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Recently, in the Luttinger liquid phase of the one-dimensional generalized antiferromagnetic Kitaev spin-1/2
model, it has been found that the Abelian bosonization formulas of the local spin operators only respect the
exact discrete nonsymmorphic symmetry group of the model, not the emergent U(1) symmetry. In this work,
we perform a renormalization group (RG) study to provide explanations for the origin of the U(1) breaking
terms in the bosonization formulas. We find that the lack of U(1) symmetry originates from the wave-function
renormalization effects in the spin operators along the RG flow induced by the U(1) breaking interactions in the
microscopic Hamiltonian. In addition, the RG analysis can give predictions to the signs and order of magnitudes
of the coefficients in the bosonization formulas. Our work is helping to understand the rich nonsymmorphic
physics in one-dimensional Kitaev spin models.
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I. INTRODUCTION

Kitaev materials have attracted intense research attentions
in the past decade [1–24], since they not only provide poten-
tial experimental platforms for realizing the Kitaev spin-1/2
model on the honeycomb lattice—a prototypical strongly cor-
related model for topological quantum computations [25,26]
but also are representatives of frustrated magnetic systems,
having close relations to the fields of strongly correlated quan-
tum magnetism [27,28] and quantum spin liquids [29–34].
Theoretical and experimental studies have established the
fact that Kitaev materials can be described by generalized
Kitaev spin models [2,16–20] which—in addition to Kitaev
interaction—contain other types of couplings including the
Heisenberg interaction, the off-diagonal � and �′ terms,
and beyond nearest neighbor interactions. One of the central
themes in the field of Kitaev materials is to understand the
effects of such additional interactions which are inevitable in
real materials.

Recently, there has been increasing interests in studying
one-dimensional (1D) Kitaev spin models [35–48], which
are constructed by selecting one row out of the honeycomb
lattice. These 1D Kitaev spin models have discrete nonsym-
morphic symmetry group structures [39,40,43], leading to rich
physics including emergent conformal symmetries, extended
Luttinger liquid phases in the phase diagram, nonvanishing
string order parameters, and magnetically ordered phases with
exotic symmetry breaking patterns such as Oh → D4 [39,44],
Oh → D3 [41,42,44], Oh → D2 [44], and D3d → Z2 [40],
where Oh is the full octahedral group, Dn is the dihedral
group of order 2n, and D3d

∼= D3 × Z2. The motivation of
such 1D studies is to provide hints and guidance for the 2D
physics. Indeed, it has been demonstrated in Ref. [44] that the

zigzag phase in 2D Kitaev-Heisenberg-Gamma model can be
obtained by weakly coupling an infinite number of 1D chains,
thereby providing a controllable approach to the 2D zigzag or-
der. In addition, 1D studies also have their independent merits,
since there have been proposals on realizing 1D generalized
Kitaev spin models in real materials [24].

As shown in Ref. [40], the system has an emergent U(1)
symmetry at low energies in the gapless Luttinger liquid
phase in the generalized Kitaev spin-1/2 chain with an an-
tiferromagnetic (AFM) Kitaev coupling. At first sight, it
seems that the discrete nature of the nonsymmorphic sym-
metry group is lost in the long-wavelength limit. However,
as discussed in detail in Ref. [44], the discreteness of the
nonsymmorphic symmetry group still has notable influence
on the low-energy properties, reflected by the constraints on
the Abelian bosonization formulas for the spin operators. The
Abelian bosonization formulas build the connections between
the lattice spin operators on one side and the low-energy field
theory degrees of freedom on the other side, and the two sides
have to be covariant under symmetry transformations.

One typical type of the nonsymmorphic symmetry op-
erations is the screw operation, where a spatial translation
followed by a spin rotation is a symmetry of the system,
whereas neither the translation nor the spin rotation alone
leaves the system invariant. Unlike the on-site spin rotational
symmetry in a translationally invariant system, a screw sym-
metry relates the spin operators on different sites. Hence it is
expected that the constraint imposed by a screw symmetry is
much looser than the constraints imposed by translation plus
global spin rotation.

Indeed, it was found in Ref. [44] that the bosoniza-
tion formulas for the spin-1/2 Kitaev-Heisenberg-Gamma
chain contain a large number (equal to ten) of nonuniversal
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bosonization coefficients, which are only compatible with
the exact nonsymmorphic symmetry group, not respecting
the emergent U(1) symmetry. The ten bosonization coeffi-
cients are determined by density matrix renormalization group
(DMRG) numerical simulations to a high degree of accuracy
[44]. However, although a symmetry analysis is able to deter-
mine the constraints on the relations among the bosonization
coefficients, it cannot give any prediction on the magnitudes
or signs of the coefficients, neither can it provide explanations
for the mechanism of how these coefficients arise.

In this work, in view of the aforementioned incapabil-
ity of the symmetry analysis, we perform a renormalization
group (RG) study in the Luttinger liquid phase of the Kitaev-
Heisenberg-Gamma spin-1/2 chain in the AFM Kitaev region.
The basic idea is that the U(1) breaking terms in the micro-
scopic Hamiltonian renormalize the spin operators along the
RG flow, and the nonsymmorphic bosonization coefficients
are reminiscences of such renormalization effects in the low-
energy physics. Our RG study is able to explain the origin
of the U(1) breaking bosonization coefficients. In addition, it
can also give predictions on the signs and order of magnitudes
of the bosonization coefficients. We note that as revealed by
this RG study, the U(1) breaking effects in the bosonization
coefficients arise at the “Planck scale” of the lattice, before
the lattice sites within a unit cell get smeared and lose distin-
guishability. Therefore we emphasize that our RG treatment is
applied in the ultraviolet (UV) high-energy region, unlike the
usual cases where RG analysis is typically performed in the
low-energy limit. This RG study cannot produce quantitative
predictions, though indeed, it correctly captures the qualitative
features of the related physics.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model Hamiltonian, discuss the phase dia-
gram of the model, and give a review on the nonsymmorphic
bosonization formulas in the Luttinger liquid phase under in-
terest. In Sec. III, the general framework of the RG treatment
in this work is formulated. Section IV derives and solves the
RG flow equations for the scaling fields which are coupled to
the spin operators. In Sec. V, the bosonization coefficients are
derived by solving the flow equations. Finally in Sec. VI, we
briefly summarize the main results of the paper.

