β (y, 0)
〉]
. (50)

Using Eq. (46), we find that these two-point correlators are
given by

〈
Ia
α (x, τ )Ib

β (y, 0)
〉 = − δab

4π2

[
t2
βα

(z − w̄)2
+ t2

αβ

(z̄ − w)2

]
, (51)

where z = τ + ix and w = iy. Note that SU(2) symmetry im-
plies that the conductance is diagonal in the spin indices, and
we write Gab

αβ = δabGαβ . Plugging the result for the correlator
back into Eq. (49) and performing the integrals, we obtain

Gαβ = − 1

2π
t2
αβ, α 
= β. (52)

The calculation for α = β is quite similar and yields

Gαα = 1

2π

(
1 − t2

αα

)
. (53)

Note that G0 = 1/(2π ) is the quantum of spin conductance
in units of h̄ = 1 [32]. One simple check here is to verify
that our formulas satisfy

∑
α Gαβ = ∑

β Gαβ = 0, as required
from spin current conservation

∑
α〈Iα〉 = 0 and the fact that

applying the same spin chemical potential Bα to all chains
leads to zero current.

The spin conductance as a function of the phase shift
is shown in Fig. 4. At δ = 0, we have G11 = −G31 = G0

and G21 = 0. Defining the conductance asymmetry as GA =
(G31 − G21)/G0, we find GA = −1 for δ = 0, so that the
spin conductance is maximally asymmetric at the chiral fixed
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point. While the conductance varies continuously with the
phase shift, positive and negative values of δ lead to rather
distinct behaviors. Let us explore this difference to uncover
the role of the marginal coupling λ2 on the phase diagram
of Fig. 3. Departing from δ = 0 toward positive phase shifts,
we encounter two points that draw our attention. The first
one occurs at δ = π/6, where an incoming spin current is
transmitted symmetrically to the other two chains G21 = G31,
and parity symmetry is restored. If we increase δ further,
the junction starts to work with a reversed chirality, so that
|G21| > |G31|. We encounter the second interesting point at
δ = π/3, where the junction is once again an ideal spin circu-
lator, but now GA = +1, and the currents are rerouted in the
counterclockwise direction.

Since the perturbative expressions derived in Sec. III in-
dicated that λ2 > 0 at weak coupling, we infer that moving
along the transition line in the direction of positive δ must
correspond to decreasing Jχ (see Fig. 3). It is tempting to iden-
tify δ = π/6 with the point where the transition line crosses
the J ′ axis and P and T symmetries are restored because
Jχ = 0. According to the relation between the phase shift and
the scattering amplitude in the effective model, for δ = π/6,
we have λ2 = 2

3 , a sizable deviation from the C− fixed point.
Remarkably, Gαα/G0 = 8

9 for δ = π/6 is the maximum value
of the conductance for free fermions in a three-lead junction
allowed by unitarity and time-reversal invariance [50]. We
conjecture that this nontrivial value describes the spin con-
ductance of our junction at the transition between the two
open-boundary fixed points for Jχ = 0. It is also interesting to
note that the result for the conductance in Fig. 4 is symmetric
about δ = π/6 if we also exchange G21 and G31. Thus, if
we extrapolate the result beyond the parity-symmetric point,
it makes sense to associate δ = π/3 with the C+ fixed point
found on the Jχ < 0 side of the phase diagram.

C. Boundary bound state

Let us now consider negative values of the phase shift. Note
that, according to Eq. (41), λ2 < 0 is related to an attractive
potential for the Z3-charged complex fermion. As we move
away from δ = 0, the spin conductance is rapidly suppressed
along this direction, culminating at δ = −π/3 where the junc-
tion becomes disconnected with all Gαβ = 0. However, this
point takes place at λ2 = −2, far from the perturbative regime.
Here, we should consider the possibility that such a strongly
attractive potential may lead to the formation of a bound state
whose wave function is localized near x = 0. This effect is
not captured by the effective Hamiltonian of Eq. (41). Unlike
the textbook example of a particle with quadratic dispersion
described by the Schrödinger equation, a chiral fermion with
linear dispersion does not develop a bound state for an arbi-
trarily weak potential well in 1D. In the many-body problem,
bound states can be detected as poles in the two-particle
propagator [51], but we have verified that there are no such
poles in the case of our effective Hamiltonian. However, this
conclusion may break down when the attractive potential be-
comes comparable with the high-energy cutoff in the effective
field theory so that the linear dispersion approximation is no
longer applicable. In Appendix B, we show that two different
lattice regularizations of the fermionic model which reduce to

the second term in Eq. (41) in the continuum limit contain a
bound state in spectrum when the binding potential becomes
of the order of the fermion bandwidth.

