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Ultrasound detection of emergent photons in generic quantum spin ice
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Experimental identification of quantum spin ice (QSI), a U(1) quantum spin liquid on the pyrochlore lattice
hosting emergent photons, is a major challenge in frustrated magnets. In this work, we propose ultrasound
measurements as a tool for probing the emergent photons of various QSI phases. Our analysis includes QSI
phases in non-Kramers doublet compounds such as Pr2Zr2O7 as well as dipolar-octupolar Kramers doublet
compounds such as Ce2Zr2O7. The latter may host emergent photons associated with an octupolar component
which renders them difficult to detect with inelastic neutron scattering. We demonstrate theoretically how the
speed of the emergent photons can be obtained from the renormalization of the phonon spectrum and show
that ultrasound measurements provide a means of distinguishing the dipolar from the octupolar QSI phase in
dipolar-octupolar materials.
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I. INTRODUCTION

While quantum spin ice (QSI), a quantum spin liquid
(QSL) on the pyrochlore lattice with emergent U(1) gauge
structure [1–5], has been the subject of intense research ef-
forts over the last decades, conclusive experimental evidence
confirming the existence of QSI is still missing. In principle,
it is sufficient to establish the absence of long-range magnetic
order down to the lowest temperatures and additionally detect
the exotic excitations associated with QSI, including gapless
emergent photons as well as gapped magnetic monopoles and
electric charges (spinons) [6–9]. However, unambiguous iden-
tification of such exotic excitations has been a major challenge
in condensed matter experiments [10,11].

In this work, we consider the issue of detecting the emer-
gent photons in QSI. Inelastic neutron scattering, the standard
method for probing excitations in spin systems, suffers from
a vanishing intensity as the photon energy approaches zero
[12], which renders it a highly challenging task to identify the
existence of the emergent photons. Other proposals, such as
thermal conductivity measurements [13], may indicate the ex-
istence of emergent photons but require further investigations
since, for example, phonon contributions associated with the
intrinsic disorder present in these materials may lead to similar
experimental signatures [14]. Here, we propose ultrasound
measurements as a tool for characterizing the emergent pho-
tons in QSI. More specifically, we derive the renormalization
of the phonon spectrum due to the emergent photons and show
how to extract the speed of the photons from the renormalized
speed of sound.

The basic QSI Hamiltonian takes the form of a frus-
trated Ising model on the pyrochlore lattice (see Fig. 1) with
additional perturbative transverse terms generating quantum
fluctuations:

HQSI =
∑
〈i, j〉

J‖Si
‖S j

‖ + transverse terms. (1)

The sum runs over nearest neighbors on the pyrochlore lattice,
J‖ > 0 is the Ising coupling constant, and Si

‖ denotes the Ising
component of a pseudospin- 1

2 operator at site i. Using the
parton construction developed in [12,15], one can establish
a mapping between the pseudospin- 1

2 operators and lattice
electrodynamics by relating the Ising pseudospin component
to an emergent electric field E and the transversal components
to spinon bilinears dressed with the emergent photon. In the
continuum limit, the low-energy theory of the Hamiltonian in
Eq. (1) can then be expressed in terms of the imaginary-time
quantum electrodynamics (QED) action

SQED =
∫

τ,r

(
1

2K
(∂τ A)2 + U

2
(∇ × A)2

)
. (2)

Here, A denotes the vector potential and we choose the gauge
where the scalar potential φ = 0 [6,12]. K and U are phe-
nomenological constants determining the speed v = √

UK of
the emergent photon.

The coupling of the pseudospins [or the emergent gauge
fields in Eq. (2)] with the lattice degrees of freedom encour-
ages ultrasound measurements as a keen probe to identify
the existence of the emergent photon. For sufficiently low
energies, only the coupling of the Ising component to lat-
tice degrees of freedom needs to be taken into account
since the transversal pseudospin components involve gapped
spinons. Indeed, the form of the coupling is constrained by
the symmetries of the pyrochlore lattice. For instance, in the
conventional setting, where the pseudospins arise from ef-
fective spin- 1

2 Kramers doublets, all pseudospin components
transform like dipole components. This leads to the standard
“dipolar” QSI [1,14], which may be realized in Yb2Ti2O7

[16–25].
Strong spin-orbit coupling and crystalline electric fields,

however, can equip the pseudospins with more unusual
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FIG. 1. The pyrochlore lattice, shown in (a), is a fcc lattice with
four sublattices. It forms a network of corner-sharing tetrahedra
consisting of two types of tetrahedra (blue and orange), which differ
only in their orientation. The rare-earth ions, located at the sites
of the pyrochlore lattice, are depicted in gray. In (b) we show the
local zα axes for sublattices α ∈ {0, 1, 2, 3} in relation to the global
basis. The global basis vectors are x̂ := (1, 0, 0), ŷ := (0, 1, 0), and
ẑ := (0, 0, 1).

transformation properties [26–30]. Inelastic neutron scatter-
ing experiments on Ce2(Sn, Zr)2O7 suggest the crystal-field
ground state of Ce3+ ion is a dipolar-octupolar (DO) Kramers
doublet [31–39]. The pseudospin- 1

2 operator associated with
this doublet features two pseudospin components that trans-
form as dipole moments and one pseudospin component that
transforms as an octupole moment [40,41]. Depending on the
dominant pseudospin exchange constant, the subsequent Ising
component dictates the ultimate phase of the underlying QSI,
i.e., dipolar (octupolar) QSI for a dipolar (octupolar) Ising
pseudospin [42,43]. Importantly, in the octupolar case, the
emergent photon inherits the octupolar nature of the Ising
component. The nontrivial symmetry nature of the octupolar
moment provides a daunting task for inelastic neutron scat-
tering, due to the lack of standard linear coupling with the
neutron’s dipolar moment. Other promising QSI candidates,
including Pr2(Zr, Sn, Hf)2O7, feature a non-Kramers doublet
crystal-field ground state, which is only protected by the crys-
talline symmetries [44–51]. The Ising component transforms
like a dipole moment whereas the transversal components
transform like parts of a quadrupole.