II. NONSYMMORPHIC BOSONIZATION FORMULAS

A. Model Hamiltonian

We consider a spin-1/2 Kitaev-Heisenberg-Gamma chain
in zero magnetic field defined as

H =
∑

〈i j〉∈γ bond

[
KSγ

i Sγ
j + J �Si · �S j + �

(
Sα

i Sβ
j + Sβ

i Sα
j

)]
, (1)

in which i, j are two sites of nearest neighbors; γ = x, y
is the spin direction associated with the γ bond shown in
Fig. 1(a); α 	= β are the two remaining spin directions other
than γ ; K , J , and �, are the Kitaev, Heisenberg and Gamma
couplings, respectively. The coupling constants K and � can
be parametrized as K = cos(ψ ), � = sin(ψ ), in which ψ ∈
[0, π ]. The phase diagram of the model in terms of J and ψ is
shown in Fig. 2.

FIG. 1. Bond patterns of the Kitaev-Heisenberg-Gamma chain
(a) before the sublattice rotation and (b) after the four-sublattice
rotation.

A useful unitary transformation is called four-sublattice
rotation U4, which is defined as

sublattice 1 : (x, y, z) → (−x′, y′,−z′),

sublattice 2 : (x, y, z) → (−x′,−y′, z′),
(2)

sublattice 3 : (x, y, z) → (x′,−y′,−z′),

sublattice 4 : (x, y, z) → (x′, y′, z′),

in which “sublattice i” (1 � i � 4) represents all the sites i +
4n (n ∈ Z) in the chain, and we have dropped the spin symbol
S for simplicity (i.e., α is understood as Sα where α = x, y, z).
The Hamiltonian H ′ = U4HU −1

4 in the four-sublattice rotated
frame acquires the form

H ′ =
∑

〈i j〉∈γ bond

[
(K + 2J )Sγ

i Sγ
j − J �Si · �S j

+ ε(γ )�
(
Sα

i Sβ
j + Sβ

i Sα
j

)]
, (3)

in which the bonds γ = x, y, x̄, ȳ has a four-site periodicity
as shown in Fig. 1(b); the function ε(γ ) is defined as ε(x) =
ε(y) = −ε(x̄) = −ε(ȳ) = 1; Sγ̄

i = Sγ

i ; and �S′
i = U4 �SiU

−1
4 is

denoted as �Si for short. Notice that U4 reveals a hidden SU(2)
symmetric point located at K + 2J = 0, � = 0. At this point,
H ′ is exactly the SU(2) symmetric AFM Heisenberg model.
Explicit forms of H and H ′ are included in Appendix A.

From here on, we will stick to the four-sublattice rotated
frame unless otherwise stated.

FIG. 2. Phase diagram of the spin-1/2 Kitaev-Heisenberg-
Gamma chain in the region K > 0, J < 0, in which the vertical axis
is J and the horizontal axis is ψ, where K = cos(ψ ) and � = sin(ψ ).
In the figure, “LL” and “FM” denote the Luttinger liquid and FM
phases, respectively [40,44]. The phase boundary between LL and
FM phases is described by an emergent SU(2)1 conformal symmetry
at low energies [44].
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B. Phase diagram in the antiferromagnetic Kitaev region

The phase diagram in the region K > 0, J < 0 is shown in
Fig. 2. Since a global spin rotation around z axis by π changes
the sign of � but leaves K and J invariant, it is enough to
consider the � > 0 region.

As can be seen from Fig. 2, there are two phases close to
the � = 0 line (i.e., the vertical axis), including a Luttinger
liquid phase (denoted as LL in Fig. 2), and a ferromagnetically
ordered phase (denoted as FM). It has been shown in Ref. [44]
that in the sense of low-energy field theory, the phase bound-
ary between the LL and FM is essentially a phase transition
between planar and axial spin-1/2 XXZ chains. Hence, the
low-energy physics of this phase boundary is described by the
SU(2)1 Wess-Zumino-Witten (WZW) model.

In this paper, we will focus on the Luttinger liquid phase in
Fig. 2.

C. Nonsymmorphic Abelian bosonization formulas

In this section, we briefly review the nonsymmorphic
bosonization formulas in the Luttinger liquid phase in Fig. 2,
which are proposed in Ref. [44] based on a symmetry analysis.

The system in the four-sublattice rotated frame is invariant
under the following symmetry operations [40,44]:

T :
(
Sx

i , Sy
i , Sz

i

) → (−Sx
i ,−Sy

i ,−Sz
i

)
,

R(ŷ, π )I :
(
Sx

i , Sy
i , Sz

i

) → (−Sx
5−i, Sy

5−i,−Sz
5−i

)
, (4)

R

(
ẑ,−π

2

)
Ta :

(
Sx

i , Sy
i , Sz

i

) → (−Sy
i+1, Sx

i+1, Sz
i+1

)
,

in which T is time reversal; I is the spatial inversion with
inversion center located at the middle of the bond con-
necting sites 2 and 3; Tna is the spatial translation by n
sites; and R(n̂, θ ) represents a global spin rotation around
n̂ axis by an angle θ . It has been proved in Refs. [40,44]
that the symmetry group G = <T, R(ŷ, π )I, R(ẑ,−π

2 )Ta> is
nonsymmorphic and satisfies G/〈T4a〉 ∼= D4d , in which 〈. . .〉
represents the group generated by the elements within the
bracket; and D4d

∼= Z2 × D4.
In the Luttinger liquid phase, the low-energy theory is

described by the Luttinger liquid Hamiltonian

HLL = v

2

∫
dx[κ−1(∇ϕ)2 + κ (∇θ )2], (5)

in which v is the velocity; κ is the Luttinger parameter; and
the fields θ, ϕ satisfy [ϕ(x), θ (x′)] = i

2 sgn(x′ − x). For later
convenience, it is useful to define the following fields:

J± = 2

a
cos(

√
4πϕ)e±i

√
πθ , Jz = −

√
2π∇ϕ,

N± =
√

2

a
e±i

√
πθ , Nz =

√
2

a
sin(

√
4πϕ), (6)

where J± = Jx ± iJy and N± = Nx ± iNy. Since
∫

dxJz(x) is
the generator for the global spin rotation around z axis, Jα

and Nα transform under R(ẑ, β ) as A± → A±e±iβ and Az →
Az, where A = J and N . Clearly, the low-energy field theory
has an emergent U(1) symmetry corresponding to rotations
around z axis, even though the microscopic Hamiltonian only
has a discrete nonsymmorphic symmetry group.