If we assume that the transition line with λ2 < 0 eventually
gives rise to a boundary bound state, we can assemble the
various fixed points into a cohesive phase diagram. Restoring
the spin index of the fermionic fields, we note that there are
actually three bound states, two of which can be occupied if
we are to respect the global fermion parity constraint for phys-
ical states. Recall that we are dealing with emergent Majorana
fermions that stem from the spin fractionalization in the bulk.
The partial occupation of the bound states entails a threefold
degeneracy, from which we can construct a boundary spin-1
operator S0 = h†

aTabhb. Here, h†
a creates a hole in the bound-

ary bound state labeled by a ∈ {1, 2, 3}, and T is the vector of
spin-1 matrices. Once this effective impurity spin is formed,
the field theory for the perturbed chiral fixed point allows for
another relevant boundary operator with dimension 3

8 :

H ′
B = λ3S0 ·

∑
α

trτ�(1/2)
α (0). (54)

When λ3 flows to strong coupling, it drives the system toward
a different low-energy fixed point than the O fixed points
governed by λ1. Importantly, the Z3 charge of the complex
fermions forming the bound state is consistent with the chi-
rality of the triplet ground state of the three-spin Hamiltonian
in the strong-coupling limit Jχ � J ′ � J , see Eq. (22). Iden-
tifying this strong-coupling limit with the regime dominated
by λ3, we are led to the boundary phase diagram in Fig. 3.

Coming from the limit of large Jχ , the effective spin 1 at
the boundary is coupled to the chains by a Kondo interaction:

H̃ = H̃0 + JKS0 ·
∑

α

S2,α, (55)

where JK ∼ J is the Kondo coupling, and H̃0 is the new bulk
Hamiltonian where the site j = 1 of each chain has been
removed to form the central spin S0. The free-moment fixed
point where the spin 1 remains decoupled is unstable for
JK > 0 due to the Kondo effect. At low energies, the boundary
degeneracy must be lifted as the central S = 1 spin gets over-
screened by the symmetric combination J = ∑

α Jα , which
defines an SU(2)6 current. Discussion of this low-energy fixed
point is lacking in the literature. Formally, the conformally
invariant boundary conditions for the stable fixed point can
be generated by fusion with the primary fields of the SU(2)6

WZW model once we identify a suitable conformal embed-
ding. Note that the junction of spin chains has a different
total central charge (c = 9

2 ) than its counterpart for itinerant
electrons; thus, the results for the electronic multichannel
Kondo model [10,11] cannot be immediately translated to
the spin chain version of the problem. Since our focus here
is on the chiral fixed point, we refrain from studying this
multichannel-Kondo-like fixed point in detail and leave this
problem for future work.

D. Comparison with the spin- 1
2 case

At this point, it is interesting to contrast our results
with those for the junction of spin- 1

2 chains discussed in
Refs. [23,24]. In the spin- 1

2 junction, the low-energy physics
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of each spin chain is governed by an SU(2)1 WZW model with
central charge c = 1 which is equivalent to a free boson theory
[25]. A key difference is that the chiral fixed point is destabi-
lized by only one relevant operator in this case, and there is
no marginal deformation that would lead to a smoothly vary-
ing conductance asymmetry. The unstable chiral fixed point
in the spin- 1

2 case separates a weak-coupling regime, given
by disconnected spin chains, from a strong-coupling regime,
dominated by a spin-chain version of the three-channel Kondo
fixed point. The latter two phases find their analogs in the
spin-1 problem, but there is no boundary singlet phase in the
spin- 1

2 junction.