As alluded to before, the transformation property of the
Ising pseudospin component under lattice symmetry opera-
tions determines the form of the pseudospin-lattice coupling,
which in turn determines the renormalization of the phonon
spectrum and the speed of sound. It therefore suffices to
consider two classes of QSI: “dipolar-Ising” and “octupolar-
Ising” QSI. For example, octupolar (dipolar) QSI phases in
Ce2(Sn, Zr)2O7 correspond to “octupolar-Ising” (“dipolar-
Ising”) QSI. The non-Kramers QSI in Pr2(Zr, Sn, Hf)2O7

corresponds to “dipolar-Ising” QSI as the Ising component is
dipolar.

Our study demonstrates that the renormalization of the
phonon spectrum can be used to distinguish between dipolar-
Ising and octupolar-Ising QSIs. In particular, due to the
coupling of the emergent photon’s gauge fields to the lattice
degrees of freedom, the photon dynamics renormalizes the
low-energy phonon frequencies in particular ways depending

on the examined high-symmetry momentum and magnetic
field directions. Although this renormalization is microscop-
ically dependent on the coupling between the photon and
phonons, by comparing the ratio of renormalized phonon
frequencies along different directions, we obtain coupling-
independent predictions that may be verified in ultrasound
studies.

The remainder of the paper is organized as follows: In
Sec. II we describe the underlying microscopic models for
the effective spin- 1

2 and DO Kramers doublets as well as for
the non-Kramers doublet. Then, in Sec. III we introduce the
precise form of the pseudospin-lattice couplings. In Sec. IV
we explain the effective low-energy theory in more detail. In
particular, we calculate the corrections to the phonon action
due to the emergent photons and derive the renormalization
of the phonon spectrum. Our results are presented in Sec. V,
where we also show how to extract the speed of the photons
from the renormalized phonon spectrum. We conclude with a
brief discussion in Sec. VI.

II. MICROSCOPIC MODELS

QSI arises in pyrochlore materials of the form R2M2O7,
where R and M refer to rare-earth and transition metal ions,
respectively. The magnetic R ions occupy the vertices of
a network of corner-sharing tetrahedra, the pyrochlore lat-
tice, which can be broken into four fcc sublattices as shown
in Fig. 1. Throughout the paper we often switch between
a “global” frame coordinate system and “local” sublattice
frames. The global frame refers to the standard Cartesian basis
(see Fig. 1). For each of the four sublattices, we define a
different local basis as explained in Appendix A. The local
z axis is chosen such that it connects the centers of the two
neighboring tetrahedra.

The magnetic property of the aforementioned compounds
is dictated by the f electrons of the R ion. Spin-orbit coupling
yields a degenerate set of states with total angular momentum
J , whose degeneracy is partially lifted by the local D3d crys-
talline electric field (CEF) induced by the surrounding oxygen
cage. In the following, we assume that the CEF separates a
ground-state doublet sufficiently well from the higher-lying
energy levels, such that the low-energy analysis can be re-
stricted to the subspace formed by the ground-state doublet.
This is indeed the case for the QSI candidates mentioned in
the Introduction [16,31,32,44,46,47,49,50]. Each doublet can
then be associated with a pseudospin- 1

2 operator S, which
allows us to formulate the effective low-energy theory in terms
of an interacting pseudospin Hamiltonian.

An odd number of f electrons results in a Kramers
doublet, whose degeneracy is protected by time-reversal sym-
metry. Depending on the transformation properties under the
D3d site symmetry (see Appendix B), we distinguish be-
tween two types of Kramers doublets. On the one hand,
there is the effective spin- 1

2 doublet, which transforms in
the �+

4 irreducible representation (irrep) of the D3d double
group [40]. It can be found, for example, in Yb2Ti2O7 [14].
All components of the corresponding pseudospin- 1

2 operator
transform like dipole components (see Appendix C for more
details).
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The most generic nearest-neighbor Hamiltonian for the
effective spin- 1

2 doublet reads as

H =
∑
〈i, j〉

{
JzzS

i
zS

j
z − J±(Si

+S j
− + Si

−S j
+)

+ J±±(βi jS
i
+S j

+ + β∗
i jS

i
−S j

−)

+ Jz±
[
Si

z(ζi jS
j
+ + ζ ∗

i jS
j
−) + (ζi jS

i
+ + ζ ∗

i jS
i
−)S j

z

]}
, (3)

where Si
z is the z component of the pseudospin- 1

2 operator
written in the local basis of site i (and similarly for the other
components) [12,52,53]. The sum runs over nearest neighbors
and Jzz, J±, J±±, and Jz± are coupling constants. Additionally,
βi j and ζi j = −β∗

i j are unimodular complex numbers (see Ap-
pendix D). QSI arises in the frustrated regime, where Jzz > 0
and Jzz � |J±|, |J±±|, |Jz±|, for a certain range of J±, J±±,
and Jz± (see, e.g., [12,15]).

On the other hand, as mentioned in the Introduction, there
also exists the possibility for a more exotic dipolar-octupolar
(DO) Kramers doublet, which transforms as the direct sum
of two one-dimensional irreps, �+

5 ⊕ �+
6 , of the D3d double

group [40]. The QSI candidates Ce2(Sn, Zr)2O7 support this
type of doublet [42]. Two of the pseudospin components, Sx

and Sz, transform like dipole components, whereas Sy trans-
forms like part of an octupole. More details can be found in
Appendix C. The symmetry transformation properties of the
DO pseudospins allow us to rewrite the Hamiltonian in Eq. (3)
as the following XYZ model:

H =
∑
〈i, j〉

Jμτ i
μτ j

μ, (4)

where the sum over μ with μ ∈ {x, y, z} is implied and we in-
troduce new pseudospin operators τy := Sy, τx := cos (θ )Sx −
sin (θ )Sz, and τz := sin (θ )Sx + cos (θ )Sz. The angle θ is
determined by the exchange couplings Ji j in Eq. (3) (see
Appendix E). We emphasize again that τ i

μ is written in the
local frame of site i. The new coupling constants Jμ are
combinations of the Ji j constants from Eq. (3) as shown in
Appendix E.