On the other hand, the discrete and nonsymmorphic na-
ture of the symmetry group still has significant effects on
the low-energy properties of the system. We note that when
the microscopic Hamiltonian is U(1) invariant (for example,
the planar XXZ model), the bosonization formulas of the spin
operators are given by Sα

j = λJα + μ(−) jNα , in which λ,μ

are constants. However, these relations cease to apply in the
Kitaev-Heisenberg-Gamma chain. In Ref. [44], the following
nonsymmorphic bosonization formulas are proposed:

Sα
j+4n =

∑
β

[
Dαβ

j Jβ (x) + (−) jCαβ
j Nβ (x)

]
, (7)

in which n is the index for the unit cell, j (1 � j � 4) repre-
sents the site within the four-site unit cell, x = j + 4n is the
spatial coordinate in the continuum limit, and α, β = x, y, z.

Two comments are in order. First, Eq. (7) was obtained
in Ref. [44] by covariance of the two sides under symmetry
transformations. Notice that for nonsymmetry transforma-
tions, the two sides in Eq. (7) are not covariant, since the
transformed Jβ and Nβ operators are driven out of the low-
energy subspace of the Hilbert space in such situations.
Second, Eq. (7) equally applies to non-Abelian bosonization
formulas in the nonsymmorphic case, except that the Jβ and
Nβ operators should be replaced by the WZW current opera-
tors and primary fields, respectively. As shown in Fig. 2, the
line separating LL and FM phases has an emergent SU(2)1

conformal symmetry at low energies (see Ref. [44] for de-
tails). Therefore a non-Abelian bosonization version of Eq. (7)
should be used along this phase transition line.

Defining 3 × 3 matrices Dj and Cj whose matrix elements
at position (α, β ) are Dαβ

j and Cαβ
j , the coefficients in Eq. (7)

can be compactly expressed as

D1 =
⎛
⎝aD bD cD

bD aD −cD

hD −hD iD

⎞
⎠,

Dj = (Mz ) j−1D1(Mz )1− j, (8)

and

C1 =
⎛
⎝aC bC cC

bC aC −cC

hC −hC iC

⎞
⎠,

Cj = (Mz ) j−1C1(Mz )1− j, (9)

where j = 2, 3, 4, and

Mz =
⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠. (10)

It can be seen that there are ten nonuniversal coefficients in
Eq. (7), which spoil the emergent U(1) symmetry and only
respect the exact nonsymmorphic symmetries of the system.
Explicit expressions of the nonsymmorphic bosonization for-
mulas are included in Appendix B.

On the other hand, although the symmetry analysis is able
to determine the form of the bosonization formulas, it has no
predictive power on the order of magnitudes nor the signs
of the ten bosonization coefficients a, b, c, h, i ( =
C, D). In addition, the symmetry analysis gives no explanation
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to the origin of the bosonization coefficients, i.e., there is no
information on how they arise microscopically. In view of
these issues, it is the purpose of this work to derive the ten
bosonization coefficients using an RG approach.

III. SETUP FOR RG FLOWS

In this section, we set up the method for deriving the RG
flow equations, which can provide explanations for the micro-
scopic origin of the nonsymmorphic bosonization coefficients.

The low-energy physics of the 1D spin-1/2 repulsive Hub-
bard model at half filling is known to be described by the
SU(2)1 Wess-Zumino-Witten (WZW) model, which is the
same as the low-energy theory of the spin-1/2 AFM Heisen-
berg model (for details, see Ref. [49] and Appendix C). Hence,
the weak coupling repulsive Hubbard model can be used
to mimic the low-energy physics of the Kitaev-Heisenberg-
Gamma model at the hidden AFM point (i.e., K + 2J = 0,
� = 0) in the four-sublattice rotated frame. Then K + 2J and
� can be treated as perturbations to the repulsive Hubbard
model.

Here we make some comments on the reasons why a
fermion model has to be introduced for an RG treatment, and
the limitations of the method. We first emphasize that the
bosonization coefficients arise from the microscopic lattice
structures. Hence a perturbation in the low-energy sector can-
not capture these bosonization coefficients, and the physics at
the “Planck scale” of the lattice has to be involved. It seems
that there is still hope since the spin-1/2 Heisenberg model
is an integrable system solvable by the Bethe ansatz method,
which is applicable to any energy scale. However, a pertur-
bation on the Heisenberg model is analytically intractable
since Bethe ansatz is a very intricate method, not suitable for
perturbative calculations.

On the other hand, it is standard to perform perturbative
calculations based on the free fermion models. Therefore, in
the weak coupling limits, i.e., when the Hubbard interaction,
the combination K + 2J , and the Gamma interaction are all
small, an RG analysis can be applied in the vicinity of the
free fermion fixed point. Notice that this directly implies the
limitation of the method. Our RG analysis is only qualitative,
since the model is changed from a pure spin model to a
fermion model. However, this RG analysis is able to provide
explanations for the origin of the bosonization coefficents, jus-
tifying the proposed nonsymmorphic bosonization formulas
in Eq. (7). It is able to give predictions on the signs and order
of magnitudes of the bosonization coefficients.

We start from the following fermion model in the four-
sublattice rotated frame:

HF = H0 + Hint, (11)

in which

H0 = −t
∑
〈i j〉,α

(c†
iαc jα + H.c.) − μ

∑
iα

c†
iαciα,

(12)
Hint = HU + H4,

where

HU = U
∑

i

ni↑ni↓,

H4 =
∑

〈i j〉∈γ bond

[
(K + 2J )Sγ

i Sγ

j + ε(γ )�
(
Sα

i Sβ
j + Sβ

i Sα
j

)]
.

(13)

At half filling and for a repulsive U , H0 + HU reproduces the
SU(2)1 WZW model in the low-energy limit (see Ref. [49]
and Appendix C). Then by adding H4, the low-energy physics
of the Kitaev-Heisenberg-Gamma model is recovered.