V. CONCLUSIONS

We studied the properties of a chiral junction of isotropic
spin-1 chains with bulk interactions tuned to the critical point
between the Haldane phase and the dimerized phase. We ar-
gued that a chiral fixed point can be reached by varying the
coupling constants for two boundary interactions in the lattice
model. Based on a low-energy effective field theory, we found
that the chiral fixed point is unstable, being perturbed by a rel-
evant and a marginal boundary operator. We established that
the relevant coupling governs a phase transition between two
disconnected regimes, which correspond to trivially decou-
pled chains and to the formation of a spin-singlet state out of
the boundary spins. On the other hand, the marginal perturba-
tion produces a phase shift for the emergent fermionic modes
and controls the spin conductance along the transition line
between the decoupled and singlet phases. The formation of a
spin-triplet boundary state for a strong three-spin interaction
can be understood through the formation of fermion bound
states when the marginal coupling creates a strong binding
potential. Therefore, despite its instability, the perturbed chiral
fixed point governs the low-energy physics of the junction
over a wide parameter regime.

Our analytical predictions can be tested numerically using
the methods of Refs. [23,24,52,53]. One could pinpoint the
location of the chiral fixed point by combining the information
about the power law decay of the three-spin correlation, the
sign inversion of the dimerization, and the asymmetry of the
spin conductance tensor. The properties of the strong-coupling
regime with dominant three-spin interaction, governed by a
multichannel-Kondo-like fixed point, remain an open ques-
tion. As a matter of fact, other nontrivial fixed points may be
found in a more general boundary phase diagram that includes
a boundary biquadratic interaction.

Our junction is a member of a broad family of quantum
spin circulators. If each member of this family is labeled
by the spin S of the critical chains, this problem is equiv-
alent to searching for the chiral fixed point in junctions of
SU(2)k=2S WZW models. In this context, our work serves as

the simplest generalization of the chiral fixed point of spin- 1
2

chains [23,24] to a higher-level WZW model. The impor-
tance of such a generalization can be viewed more directly
in the construction of strongly correlated topological phases
in two dimensions. While the SU(2)1 model is related to
the construction of a Kalmeyer-Laughlin chiral spin liquid
[5,54], an analogous construction for the SU(2)2 model would
lead to a non-Abelian chiral spin liquid with SU(2)2 anyons
[31]. This construction will be discussed elsewhere. More
exotic possibilities, such as parafermionic chiral spin liquids,
are offered by starting from even higher-level SU(2)k WZW
models. However, the number of relevant boundary operators
that can be constructed from the primary fields �( j) with
j = 1

2 , 1, . . . , k
2 in the SU(2)k WZW model increases with

k. The generalization of our results indicates that it will be
necessary to fine tune an increasing number of parameters in
the lattice model to reach the chiral fixed point, which should
appear as a multicritical point in the boundary phase diagram.
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APPENDIX A: BOSONIZATION OF THE ISING MODEL

In this Appendix, we review the continuum limit formula-
tion of the critical Ising model and establish the bosonization
formulas for a theory of two Ising models used in the main
text [25,34,44,45].

The Hamiltonian of the critical Ising model is that of a free,
massless Majorana fermion:

H = iv

2

∫
dx(ξ∇ξ − ξ̄∇ ξ̄ ). (A1)

This is a conformally invariant theory with central charge c =
1
2 . The nontrivial scaling fields of the theory are the energy
operator ε, the order operator σ , and the disorder operator μ.
Their conformal weights (h, h̄) are

ε :
(

1
2 , 1

2

)
, σ :

(
1

16 , 1
16

)
, μ :

(
1

16 , 1
16

)
. (A2)

The order and disorder fields obey the following set of OPEs:

σ (z, z̄)σ (0) = 1√
2|z|1/4

+ π√
2
|z|3/4ε(0) + · · · ,

μ(z, z̄)μ(0) = 1√
2|z|1/4

− π√
2
|z|3/4ε(0) + · · · , (A3)

and

μ(z, z̄)σ (0) =
√

π

2

exp
(
i π

4

)
z1/2ξ (0) − exp

(−i π
4

)
z̄1/2ξ̄ (0)

|z|1/4
+ · · · ,

σ (z, z̄)μ(0) =
√

π

2

exp
(−i π

4

)
z1/2ξ (0) − exp

(
i π

4

)
z̄1/2ξ̄ (0)

|z|1/4
+ · · · . (A4)
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This second set of OPEs tell us that the product of order
and disorder operators produces a fermion. This means that
we must associate a fermionic character to either μ or σ for
consistency [34]. In this paper, we arbitrarily choose μ to
incorporate the anticommutative properties of the fermions.
Since ε = iξ ξ̄ , it suffices to examine the OPEs associated to
the fusion rules ξ × μ → σ and ξ × σ → μ. For the holo-
morphic component, we have