If the number of f electrons is even, a non-Kramers dou-
blet can form, whose degeneracy is solely protected by the
crystalline symmetries. It transforms as the Eg irrep of the D3d

point group and arises, for example, in Pr2(Zr, Sn, Hf)2O7

compounds [14,54]. The Sx and Sy pseudospin components
associated with the non-Kramers doublet transform like com-
ponents of a quadrupole, whereas Sz transforms like a dipole
(see Appendix C). We can use essentially the same Hamilto-
nian as for the effective spin- 1

2 doublet in Eq. (3). However,
since Sx and Sy transform like time-reversal even quadrupole
components, we must have Jz± = 0 to preserve time-reversal
symmetry.

III. PSEUDOSPIN-LATTICE COUPLING

We now introduce pseudospin-lattice couplings to incorpo-
rate the elastic strain into the model. Ultimately, this allows us
to derive the renormalization of the phonon spectrum due to
the emergent photons. Classically, for small deformations the

elastic strain tensor ε is defined in the global frame as

ε jk := 1
2 (∂ juk + ∂ku j ). (5)

u is the field describing the displacement of the atoms from
equilibrium and j, k ∈ {x, y, z} [55]. The free energy associ-
ated with the pseudospin-lattice coupling can be derived from
representation theory arguments by imposing the relevant
symmetries (D3d site symmetry and time-reversal symmetry)
and requiring that it transforms in the trivial representation.
More details can be found in Appendix F.

Since we are interested in the photon contribution to the
renormalization of the phonon spectrum, we only need to
consider the coupling of the Ising pseudospin component to
the elastic strain. To recapitulate, the reason for neglecting
the transversal components is that they are associated with
spinons, which are gapped excitations and hence do not con-
tribute below the two-spinon-creation threshold [12].

Both dipoles and octupoles are time-reversal odd, meaning
that the Ising pseudospin components of dipolar-Ising as well
as octupolar-Ising QSI are also time-reversal odd. The elastic
strain on the other hand is even under time reversal. Hence,
linear coupling of the Ising component to the elastic strain re-
quires the assistance of a time-reversal odd external magnetic
field h.

We first consider the case of octupolar-Ising QSI. For
octupolar-Ising QSI, τy = Sy is the Ising component and to
lowest order, the free energy associated with the coupling
takes the following form:

Foct = −Sα
y

{
g1

[
2hα

x εα
xy + hα

y

(
εα

xx − εα
yy

)]
+ g2

(
hα

y εα
xz − hα

x εα
yz

)}
, (6)

where g1 and g2 are phenomenological coupling constants
[42]. All quantities indexed by α are written in the local
frame of sublattice α and the sum over sublattices with α ∈
{0, 1, 2, 3} is implied.

On the other hand, the Ising component for dipolar-Ising
QSI is given by Sz, in which case the free energy correspond-
ing to the coupling reads as

Fdip = −g̃1Sα
z

[
hα

x

(
εα

xx − εα
yy

) − 2hα
y εα

xy

]
− g̃2Sα

z

[
hα

x εα
xz + hα

y εα
yz

]
(7)

− g̃3Sα
z hα

z

[
εα

xx + εα
yy

] − g̃4Sα
z hα

z εα
zz,

where g̃1, . . . , g̃4 are phenomenological coupling constants
[54]. Again, quantities indexed by α are written in the local
frame of sublattice α and the sum over sublattices α is implied.

We note that symmetry also allows a direct coupling of the
Ising component to the external magnetic field, which is linear
in the pseudospin. This is true for both octupolar-Ising and
dipolar-Ising QSI. However, such a coupling merely leads to
a constant shift in the effective action (see the next section) as
long as the magnetic field is sufficiently small so that it does
not cause a phase transition to a different field-induced state.
This constant shift does not influence the phonon dynamics.
In principle, one could also include terms that are quadratic
in the pseudospin and linear or quadratic in the strain, e.g.,
Sα

y Sα
y εα

zz for octupolar-Ising QSI. However, such terms do not
affect the phonon spectrum up to O(h2). More specifically,
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if the correlator 〈Sα
i Sα

j 〉 depends on the (external) magnetic
field, then couplings of the form Sα

i Sα
j εmn could give rise to

magnetic-field-dependent corrections to the phonon action.
Time-reversal symmetry would force these to be at least of
order O(h4) though. In this work we ignore such higher-order
corrections as we only consider corrections up to O(h2).

IV. EFFECTIVE LOW-ENERGY THEORY

The employment of a low-energy continuum description
of the phonon dynamics encourages a similar continuum
examination for the emergent photons. Indeed, as will be
demonstrated in detail, such a low-energy theory incorpo-
rates the coupling between the lattice degrees of freedom and
emergent photon, which ultimately renormalizes the phonon
spectrum.

A. Bare phonon spectrum

Let us first consider the bare spectrum of acoustic phonons
in the long-wavelength limit, which can be derived from the

following imaginary-time action:

Slat =
∫

τ,r

[
ρ

2
(∂τ u)2 + Fs

]
. (8)

ρ is the mass density of the material, u again denotes the dis-
placement field, and Fs is the elastic energy of the underlying
lattice [56]. As mentioned before, the pyrochlore lattice is a
fcc lattice (with four sublattices). The corresponding point
group Oh constrains the elastic energy Fs to be of the form

Fs = 1
2 c11

(
ε2

xx + ε2
yy + ε2

zz

)
+ c12

(
εxxεyy + εxxεzz + εyyεzz

)
(9)

+ 2c44
(
ε2

xy + ε2
xz + ε2

yz

)
,

where c11, c12, and c44 are elastic constants in Voigt notation
[57]. We note that the elastic strain components are written in
the global basis.