The partition function for HF is given by

Z =
∫

D[c, c†]e−S , (14)

where

S =
∫

dτ

(∑
iα

c†
i,α∂τ ciα + H0 + Hint

)
. (15)

The goal is to compute the spin correlation functions Giα, jβ

Giα, jβ (τ, n) = 〈
Sα

i (0)Sβ

j+4n(τ )
〉

= 1

Z

∫
D[c, c†]Sα

i (0)Sβ

j+4n(τ )e−S (16)

in which τ is the imaginary time, i, j ∈ {1, 2, 3, 4}, and

Sα
i =

∑
a,b

1

2
c†

iaσ
α
abcib, (17)

where a, b = ↑,↓.
We note that upon integrating over the fast modes in a

momentum shell, Hint renormalizes the spin operators. In fact,
by separating the fast and slow modes, we obtain

Giα, jβ (τ, n) = 1

Z<

∫
D[c<, c†

<]e−Seff,<

×
〈(

1 −
∫

dτdxHint,>,<

)
Sα

i (0)Sβ

j+4n(τ )

〉
>

,

(18)

in which Hint,>,< represents the mixing term between the fast
and slow modes, 〈. . . 〉> is defined as

〈. . . 〉> = 1

Z>

∫
D[c>, c†

>]e−Seff,> (. . . ), (19)

and only first-order renormalization is taken into account for
the spin operators. Eq. (18) leads to a set of coupled Callan-
Symanzik equations [50], which can be solved to determine
the behaviors of the correlation functions.

The interactions and the spin operators are represented
by the diagrams in Figs. 3 and 4, respectively. In particu-
lar, Fig. 3 represents (K + 2J )Sγ

i Sγ
j + ε(γ )�(Sα

i Sβ
j + Sβ

i Sα
j )

where 〈i j〉 = γ . There are two diagrams which contribute to
the contractions between Hint,>,< and the spin operators as
shown in Figs. 5 and 6. It is clear that Fig. 5 introduces a
renormalization of the spin operators, whereas on the other
hand, Fig. 6 produces new terms along the RG flow, which
are of the forms c†

i σ
λc j where i = j ± 1. Although c†

i σ
λc j

is not of the form of an on-site spin operator, it becomes
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FIG. 3. Diagrammatic representation of the interaction term be-
tween site i and j, where 1 � i, j � 4. The outgoing arrow, ingoing
arrow, and dashed lines represent fermion creation operator, fermion
annihilation operator, and the four-fermion interaction, respectively.

indistinguishable from a spin operator in the low-energy limit
when the difference between adjacent sites is smeared out.
Later in Sec. IV B, we will see that the value of the diagram in
Fig. 6 vanishes. However, we still include it here from a con-
ceptual consideration, and in addition, if the Hamiltonian in
Eq. (1) contains beyond next-nearest neighbor terms (which is
always the case in real materials), the diagram in Fig. 6 indeed
contributes. We note that the set of coupled Callan-Symanzik
equations for the correlation functions to the one-loop level
can be obtained from the two diagrams in Figs. 5 and 6.

Here we take an alternative route for later convenience.
Instead of considering the Callan-Symanzik equations, we
introduce the following set of magnetic fields into the action:

−
∫

dτ

[∑
n

4∑
j=1

∑
α=x,y,z

hα
j (τ, n)Sα

j+4n(τ )

+
∑

n

4∑
i=1

∑
j=i±1

∑
α=x,y,z

1

2
hα

i j (τ, n)c†
i+4n(τ )σαc j+4n(τ )

]
,

(20)

in which n is the index of the unit cell;,i and j are site indices
within a unit cell, and the hα

i j (τ, n) terms are inserted since
they can be generated upon RG flow as a result of the diagram
in Fig. 6. The spin correlation functions can be obtained from
the functional derivatives as〈

Sα
i (τ, n)Sβ

j (τ ′, n′)
〉 = ∂2F

∂hα
i (τ, n)∂hβ

j (τ ′, n′)
, (21)

where F = − lnZ is the free energy.
We will determine the RG flow equations for the scaling

fields hα
j (τ, n) and hα

i j (τ, n). In Eq. (12), the free fermion

FIG. 4. Diagrammatic representation of the spin operator. The
outgoing arrow, ingoing arrow, and wavy lines represent fermion cre-
ation operator, fermion annihilation operator, and external magnetic
field, respectively.

FIG. 5. Diagrams for the renormalization of the spin operators.

Hamiltonian H0 is gapless at ±kF = ±π/(2a), giving rise to
left mover cLa and right mover cRa (a = ↑,↓) at low energies,
where cLa and cRa are the fermion annihilation operators for
the left and right movers, containing Fourier components with
wave vectors close to −kF and kF , respectively. Then in the
low-energy limit, the wave vectors in the spin operators are
either close to zero or π , corresponding to intra-mover and in-
termover contributions. Keeping only the low-energy modes,
the spin operator S̃α

r (τ ) at smeared position r and time τ can
be written as

S̃α
r (τ ) ∼ Sα

u (τ, r) + (−)rSα
s (τ, r), (22)

in which the uniform component Sα
u (τ, r) and staggered com-

ponent Sα
s (τ, r) are given by

Sα
u = 1

2 (c†
LσαcL + c†

RσαcR),
(23)

Sα
s = 1

2 (c†
LσαcR + c†

RσαcL ),

where cλ = (cλ↑, cλ↓)T (λ = L, R) and both Sα
u and Sα

s are
smooth functions of r (i.e., no Fourier components with a
wave vector far from zero). Here we note that since hα

l (τ, n)
is defined every four sites, the zero- and π -wave-vector com-
ponents cannot be distinguished in hα

l (τ, n) or hα
i j (τ, n) since

both components are smooth in n.
Finally we make a comment on the energy scales in the

problem. There are five characteristic energy scales 0, s,
L, mc, and E , where 0 ∼ 1/a is the UV cutoff of the lattice
structure, s ∼ 1/(4a) is the energy scale where the four sites
within a unit cell are smeared and can no longer be clearly
distinguished, L is the energy scale where a linearization
of the free fermion spectrum around ±kF can be performed,
mc ∼ e−const.t/U is the charge gap due to the repulsive Hubbard
term, and E is the energy scale of the correlation functions

FIG. 6. Diagrams that generate new terms upon RG flow.
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which we are eventually interested in. The hierarchy of the
energy scales is clearly

0 � s � L � mc � E . (24)

We note that below L, the fermion has an emergent Lorentz
symmetry, and is fractionalized into a U(1) charge boson and
an SU(2)1 spin boson [49]. When the energy is further lowered
below mc, the charge boson is gapped, and we are left with
only spin degrees of freedom Jα and Nα . We also note that
since the microscopic lattice structure is lost at s, our RG
analysis stops at an energy scale ∼s.