ξ (z)μ(0) = exp
(
i π

4

)
√

4πz
σ (0) + · · · ,

ξ (z)σ (0) = exp
(−i π

4

)
√

4πz
μ(0) + · · · . (A5)

The OPEs for the right-moving fermions ξ̄ are then

ξ̄ (z̄)μ(0) = −exp
(−i π

4

)
√

4π z̄
σ (0) + · · · ,

ξ̄ (z̄)σ (0) = −exp
(
i π

4

)
√

4π z̄
μ(0) + · · · . (A6)

These coefficients differ from the ones found in the textbooks
by Mussardo [55] and Di Francesco et al. [56]. However,
as pointed out by Allen and Sénéchal in Ref. [44], there is
some arbitrariness in these constants because of the nonlocal
character of these operators. We stress that our notation is
consistent with the bosonization formulas presented below.

Let us now establish the bosonization formulas [25]. To
begin with, we introduce the chiral boson fields φ and φ̄,
which are uniquely defined by their two-point functions:

〈φ(z)φ(0)〉 = −1

4
ln z, 〈φ̄(z̄)φ̄(0)〉 = −1

4
ln z̄, (A7)

with 〈φ(z)φ̄(z̄)〉 = 0. In terms of these, the bosonization for-
mulas are

ξ 1 + iξ 2 = 1√
π

exp(i2φ), ξ̄ 1 + iξ̄ 2 = 1√
π

exp (i2φ̄).

(A8)
To ensure the anticommutation of the fermions, we impose the
equal-time commutators:

[φ(x), φ(x′)] = −i
π

4
sgn(x − x′),

[φ̄(x), φ̄(x′)] = i
π

4
sgn(x − x′),

[φ(x), φ̄(x′)] = −i
π

4
. (A9)

Here, sgn(x) stands for the sign function with sgn(0) = 0.
From Eq. (A8), it follows that the currents are given by

Jz = −iξ 1ξ 2 = i

π
∂φ, J̄ z = −iξ̄ 1ξ̄ 2 = i

π
∂̄φ̄, (A10)

where ∂ and ∂̄ denote the derivatives with respect to z and z̄,
respectively. Here, we used the definition in Eq. (3). If we now
introduce the scalar field ϕ = φ − φ̄ and its dual θ = φ + φ̄,
we can write

Jz + J̄ z = 1

π
∇ϕ, Jz − J̄ z = 1

π
∇θ. (A11)

In the same token, to find the bosonization formulas for the en-
ergy operators, we multiply the normal-ordered exponentials
in Eq. (A8) and obtain

ε1 + ε2 = 1

π
cos 2ϕ, ε1 − ε2 = − 1

π
cos 2θ. (A12)

To express order and disorder operators, we consider products
of operators such as σ 1σ 2. The products of two order and two
disorder operators are given by

σ 1σ 2 = cos ϕ, iμ1μ2 = sin ϕ, (A13)

and the mixed products are

μ1σ 2 = cos θ, σ 1μ2 = sin θ. (A14)

One way to find the correct correspondence of these formu-
las is to ensure that the perturbations m

∫
dx(ε1 ± ε2) to the

effective Hamiltonian induce the correct phase transitions for
positive and negative m, cf. Ref. [45]. For example, m > 0
in m

∫
dx(ε1 + ε2) corresponds to the disordered phase of the

Ising models. In the boson formulation, this can be interpreted
as pinning ϕ → ±π/2 to minimize the energy, which accord-
ing to Eq. (A13) yields 〈σ a〉 = 0 and 〈μa〉 
= 0, as it should
be.

APPENDIX B: BOUND STATE OF CHIRAL FERMIONS

In this Appendix, we examine lattice realizations for the
problem of a chiral fermion scattering off a delta-function
potential in Eq. (41). Our goal is to show that on a regular-
ized platform, a bound state can be formed when the binding
potential is strong enough.