Fourier transforming the bare phonon action yields the bare
inverse phonon propagator

D−1(q, ωn) :=
⎛
⎝ρω2

n + c11q2
x + c44

(
q2

y + q2
z

)
(c12 + c44)qxqy (c12 + c44)qxqz

(c12 + c44)qxqy ρω2
n + c11q2

y + c44
(
q2

x + q2
z

)
(c12 + c44)qyqz

(c12 + c44)qxqz (c12 + c44)qyqz ρω2
n + c11q2

z + c44
(
q2

x + q2
y

)
⎞
⎠, (10)

with momentum q and Matsubara frequency ωn. We can thus
rewrite the action in Eq. (8) as

Slat =
∑
ωn

∫
q

u
(−q,−ωn)D−1(q, ωn)u(q, ωn). (11)

The bare phonon spectrum can be obtained from the poles
of the phonon Green’s function by performing the analytic
continuation iωn −→ 
 + i0+ and then solving det(D−1) =
0 for 
. In Sec. V we show the renormalization of the
phonon spectrum for certain high-symmetry momentum di-
rections. The bare phonon spectrum for those high-symmetry
momentum directions takes the form 
(0) = s(q)|q| (in the
long-wavelength limit), where s(q) denotes the bare speed of
sound, which depends on the specific momentum direction.
Explicit expressions are given in Appendix G.

B. Magnetic-field-dependent corrections to the phonon action
due to photons

To obtain the renormalization of the phonon spectrum, we
need to calculate the corrections to the bare phonon action
arising from the interaction with the emergent photons. We
start by rewriting the photon action from Eq. (2) in Matsubara
frequency and momentum space:

SQED = 1

2K

∑
ωn

∫
q

Ai(−q,−ωn)
[(

ω2
n + v2q2

)
× δi j − v2qiq j

]
Aj (q, ωn). (12)

The corresponding photon propagator then reads as

〈Ai(−q,−ωn)Aj (q, ωn)〉 = K

ω2
n + v2q2

(
δi j + v2

ω2
n

qiq j

)

=: Ti j (q, ωn). (13)

Next, we have to find an expression for the pseudospin-
lattice coupling in the low-energy subspace of the emergent
photon. Let us recall that QSI can be regarded as an exponen-
tially large superposition of classical spin ice (CSI) states [7].
These CSI states satisfy a local “ice rule” where the sum of the
Ising components about each tetrahedron vanishes. Treating
the local moments as quantum mechanical pseudospins, this
becomes a zero-divergence constraint on the emergent electric
field, which is defined on the links of the dual diamond lattice,
i.e., along the local z axes. This implies that the local Ising
component of the pseudospins should be mapped to the local
z component of the emergent electric field. In the octupolar
case, the Ising component is given by Sα

y and hence we have
the mapping Sα

y −→ −∂τ Aα
z = Eα

z . Using Eq. (6) we then
obtain the following imaginary-time action associated with
the coupling:

Soct
c =

∫
τ,r

∑
α

(
∂τ Aα

z

){
g1

[
2hα

x εα
xy + hα

y

(
εα

xx − εα
yy

)]
+ g2

(
hα

y εα
xz − hα

x εα
yz

)}
. (14)

As a reminder, all quantities indexed by α are written in the
local frame of sublattice α. We have to sum over all sublattices
α and transform the local quantities to the global frame in or-
der to find the renormalization of the phonon spectrum, which
is expressed in the global frame. The basis changes between
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local and global coordinates are described in Appendix A.
Going to momentum and Matsubara frequency space then
yields

Soct
c =

∑
ωn

∫
q
ωnA(−q,−ωn) · I(q, ωn), (15)

where A(q, ωn) is the Fourier transform of the vector potential
in the global frame and I(q, ωn) encodes the (Fourier-
transformed) coupling of elastic strain and magnetic field in
the global frame. The explicit form of I(q, ωn) can be found
in Appendix H.

Since the total action,

Stot = Slat + SQED + Soct
c , (16)

is quadratic in A, the photons may be formally integrated out
by completing the square to obtain an effective action only
involving the phonons. This results in the following additional
term:

Soct
r =

∑
ωn

∫
q
ω2

n I
(−q,−ωn)T (q, ωn)I(q, ωn), (17)

which renormalizes the bare phonon action Slat . We use
T (q, ωn) to denote the matrix associated with the photon
propagator from Eq. (13). Note that Sr is only quadratic in the
displacement field u [since I(q, ωn) is linear in u and T (q, ωn)
does not depend on u at all]. Therefore, we can rewrite the
action in Eq. (17) as

Soct
r =

∑
ωn

∫
q

u
(−q,−ωn)�(q, ωn)u(q, ωn), (18)

where �(q, ωn) denotes the correction term due to the emer-
gent photons. We obtain the renormalized phonon spectrum
from the poles of the (renormalized) phonon Green’s func-
tion by performing the analytic continuation iωn −→ 
 +
i0+ and then solving det(D−1 + �) = 0 for 
. Results for
the renormalized phonon spectrum are presented in the next
section where we also show how to extract the speed of the
photons from it.

So far, we have discussed the phonon renormalization only
for the octupolar-Ising QSI. However, the same strategy can
be applied to the dipolar-Ising case. What changes is the
coupling action which is now based on the pseudospin-lattice
coupling from Eq. (7) and, furthermore, Sα

z −→ −∂τ Aα
z . The

dipolar-Ising analog of I(q, ωn), Ĩ(q, ωn) is given in Ap-
pendix H.