IV. RG FLOW EQUATIONS

In this section, we derive the RG flow equations for the
scaling fields hα

l (τ, n) and hα
i j (τ, n) from the diagrams in

Figs. 5 and 6.

A. Flow equations from the diagram in Fig. 5

Let’s first consider the diagram in Fig. 5. It is nonvanishing
when ν = α, and renormalizes hμ

i . Suppose we lower the
cutoff from 0/b to 0/b′, where 0 is chosen as π/(2a)
and b′ = b + �b with 0 < �b � 1. The perturbation process
in Fig. 5 gives rise to the following term in the action,

λ jlδνα� ln b
∫

dτ
∑

n

hα
l (τ, n)Sμ

i+4n(τ ), (25)

leading to a renormalization of hμ
i by hα

l , where � ln b =
�b/b. Define the free fermion Green’s function G(k) as

G(k) = 1

iω − ε(k)
, (26)

in which k = (iω, �k) where ω is Matsubara frequency and �k is
the wave vector in space (we define the spatial wave vector

as a vector to distinguish it from the space-time combined
index k, even though the system is 1D and �k is in essence a
scalar), and ε(k) is the free fermion dispersion which includes
the chemical potential term. The coefficient λ jl can be derived
as

λ jl� ln b = −a

8

4∑
m=1

e−i π
2 m( j−l )

×
∫ 0/b

0/b′
d2kG(k)G

(
k + π

2a
mx̂

)
, (27)

where a is the lattice spacing, and x̂ is the unit vector in the
spatial direction. We note that because of the translation and
inversion symmetries of the free fermion theory, λi j satisfies
the following relations:

λi j = λi+l, j+l = λ−i,− j = λi, j+4, (28)

where l ∈ Z.
We briefly describe the derivation of λ jl . Detailed deriva-

tions are included in Appendix D 1. The Fourier transforms of
the fermion operator and the scaling field are defined as

c†(k) = 1√
Nβ

∫
dτ

N∑
j=1

c†
j (τ )ei(ωτ−�k· jax̂) (29)

and

hα
l (q) = 1√

Nβ

∫
dτ

N/4∑
n=1

hα
l (τ, n)ei(ωτ−�q·4nax̂), (30)

in which N is the system size, β is the inverse of the temper-
ature, j in Eq. (29) is summed over all sites in the chain, and
n in Eq. (30) is summed over the unit cells. Integrating over
the fast modes in the momentum shell and using momentum
conservations in the free fermion model, the expression of the
diagram in Fig. 5 is given by

1

4

4∑
m̄=1

ei π
2 m̄i

∑
kq′

ei �q′ ·iax̂hα
l (−q′)c†

(
k + q′ + π

2a
m̄x̂

)
1

2
σμc(k)e−i �q′ ·( j−l )ax̂ 1

4Nβ

4∑
m=1

∑
k′

e−i π
2 (m+m̄)( j−l )

× 〈c†(k′ − q′)
1

2
σ νc

(
k′ + π

2a
(m + m̄)x̂

)
· c†

(
k′ + π

2a
(m + m̄)x̂

)
1

2
σαc(k′ − q′)〉f, (31)

in which �q′ in hα
l (−q′) satisfies | �q′| ∼ 0, since hα

l (n) is a smooth function of n. In Eq. (31), the factor e−i �q′ ·( j−l )ax̂ can be set as
1 since it is a slowly varying variable. Comparing with the following Fourier representation of the magnetic field term in the
action: ∫

dτ
∑

n

hα
i′ (τ, n)Sα

i′+4n(τ ) = 1

4

∑
kq

4∑
m=1

ei �q·i′ax̂ei π
2 mi′hα

i′ (−q)c†

(
k + π

2a
mx̂

)
1

2
σαc(k − q), (32)

it can be seen that Eq. (31) is of the form in Eq. (25) which
renormalizes hμ

i , in which λ jl is given by Eq. (27).
Equation (27) is the desired expression for the coefficients

λ jl ’s in the RG flow equations. An analytic expression of λ jl

is difficult, so we will turn to numerical calculations. The
numerical value of λ jl relies on the underlying free fermion
band structure ε(k), but the essential physics does not depend
on the details of the band structure. Hence, the precise form

of the band structure is not essential in our RG treatment. The
free fermion term H0 in Eq. (12) has a −t cos(�k · x̂) dispersion.
For simplicity, we modify the dispersion to a linear form as

ε(k) = v(|�k| − 0), (33)

where v = t/0, and 0 = π/(2a). The figure for the spec-
trum in Eq. (33) is shown in Fig. 7(a). The dispersion is
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FIG. 7. (a) Linear dispersion of free fermion model, (b) disper-
sion of the 1D Dirac fermion.

essentially a Dirac fermion as shown in Fig. 7(b), in which
the positions of the two gapless Fermi points are combined.

Next we evaluate the value of λ jl along RG flow. Although
the Dirac fermion has a cutoff 0 in momentum space as
shown in Fig. 7(b), the value of the Matsubara frequency
at zero temperature is continuous and can extend to infinity.
Therefore RG starts with an initial cutoff i ∼ ∞ in the
frequency-momentum space, and stops at s ∼ 0/4 as ex-
plained before. The values of λ jl in general depend on the
cutoff  = 0/b, where 0 = π/(2a). We note that b can be
smaller than 1 since the value of the Matsubara frequency can
take large values.