First, consider a tight-binding model of spinless fermions
hopping on an open chain with N sites. We then add an onsite
potential V acting at the first site. The Hamiltonian reads

H = −
N−1∑
j=1

(c†
j c j+1 + H.c.) + V c†

1c1, (B1)

where {c j , c†
j′ } = δ j j′ , and the hopping parameter has been set

to unity. Assuming that V is weak compared with the Fermi
energy, we can take the continuum limit starting from the
model with V = 0 and then include the local potential as a
perturbation. In the limit N → ∞, we expand the fermion
operator around the Fermi points ±kF as

c j ∼ ψ (x) exp(−ikFx) + ψ̄ (x) exp(ikFx). (B2)

When expressed in terms of the slow fields ψ and ψ̄ , the free
Hamiltonian takes the form:

H0 � ivF

∫ ∞

0
dx(ψ†∇ψ − ψ̄†∇ψ̄ ), (B3)

with vF = 2 sin kF the Fermi velocity. The open boundary at
x = 0 implies that ψ̄ and ψ are not independent. Imposing
that c0 = 0, we obtain ψ̄ (0) = −ψ (0). We can then write ψ̄
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FIG. 5. Energy spectrum as a function of the impurity potential
for a chain with N = 100 sites, see Eq. (B1). The lowest-energy state
detaches from the continuum for V � −1, indicating a bound state
has been formed. Inset: Probability density of the lowest-energy state
for V = −0.9 and V = −1.1.

as the analytic continuation of ψ to the negative-x axis:

ψ̄ (x) = −ψ (−x). (B4)

Using this relation, we unfold the space interval and write H0

only in terms of ψ in the form:

H0 = ivF

∫ ∞

−∞
dx ψ†∇ψ. (B5)

We now include the local potential HI = V c†
1c1. Its continuum

representation follows directly from Eqs. (B2) and (B4). The
result is

HI � vFγ ψ†(0)ψ (0), (B6)

where γ = 2V sin kF. Setting vF = 1, we can write the effec-
tive Hamiltonian H = H0 + HI as

H =
∫

dx ψ†[i∇ + γ δ(x)]ψ. (B7)

Thus, the chain of spinless fermions in Eq. (B1) indeed works
as a microscopic model for the problem in Eq. (41).

As discussed in Sec. IV C, the low-energy effective Hamil-
tonian with linearized dispersion in Eq. (B7) does not predict

the formation of a bound state for γ < 0. However, we can
now directly analyze the single-particle spectrum for the
lattice model of Eq. (B1). We have diagonalized this Hamilto-
nian numerically for a chain with N = 100 sites. As shown in
Fig. 5, we find a bound state below the continuum of extended
states for V � −1. The inset of Fig. 5 confirms that the wave
function of this state is localized near the chain end. This
result shows that the formation of a bound state is indeed
beyond the scope of our low-energy theory.

The finite critical value of |V | required for the formation of
a bound state in the model of Eq. (B1) can be interpreted as
follows. The bound state appears below the lower threshold of
the continuum of extended states. This lower threshold is de-
fined by states with momentum k → 0, whose wave function
vanishes near the boundary at x = 0. As a result, the states
at the bottom of the band are rather insensitive to a weak
scattering potential at the boundary. The attractive potential
only gives rise to a bound state when it becomes comparable
with the bandwidth |V | ∼ 1.

One may object that the model of Eq. (B1) only describes
a chiral fermion at low energies after we use the folding trick
of Eq. (B4). A single chiral fermion is not possible in a 1D
lattice model because of the fermion doubling problem. For
this reason, we have also considered a model where the chiral
fermion is realized as the edge state of a two-dimensional
topological phase. Here, we consider the Haldane model for
a Chern insulator on the honeycomb lattice [57]. We diago-
nalize the Hamiltonian numerically on a finite cylinder with
zigzag edges, including the onsite potential V at one boundary
site. In this case, the critical value of |V | above which the
bound state arises depends on the magnitude of the imagi-
nary second-neighbor hopping parameter. Nevertheless, as a
general and robust result, we observe that there is no bound
state at weak coupling. The bound state only appears below
the continuum of two-dimensional extended states when |V |
becomes of the order of the bandwidth.

In summary, the formation of the bound state of chi-
ral fermions in the presence of a delta-function potential is
a nonuniversal phenomenon which depends on information
about the high-energy spectrum. In this sense, it is not sur-
prising that it is not captured by our low-energy effective field
theory.
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