V. MAGNETIC-FIELD-DEPENDENT RENORMALIZATION
OF THE PHONON SPECTRUM

As shown in the previous section, the linear coupling of
the emergent photons to the lattice degrees of freedom leads
to a renormalized phonon action which is still quadratic in the
displacement field. In effect, this leads to a renormalization of
the speed of sound. We present the renormalized phonon spec-
trum for the octupolar-Ising as well as dipolar-Ising QSI along
various high-symmetry momentum and magnetic field direc-
tions in Table I. The renormalized spectra are expanded in the
limit 0 < γkh/si � 1 (0 < γ̃kh/si � 1), 0 < v/si � 1, and
0 < γkh � v (0 < γ̃kh � v) up to O(h2), where h denotes the

magnitude of the magnetic field, si are bare speeds of sound
in different momentum directions (listed in Appendix G),
and v denotes again the speed of the emergent photon. γk

(γ̃k) are constants related to the pseudospin-lattice coupling
constants gm (g̃m) (see Appendix I for more details). As is
evident from Table I, there is a strong orientation dependence
for the renormalized speed of sound, where differing mo-
mentum and magnetic field configurations provide differing
phonon renormalizations. This strong directional dependence
provides encouragement in discerning between the different
classes of QSI based on measurements of the speed of sound.

A. Extracting the speed of the photon from ratios of phonon
spectra

To extract the speed of the photons from the renormalized
phonon spectrum, we calculate the “renormalization ratio”

�
( j)
[q,h] := −


( j)
[q,h] − 


(0, j)
[q,h]



(0, j)
[q,h]

(19)

for each renormalized solution 

( j)
[q,h] separately. Here, q and

h correspond to specific momentum and magnetic field direc-
tions, respectively. For given q and h, we get three, possibly
degenerate, solutions which are labeled by j (see Table I).



(0, j)
[q,h] is the corresponding bare solution without the cor-

rection from the coupling of the emergent photons to the
phonons. We use �̃

( j)
[q,h] to denote the ratio for the dipolar-Ising

case in order to distinguish it from the octupolar-Ising ratio.
Although the renormalized spectra involve the coupling

constants, one can consider different renormalization ratios
�

( j)
[q,h] (�̃( j)

[q,h]), that involve the same γk (γ̃k) coefficients, to
obtain a pseudospin-lattice-coupling independent expression
for the speed of the photon.

We now present two examples for octupolar-Ising QSI
to illustrate the procedure. First, let us consider �

(2,3)
[00q,00h] =

γ1

s2
2
h2(1 + v2

s2
2

) and �
(3)
[00q,0h0] = γ1

s2
2
h2. Taking the ratio of these

and solving for v
s2

yields

v

s2
=

√√√√�
(2,3)
[00q,00h]

�
(3)
[00q,0h0]

− 1, (20)

where s2 denotes the bare transversal speed of sound in the
(0, 0, q) direction (see Appendix G for more details). Note
that the right-hand side is independent of any parameters.

Another renormalization ratio for octupolar-Ising QSI
can be found by combining �

(3)
[qq0,00h] = γ2

s2
4
h2(1 + v2

s2
4

) and

�
(3)
[qq0,hh0] = 1

4
γ2

s2
4
h2. This leads to

v

s4
=

√√√√1

4

�
(3)
[qq0,00h]

�
(3)
[qq0,hh0]

− 1, (21)

where s4 denotes one of the bare transversal speeds of sound
in the (q, q, 0) direction (see again Appendix G for more
details).
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TABLE I. Summary of the phonon spectrum renormalization due to photons for octupolar-Ising QSI and dipolar-Ising QSI for different
momentum and magnetic field directions. The bare speeds of sound si are given in Appendix G. γk and γ̃k are constants composed of
the respective pseudospin-lattice coupling constants (see Appendix I for details). Due to the cubic symmetry, there are several equivalent
combinations of momentum and magnetic field directions which yield the same solutions. For example, (q, 0, 0) with (h, 0, 0) is equivalent to
(0, 0, q) with (0, 0, h). The table contains the renormalized spectra for several explicit, inequivalent combinations.

(qx, qy, qz ) (hx, hy, hz ) Octupolar-Ising: 

( j)
q,h Dipolar-Ising: 