According to Fig. 7(b), the modes satisfying 0
b+�b �√

(ω/v)2 + (|�k| − 0)2 � 0/b are integrated over. The fre-
quency and wave vector in the momentum shell can be
parametrized as

ω

v0
= 1

b
cos(θ ),

|�k| − 0

0
= 1

b
sin(θ ), (34)

where for each value of |�k| − 0 ∈ [−0,0], we have both
the left mover and the right mover. We note that when b < 1,
θ cannot take all values in [0, 2π ], since −0 � |�k| − 0 �
0. On the other hand, when b > 1, �k cannot take all values in
[−π/a, π/a], since some of the �k’s have been integrated over.

Then λ jl (b) as a function of b can be obtained from
Eq. (27) as

λ jl (b) = − 1

64πt

∑
m

e−i π
2 m( j−l )

∑
ν=±1

∫ 2π

0
dθ f (ν, m, θ, b)

1

[i cos θ − bε̄(b−1 sin θ + ν)]

1

[i cos θ − bε̄(b−1 sin θ + ν + m)]
, (35)

in which ν = 1 and −1 corresponds to the right and left movers in Fig. 7(b), respectively; f (ν, m, θ, b) is defined as

f (ν, m, θ, b) = 1, if |b−1 sin θ |, |ε̄(b−1 sin θ + ν)|, |ε̄(b−1 sin θ + ν + m)| � min{1, b−1},
f (ν, m, θ, b) = 0, otherwise, (36)

imposing the condition that the magnitude of the spatial wave
vector cannot exceed the cutoff; and ε̄ is defined as

ε̄(x) = |mod(x, 4)| − 1, (37)

where −2 � mod(x, 4) � 2.
Next we write down the flow equations for hα

l (b), in which
b is the flow parameter, defined as (b) = 0/b where (b)
is the cutoff at the stage of the flow in consideration. Since
we are only interested in the U(1) breaking effects, we ne-
glect the renormalizations of the scaling fields due to the
Hubbard term. Although the Hubbard term also renormalizes
the scaling fields, such renormalizations are SU(2) symmetric,
which does not affect the conclusions on U(1) breaking effects
in the bosonization coefficients on a qualitative level. We
will also neglect the flows of the coupling constants K + 2J
and �. The reason is as follows. As will be discussed in
Sec. V C, the contributions to the bosonization coefficients
from the b ∼ 0 region [i.e., the (b) ∼ ∞ region] are neg-
ligible. Hence it is enough to consider the RG flows within
the range [bi, bs], where bi ∼ O(1) and bs ∼ 4. Since K + 2J
and � have scaling dimensions equal to zero and thereby
are marginal operators, their flows can be safely neglected

between the scales bi and bs. On the other hand, in the high-
energy region b ∼ 0 [i.e., (b) ∼ ∞], there is no singularity
in the perturbations, and as a result, K (bi ) + 2J (bi ) and �(bi )
are analytic functions of the bare couplings K + 2J and J .
Hence, in the weak coupling limit, it is enough to keep the
leading order terms in K (bi ) + 2J (bi ) and �(bi ), which are
exactly given by K + 2J and J . To summarize, according to
the above arguments, K (b) + 2J (b) and �(b) can be just taken
as K + 2J and J throughout the RG process in consideration.

The flow equation of hμ

l (1 � l � 4, μ = x, y, z) up to one-
loop level derived from the diagram in Fig. 5 is given by

dhμ

l

d ln b
= hμ

l − (K + 2J )
∑
γ ,k

[
δliδμγ λ jkhγ

k + δl jδμγ λikhγ

k

]

−�
∑
γ ,k

ε(γ )
[
δliδμαλ jkhβ

k + δl jδμβλikhα
k

+ δliδμβλ jkhα
k + δl jδμαλikhβ

k

]
, (38)

in which the conventions are: γ = x, y, x̄, ȳ; α 	= β 	= γ ; the
spin direction index x̄ (and ȳ) is identified with x (and y) in
the Kronecker delta and the scaling fields; 〈i j〉 = γ ; i < j;
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1 � i, j � 4; 5 is identified with 1. The first term in Eq. (38)
arises from the tree level scaling of the field hμ

l (the dimension
of the scaling field hμ

l is 2 − 2[c†] = 1, where [c†] = 1/2 is
the dimension of the fermion operator at the free fermion fixed
point), whereas the second term is the one-loop correction.
Explicit expressions of the flow equations are included in
Appendix E.

We note that Eq. (38) is invariant under the nonsym-
morphic symmetry operations of the system, as proved in
Appendix F.

B. Flow equations from the diagram in Fig. 6

Next we consider the diagram in Fig. 6. This diagram gives
rise to

λil j� ln b
∫

dτ
∑

n

hα
l (τn)

1

2
c†

i+4nσ
μσασ νc j+4n, (39)

which leads to a renormalization of hμ·α·ν
i j , where the multipli-

cation μ · ν (μ, ν = 1, 2, 3, 4) is defined as x · y = y · x = z,
x · z = z · x = y, and y · z = z · y = x. The coefficient λil j can
be derived as

λil j� ln b = a

8

∑
m

ei π
2 m(l−i)

∫ 

/b
d2k′

× e−i�k′ ·(i− j)ax̂G(k′)G
(

k′ + π

2a
mx̂

)
. (40)

Details of the derivation of Eq. (40) is included in
Appendix D 2.

We demonstrate that the integration in Eq. (40) vanishes
when j = i ± 1, which applies to our case. Notice that for j =
i ± 1,

e−i(�k′+ π
a x̂)·(i− j)ax̂ = −e−i�k′ ·(i− j)ax̂. (41)

Then performing change of variables (ω → −ω, �k′ → �k′ +
π
a x̂) (the change of variable for ω is legitimate since −ω also

lies in the momentum shell) and using ε(�k′ + π
a x̂) = −ε(�k′),

it can be seen that the integration in Eq. (40) changes sign,
hence λil j = −λil j = 0. We note that when the Hamiltonian
contains beyond nearest neighbor terms (e.g., | j − i| = 2), the

integration in Eq. (40) no longer vanishes, and the diagram in
Fig. 6 will contribute.