( j)
q,h

(0, 0, h) 
(1) = s1|q| 
(1) 
 s1

[
1 − γ̃1

s2
1

h2
]|q|


(2,3) 
 s2

[
1 − γ1

s2
2

h2
(
1 + v2

s2
2

)]|q| 
(2,3) 
 s2

[
1 − γ̃2

s2
2

h2
(
1 + v2

s2
2

)]|q|


(1) 
 s1

[
1 − γ2

s2
1

h2
(
1 + v2

s2
1

)]|q| 
(1) 
 s1

[
1 − γ̃3

s2
1

h2
(
1 + v2

s2
1

)]|q|
(0, 0, q) (0, h, 0) 
(2) = s2|q| 
(2) = s2|q|


(3) 
 s2

[
1 − γ1

s2
2

h2
]|q| 
(3) 
 s2

[
1 − γ̃2

s2
2

h2
]|q|


(1) 
 s1

[
1 − γ2

s2
1

h2
(
1 + v2

s2
1

)]|q| 
(1) 
 s1

[
1 − γ̃3

s2
1

h2
(
1 + v2

s2
1

)]|q|
(h,h,0)√

2

(2) = s2|q| 
(2) = s2|q|

(3) 
 s2

[
1 − γ1

s2
2

h2
]|q| 
(3) 
 s2

[
1 − γ̃2

s2
2

h2
]|q|


(1) = s3|q| 
(1) 
 s3

[
1 − γ̃3

s2
3

h2
(
1 + v2

s2
3

)]|q|
(0, 0, h) 
(2) 
 s2

[
1 − γ1

s2
2

h2
(
1 + v2

s2
2

)]|q| 
(2) 
 s2

[
1 − γ̃2

s2
2

h2
]|q|


(3) 
 s4

[
1 − γ2

s2
4

h2
(
1 + v2

s2
4

)]|q| 
(3) = s4|q|


(1) 
 s3

[
1 − γ3

s2
3

h2
(
1 + v2

s2
3

)]|q| 
(1) 
 s3

[
1 − γ̃4

s2
3

h2
]|q|

(q,q,0)√
2

(h,h,0)√
2


(2) 
 s2|q| 
(2) 
 s2

[
1 − γ̃2

s2
2

h2
(
1 + v2

s2
2

)]|q|

(3) 
 s4

[
1 − 1

4
γ2
s2
4

h2
]|q| 
(3) 
 s4

[
1 − γ̃5

s2
4

h2
(
1 + v2

s2
4

)]|q|


(1) 
 s3

[
1 − γ4

s2
3

h2
]|q| 
(1) 
 s3

[
1 − γ̃6

s2
3

h2
(
1 + v2

s2
3

)]|q|
(h,−h,0)√

2

(2) 
 s2

[
1 − γ1

s2
2

h2
(
1 + v2

s2
2

)]|q| 
(2) 
 s2|q|

(3) 
 s4

[
1 − 1

4
γ2
s2
4

h2
(
1 + v2

s2
4

)]|q| 
(3) 
 s4

[
1 − γ̃5

s2
4

h2
]|q|

(q,q,q)√
3

(h,h,h)√
3


(1) = s5|q| 
(1) 
 s5

[
1 − γ̃7

s2
5

h2
]|q|


(2,3) 
 s6

[
1 − γ5

s2
6

h2
(
1 + v2

s2
6

)]|q| 
(2,3) 
 s6

[
1 − γ̃8

s2
6

h2
(
1 + v2

s2
6

)]|q|

The above examples demonstrate that for weak but finite
magnetic fields, i.e., 0 < γkh � v (0 < γ̃kh � v), we can
obtain the speed of the photons v without having precise
knowledge of the pseudospin-lattice couplings gm (g̃m).

VI. DISCUSSION

In this work, we proposed ultrasound measurements as a
tool for probing the emergent photons in QSI. We showed
how these excitations renormalize the phonon spectrum
(and associated speed of sound) of either octupolar-Ising or
dipolar-Ising QSI. The latter includes the dipolar QSI aris-
ing in DO Kramers doublet compounds, the multipolar QSI
phase of non-Kramers doublet materials, and the conven-
tional (dipolar) QSI associated with effective spin- 1

2 Kramers
doublets. Furthermore, we demonstrated how the speed of
the emergent photon can be extracted from the renormalized
spectrum without requiring knowledge of the precise effec-
tive coupling parameters. This protocol may help shed some
light on the lowest-energy excitations of QSI candidates such
as Ce2(Sn, Zr)2O7 [31–34] or Pr2(Zr, Sn, Hf)2O7 [44–51].
Previous estimates from inelastic neutron scattering have sug-

gested the speed of photons v ≈ 3.6m/s for Pr2Hf2O7 [51],
while thermal conductivity measurements on Pr2Zr2O7 yield
an estimate of v ≈ 90m/s and a speed of sound s ≈ 3700m/s
[13]. Using these estimates as a guide, it would be intriguing
to discern the relative ratio of the speed of the emergent
photons to the speed of the phonons of v/s ∼ 10−2–10−3 from
our ultrasound measurement protocols.

Our results also suggest that measuring the phonon spec-
trum or, equivalently, the shift in the speed of sound, as
a function of magnetic field should be sufficient in order
to distinguish octupolar-Ising QSI from dipolar-Ising QSI.
For example, the renormalization in the momentum direction
(0, 0, q) with parallel magnetic field shows one unrenormal-
ized solution for octupolar-Ising QSI, whereas all solutions
in the dipolar-Ising case acquire a magnetic field dependence.
It would be interesting to see if our method, applied to DO
doublet compounds such as Ce2(Sn, Zr)2O7, could help de-
termine the multipolar character of the QSI phase.

In terms of future work, it would be interesting to incor-
porate the other excitations of quantum spin ice (magnetic
monopole as well as the spinon excitations) in this pro-
tocol. Such studies may prove to be fruitful in assisting

064427-6



ULTRASOUND DETECTION OF EMERGENT PHOTONS IN … PHYSICAL REVIEW B 106, 064427 (2022)

TABLE II. Local sublattice basis vectors in terms of the standard
Cartesian basis [17].

α 0 1 2 3

x̂α 1√
6
(−2, 1, 1) 1√

6
(−2, −1, −1) 1√

6
(2, 1, −1) 1√

6
(2, −1, 1)

ŷα 1√
2
(0,−1, 1) 1√

2
(0, 1, −1) 1√

2
(0, −1, −1) 1√

2
(0, 1, 1)

ẑα 1√
3
(1, 1, 1) 1√

3
(1, −1, −1) 1√

3
(−1, 1, −1) 1√

3
(−1, −1, 1)

investigations involving the detection of fractionalized
excitations.
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APPENDIX A: GLOBAL VS LOCAL BASES

The pyrochlore lattice consists of four sublattices per unit
cell. In Table II we list the local (orthonormal) basis vectors of
each sublattice α ∈ {0, 1, 2, 3} written in terms of the global
basis vectors (i.e., the standard Cartesian basis in 3d).

Next, let us show how local physical quantities can be
expressed in terms of the corresponding global quantities. For
each sublattice α we need a different change of basis matrix
Bα , whose columns are the basis vectors from Table II, e.g.,

B0 :=

⎛
⎜⎝

−2√
6

0 1√
3

1√
6

−1√
2

1√
3

1√
6

1√
2

1√
3

⎞
⎟⎠.

Vector quantities Vα , expressed in the local frame of sublat-
tice α, transform as follows: Vα = B−1

α V = B

α V where V

denotes the quantity in the global frame. Examples include
the magnetic field h, pseudospin- 1

2 S, momentum q, and dis-
placement field u. The elastic strain, a rank-2 tensor, has the
following transformation behavior: εα = B−1

α εBα = B

α εBα .