Because of the vanishing of λil j , the RG flow equations of
λil j are

dhμ
i j

d ln b
= hμ

i j, (42)

where j = i ± 1. Notice that initially h(0)μ
i j = 0 at the begin-

ning of the RG flow, hence the solution of Eq. (42) is

hμ
i,i±1(b) = 0. (43)

C. Solving the RG flow equations

The RG flow equations for hμ
i j have already been solved in

Eq. (43). To obtain hα
j (b), the coupled RG flow equations in

Eq. (38) need to be solved, which is a difficult problem. Here
we make the assumption that both K + 2J and � are very
small and only keep up to their first-order terms. With this
approximation, all the terms on the right-hand side of the flow
equations proportional to K + 2J or � can be replaced with
bh(0), where h(0) is the initial value (i.e., bare field) at the
beginning of the RG flow b0. Here we note that b0 in principle
should be taken as b0 = 0 since the Matsubara frequency can
take infinite values.

Within the first-order approximation, we obtain the follow-
ing typical flow equation:

dh(x)

dx
= h(x) + λ(x)ex, (44)

where x = ln b, and λ is on order of K + 2J or �. Let h = yex,
Eq. (44) can be rewritten as

dy

dx
= λ, (45)

which can be easily solved as

y = y0 +
∫

dxλ(x). (46)

Hence the solution of Eq. (44) is

h(b) = b[h(0) +
∫

d ln b · λ(b)]. (47)

Using Eq. (47), Eq. (38) can be solved as

hμ

l (b) = b

⎡
⎣h(0)μ

l − (K + 2J )
∫

d ln b
∑
γ ,k

(
δliδμγ λ jkh(0)γ

k + δl jδμγ λikh(0)γ
k

)

− �

∫
d ln b

∑
γ ,k

ε(γ )
(
δliδμαλ jkh(0)β

k + δl jδμβλikh(0)α
k + δliδμβλ jkh(0)α

k + δl jδμαλikh(0)β
k

)⎤⎦, (48)

in which γ = x, y, x̄, ȳ; α 	= β 	= γ ; the spin direction index x̄
(and ȳ) is identified with x (and y) in the Kronecker delta and
the scaling field; 〈i j〉 = γ ; i < j; 1 � i, j � 4; 5 is identified
with 1; and h(0)μ

lm = 0 is used.

V. BOSONIZATION COEFFICIENTS
FROM RG FLOW EQUATIONS

In this section, we derive the nonsymmorphic bosonization
coefficients from the solutions of the RG flow equations. Since
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hμ
i,i±1’s are all zero as shown in Eq. (43), we will focus on the

terms involving hμ
i .

A. The uniform and staggered scaling fields at low energies

Below the energy scale s, the differences among the sites
within a unit cell are smeared out and our RG analysis stops.
At this stage, the coupling to the scaling fields is

−
∑

n

4∑
j=1

∑
α=x,y,z

∫
dτhα

j (b; τ, n)Sα
j+4n(τ ), (49)

in which b > 0/s. In addition, the K + 2J term becomes
indistinguishable from the U(1) symmetric interaction 1

2 (K +
2J )

∑
i[S

x
i Sx

i+1 + Sy
i Sy

i+1], and the � interaction cancels due
to the ε(γ ) factor in Eq. (3). Therefore, below the scale s,
although the RG flow continues to renormalize the scaling
fields, such renormalizations respect the U(1) symmetry and
there is no further U(1) breaking effect. In view of this, for the
purpose of a qualitative understanding of the U(1) breaking
effects in the bosonization coefficients, we will not discuss
the flow equations below s, bearing in mind that they only
give rise to some overall U(1) preserving factors.

When the cutoff is further lowered below L, the only spin
degrees of freedom are Sα

u and Sα
s defined in Eq. (22), since

the wave vectors far from 0 and π have all been integrated
out. We make a comment on the low-energy field theory
at the scale L. As explained in Eq. (24), below L, the
fermion model can be approximated as a 1 + 1-dimensional
Dirac fermion, and the spin-charge separation is applicable.
The low-energy field theory contains a spin part and a charge
part. The charge Hamiltonian has a cos(

√
8πφ) term due to

the repulsive Hubbard interaction where φ is the charge bo-
son, which eventually opens a charge gap at the energy scale
mc (where the mass acquires the same order of magnitude
as the cutoff). The spin Hamiltonian is of the XXZ type,
since the smeared K + 2J interaction lowers the symmetry of
the low-energy Hamiltonian from SU(2) to U(1). Clearly, the
low-energy theory has an emergent U(1) symmetry below the
energy scale L. It is worth to mention that although U(1)
breaking renormalizations have already stopped at the scale
s, it is not legitimate to talk about a low-energy theory at
s, since s ∼ 0/4 is still in the high-energy region.

To express Eq. (49) in terms of Sα
u and Sα

s when the energy
scale is below L, we should first project Eq. (49) to left and
right movers of the fermions, and then rewrite the expression
using Sα

u and Sα
s . Clearly, the projection of Sα

j+4n is given by

Sα
j+4n(n) = 1

2
(c†

LσαcL + c†
RσαcR)

+(−) j 1

2
(c†

LσαcR + c†
RσαcL ). (50)

Plugging Eqs. (23) and (50) into Eq. (49), we arrive at

−
∑

α

∫
dτdx

(
hα

u Sα
u + hα

s Sα
s

)
, (51)

in which the uniform and staggered scaling fields hα
u , hα

s are
given by

hα
u =

4∑
j=1

hα
j ,

hα
s =

4∑
j=1

(−) jhα
j . (52)

B. Derivations of the bosonization coefficients

Plugging Eq. (48) into Eq. (52), hα
u and hα

s (defined below
the scale λL) can be expressed in terms of hμ(0)

j as

hα
u =

∑
ν=x,y,z

4∑
l=1

Dαν
l h(0)ν

l ,

hα
s =

∑
ν=x,y,z

4∑
l=1

(−)lCαν
l h(0)ν

l , (53)

in which Dαν
l and Cαν

l are some numerical factors. Notice that
the low-energy fields Jα and Nα live at an energy scale below
mc where the charge sector has been gapped out, leaving only
the spin degrees of freedom. When the energy scale is further
lowered from L to below mc, Sα

u and Sα
s become just Jα and

Nα , respectively, since Sα
u (Sα

s ) and Jα (Nα) both correspond
to the zero- (π -) wave-vector component of the low-energy
spin operator S̃α

r (τ ) defined in Eq. (22). As mentioned ear-
lier, the RG flow between L and mc respects the emergent
U(1) symmetry. Hence, up to some additional U(1) symmet-
ric renormalization factors, the coupling to scaling fields in
Eq. (51) becomes