APPENDIX B: LOCAL SYMMETRY TRANSFORMATIONS

The D3d point group can be obtained from the following
two generators:

S−
6 :=

⎛
⎝ 1

2

√
3

2 0

−
√

3
2

1
2 0

0 0 −1

⎞
⎠, C ′

21 :=
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠,

which refer to the local bases. S−
6 is an improper rotation

about the (local) ẑ and C ′
21 is a π rotation about the (local)

ŷ axis.
The local Ising pseudospin component in the octupolar

case τα
y transforms as follows [42]:

S−
6 : τα

y −→ τα
y ,

(B1)
C ′

21 : τα
y −→ τα

y .

Similarly, in the dipolar-Ising case, we obtain the following
transformation behavior for Sα

z [54]:

S−
6 : Sα

z −→ Sα
z ,

(B2)
C ′

21 : Sα
z −→ −Sα

z .

Regarding symmetry transformations of the magnetic field,
we need to recall that the magnetic field transforms like a
pseudovector, meaning that it picks up an additional minus
sign under improper rotations like S−

6 . Finally, the strain
tensor transforms as ε −→ MεM−1 where M denotes the
symmetry element.

APPENDIX C: PSEUDOSPIN 1
2 IN TERMS OF MULTIPOLE

OPERATORS

As argued in the main text, a given ground-state doublet
can be represented by a pseudospin- 1

2 operator S. Depending
on the symmetry transformation properties of the doublet, the
pseudospin- 1

2 components can be expressed in terms of differ-
ent multipole operators. Using the Wigner-Eckart theorem one
can relate multipole operators to certain combinations of the
total angular momentum components Jx, Jy, and Jz [26,27].

For the effective spin- 1
2 Kramers doublet one finds

Sx ∝ PJxP,

Sy ∝ PJyP, (C1)

Sz ∝ PJzP,

where P denotes the projector onto the ground-state doublet
[52].

In the case of the DO Kramers doublet we have

Sx = P
[
c0

(
J3

x − JxJyJy
) + c1Jz

]
P,

Sy = Pc2
(
J3

y − JyJxJx
)
P, (C2)

Sz = Pc3JzP.

P now projects onto the DO Kramers ground-state doublet and
the overline indicates a symmetrized product [42]. c0, . . . , c3

are phenomenological constants depending on the CEF pa-
rameters. They are needed to ensure that the pseudospin- 1

2
components at a specific site satisfy [S j, Sk] = iε jklSl where
j, k, l ∈ {x, y, z} [i.e., they are a basis of the su(2) algebra].
For Ce2(Sn, Zr)2O7 it can be shown that c1 = 0 [42]. Despite
Sx featuring an octupolar operator, J3

x − JxJyJy, we refer to it
as being dipolar since it transforms identically to the dipole
component Jz.

The pseudospin- 1
2 components for the non-Kramers dou-

blet in Pr2Zr2O7 can be represented as [54]

Sx ∝ PJxJzP,

Sy ∝ PJyJzP, (C3)

Sz ∝ PJzP,

where P now is the projector onto the non-Kramers doublet.
We note that Sx and Sy transform like quadrupole components.
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APPENDIX D: CONSTANTS OF THE PSEUDOSPIN- 1
2

HAMILTONIAN

For the generic pseudospin- 1
2 Hamiltonian in Eq. (3) we

use the following β matrix:

β :=

⎛
⎜⎜⎝

0 1 w w2

1 0 w2 w

w w2 0 1
w2 w 1 0

⎞
⎟⎟⎠, (D1)

where w := e2π i/3 [12].

APPENDIX E: HAMILTONIAN FOR THE DO DOUBLET

We start with the generic pseudospin- 1
2 Hamiltonian in

Eq. (3). It can be shown that for the DO doublet, w = 1 in
Eq. (D1). Hence, the effective Hamiltonian can be rewritten
as

H =
∑
〈i, j〉

[
JxxSi

xS j
x + JyySi

yS j
y

(E1)
+ JzzS

i
zS

j
z + Jxz

(
Si

xS j
z + Si

zS
j
x

)]
,

where Jxx := 2(J±± − J±), Jyy := −2(J±± + J±), and Jxz :=
2Jz±) [14,40]. Since Sx and Sz both transform in the �+

2
irrep of the D3d double group, their coupling in the above
Hamiltonian can be eliminated by a rotation in pseudospin
space

τx := cos (θ )Sx − sin (θ )Sz,

τy := Sy,

τz := sin (θ )Sx + cos (θ )Sz,

where θ := 1
2 arctan ( 2Jxz

Jzz−Jxx
). This leads to the desired Hamil-

tonian in Eq. (4) with

Jx := 1
2

(
Jxx + Jzz −

√
(Jzz − Jxx )2 + 4J2

xz

)
,

Jy := Jyy,

Jz := 1
2

(
Jxx + Jzz +

√
(Jzz − Jxx )2 + 4J2

xz

)
.

APPENDIX F: DERIVATION OF THE
PSEUDOSPIN-LATTICE COUPLING

The pseudospin-lattice coupling can be derived from rep-
resentation theory arguments as follows: since the free energy
should be time-reversal even, we only need to consider com-
binations of pseudospin- 1

2 , magnetic field, and elastic strain
components that are even under time reversal. Furthermore,
the free energy, a scalar, has to transform in the trivial rep-
resentation of the D3d point group. We can then construct a
projection operator P ,

P := 1

d

∑
M

χ (M )O(M ), (F1)

which projects any given combination of pseudospin- 1
2 , mag-

netic field, and elastic strain components onto the subspace
of the trivial representation [58]. Here, d = 12 is the order
of the D3d point group and the sum runs over all group
elements M. Generators of the D3d point group are given

in in Appendix B. The characters of the trivial representa-
tion satisfy χ (M ) = 1 for all M and O(M ) acts on a given
function (i.e., combination of pseudospin- 1

2 , magnetic field,
and elastic strain components) by performing the symmetry
transformation specified by the group element M. For ex-
ample, in the octupolar-Ising case we obtain P (Sα

y hα
y εα

xx ) ∝
2hα

x εα
xy + hα

y (εα
xx − εα

yy) but P (Sα
y hα

z εα
xx ) = 0.

APPENDIX G: BARE SPEEDS OF SOUND

The bare speeds of sound in the (q, 0, 0), (0, q, 0), and
(0, 0, q) momentum directions are given by

s1 :=
√

c11

ρ
,

s2 :=
√

c44

ρ
,

where s1 is associated with the longitudinal and s2 with the
transversal modes [57].

In addition to s2, the (0, q, q), (q, 0, q), and (q, q, 0) direc-
tions come with

s3 :=
√

c11 + 2c44 + c12

2ρ
,

s4 :=
√

c11 − c12

2ρ
.

Here, s3 corresponds to the longitudinal mode, whereas s2 and
s4 correspond to transversal modes.

Finally, for (q, q, q) we have

s5 :=
√

c11 + 4c44 + 2c12

3ρ
,

s6 :=
√

c11 + c44 − c12

3ρ
,

with s5 being the longitudinal and s6 the transversal speed of
sound.

APPENDIX H: FOURIER TRANSFORM OF THE
PSEUDOSPIN-LATTICE COUPLING IN THE GLOBAL

FRAME

In order to calculate the phonon self-energy due to pho-
tons, we Fourier transformed the pseudospin-lattice couplings
[Eqs. (6) and (7)] and additionally expressed them in the
global basis. For notational convenience, we then introduced
vectorlike quantities I(q, ωn) and Ĩ(q, ωn), which encode only
the coupling of the magnetic field and the lattice degrees of
freedom. The explicit form of I(q, ωn) for octupolar-Ising QSI
is given by

Ix(q, ωn) := η1(hyqy − hzqz )ux(q, ωn)

+ (η1hyqx + η2hxqy)uy(q, ωn)

− (η1hzqx + η2hxqz )uz(q, ωn),

Iy(q, ωn) := −(η2hyqx + η1hxqy)ux(q, ωn)

+ η1(hzqz − hxqx )uy(q, ωn)

+ (η1hzqy + η2hyqz )uz(q, ωn),
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Iz(q, ωn) := (η2hzqx + η1hxqz )ux(q, ωn)

− (η2hzqy + η1hyqz )uy(q, ωn)

+ η1(hxqx − hyqy)uz(q, ωn),

where

η1 := 2

3
√

3
(2

√
2g1 + g2),

η2 := 4

3
√

3
(
√

2g1 − g2).

For dipolar-Ising QSI, on the other hand, we define

Ĩx(q, ωn) := (−η̃1hxqx + η̃2hyqy + η̃2hzqz )ux(q, ωn)

+ (η̃2hyqx + η̃3hxqy)uy(q, ωn)

+ (η̃2hzqx + η̃3hxqz )uz(q, ωn),

Ĩy(q, ωn) := (η̃3hyqx + η̃2hxqy)ux(q, ωn)

+ (η̃2hxqx − η̃1hyqy + η̃2hzqz )uy(q, ωn)

+ (η̃3hzqy + η̃2hyqz )uz(q, ωn),

Ĩz(q, ωn) := (η̃3hzqx + η̃2hxqz )ux(q, ωn)

+ (η̃3hzqy + η̃2hyqz )uy(q, ωn)

+ (η̃2hxqx + η̃2hyqy − η̃1hzqz )uz(q, ωn),

where

η̃1 := 4
9 (2

√
2g̃1 − 2g̃2 − 2g̃3 − g̃4),

η̃2 := 2
9 (2

√
2g̃1 + g̃2 − 2g̃3 + 2g̃4),

η̃3 := 4
9 (

√
2g̃1 − g̃2 + 2g̃3 + g̃4).

APPENDIX I: CONSTANTS IN THE PHONON SPECTRUM

Here, we list all the coupling constants γk and γ̃k appearing
in Table I in terms of the pseudospin-lattice couplings gm

and g̃m.

For octupolar-Ising QSI we have

γ1 := 2

27

K

ρ
(2

√
2g1 + g2)2,

γ2 := 8

27

K

ρ
(
√

2g1 − g2)2,

γ3 := 4

3

K

ρ
g2

1,

γ4 := 4

27

K

ρ
(g1 +

√
2g2)2,

γ5 := 2

81

K

ρ
(4

√
2g1 − g2)2,

where K is the phenomenological constant appearing in the
effective QED action in Eq. (2) and ρ denotes the mass density
of the material.

In the dipolar-Ising case we define

γ̃1 := 8

81

K

ρ
(2

√
2g̃1 − 2g̃2 − 2g̃3 − g̃4)2,

γ̃2 := 2

81

K

ρ
(2

√
2g̃1 + g̃2 − 2g̃3 + 2g̃4)2,

γ̃3 := 8

81

K

ρ
(
√

2g̃1 − g̃2 + 2g̃3 + g̃4)2,

γ̃4 := 4

81

K

ρ
(g̃1 +

√
2g̃2 +

√
2g̃3 + 2

√
2g̃4)2,

γ̃5 := 2

9

K

ρ
(
√

2g̃1 − g̃2)2,

γ̃6 := 4

9

K

ρ
(g̃1 −

√
2g̃3)2,

γ̃7 := 8

729

K

ρ
(4

√
2g̃1 + 2g̃2 + 2g̃3 + 7g̃4)2,

γ̃8 := 2

729

K

ρ
(4

√
2g̃1 − 7g̃2 + 2g̃3 − 2g̃4)2.
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