−
∑

α

∫
dτdx

(
hα

u Jα + hα
s Nα

)
(54)

below the scale mc.
Recall that performing functional derivatives ∂/∂hα

j ,
∂/∂hα

u , and ∂/∂hα
s on the free energy can give the correlation

functions involving Sα
j , Jα , and Nα , respectively. Using

∂

∂h(0)ν
l

=
∑

α=x,y,z

[
∂hα

u

∂h(0)ν
l

∂

∂hα
u

+ ∂hα
s

∂h(0)ν
l

∂

∂hα
s

]
, (55)

we see from Eq. (53) that

Dαν
l = ∂hα

u

∂h(0)ν
l

, Cαν
l = ∂hα

s

∂h(0)ν
l

. (56)

In particular, it can be seen from Eq. (55) that Dαν
l and Cαν

l in
Eq. (53) are related to the bosonization coefficients defined in
Eq. (7) by

Dαβ

l = Dβα

l , Cαβ

l = Cβα

l . (57)

Dαν
l and Cαν

l satisfy the symmetries in Eq. (4), since the RG
flow equations are invariant under the symmetries.

Next we establish the precise relations between the
bosonization coefficients and the solutions of the RG flow
equations. Notice that in Eq. (48), hμ

l (b) is linear in h(0)α
j .
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Therefore we have

hμ
i (b) =

∑
ν=x,y,z

4∑
j=1

Eμν
i j h(0)ν

j , (58)

in which the explicit expressions of the coefficients Eμν
i j can

be read from Eq. (48). Plugging Eq. (58) into Eq. (52) and
comparing with Eqs. (53) and (57), we obtain

Dαβ

l =
4∑

j=1

Eβα

jl , Cαβ

l =
4∑

j=1

(−)l+ jEβα

jl , (59)

which give the bosonization coefficients via Eq. (57).
From Eq. (59), the explicit expressions of the ten bosoniza-

tion coefficients up to first orders in K + 2J and � can be
derived as

aD = b[1 − (K + 2J )
∫

d ln b · (λ11 + λ21 + λ31 + λ41)],

bD = 0,

cD = b�
∫

d ln b · (λ11 − λ21 − λ31 + λ41),

hD = b�
∫

d ln b · (λ11 − λ21 − λ31 + λ41),

iD = b, (60)

and

aC = b[1 − (K + 2J )
∫

d ln b · (λ11 − λ21 + λ31 − λ41)],

bC = 0,

cC = b�
∫

d ln b · (λ11 + λ21 − λ31 − λ41),

hC = b�
∫

d ln b · (λ11 + λ21 − λ31 − λ41),

iC = b, (61)

in which λi j’s are functions of b as determined by Eq. (35).
It can be seen from Eqs. (60) and (61) that up to first order

in K + 2J and �, the coefficients bD and bC vanish. In fact,
they start to appear at second order. Take bD as an example.
It can be observed from the flow equations that hy

j contributes
to the flow of hz

j , and hz
j contributes to the flow of hx

1. As a
result, hx

1 is affected by hy
j , eventually leading to a nonzero bD.

However, this is clearly a second-order effect. Also notice that
in Eqs. (60) and (61), there are the relations cD = hD, cC =
hC . However, these equalities are not expected to hold when
higher order terms are included.

We make some comments on the effects of the RG flow
below the energy scale L. The scaling fields hα

η (b) (η = u, s
and α = x, y, z) are related to hα

η (bL ) (bL = 0/L � b) via
the following relations,

hα
η (b) =

∑
β

M (η)
αβ hβ

η (bL ), (62)

in which the matrix M (η) is a function of b (for fixed bL) and
has U(1) symmetry since the U(1) breaking renormalization
along the RG flow has already stopped at the scale s (which

TABLE I. Numerical values of |w| (w = a, i, c, h, b;  =
C, D) at the representative point K + 2J = 1, J = −1, and � =
0.35, in which |bD| is too small and a reliable value cannot be
extracted. This table is taken from Ref. [44], where DMRG numerics
are performed on a system of L = 144 sites using periodic boundary
conditions.

|a| |i| |c| |h| |b|
 = C 0.129 0.363 0.0244 0.0138 0.00103
 = D 0.161 0.182 0.0359 0.0266 ?

is greater than L). Using the chain rule of partial derivatives

∂

∂h(0)ν
l

=
∑
η=u,s

∑
α,β=x,y,z

∂hβ
η (bL )

∂h(0)ν
l

∂hα
η (b)

∂hβ
η (bL )

∂

∂hα
η (b)

, (63)

we see that the matrices Dl (b), Cl (b) are related to Dl (bL ),
Cl (bL ) via

Dl (b) = Dl (bL )(M (u) )T ,

Cl (b) = Cl (bL )(M (s) )T . (64)

When b satisfies 0/b < mc, Eq. (63) produces the bosoniza-
tion formulas, and Dl (b), Cl (b) become the matrices of
bosonization coefficients in Eq. (7). It is clear from Eq. (64)
that all the bosonization coefficients Dαβ

l , Cαβ

l are affected by
the RG flow below L, though in a U(1) invariant manner.
For example, in the special SU(2) case [i.e., the matrices M (η)

have SU(2) symmetry, not just U(1) symmetry, which applies
to the SU(2)1 line in Fig. 2], Dαβ

l = r (u)Dαβ

l (bL ) and Cαβ

l =
r (s)Cαβ

l (bL ) acquire an overall renormalization factor r (u) and
r (s), respectively, where M (u)

αβ = r (u)δαβ and M (s)
αβ = r (s)δαβ .

C. Values of the bosonization coefficients

From Eqs. (60) and (61), it can be observed that aD, aC ∼
O(1) and cD, hD, cC, hC ∼ O(�), whereas bD, bC are second
order in K + 2J and �. Therefore, in the weak coupling limit
[i.e., |(K + 2J )/J|, |�/J| � 1], we have

|aC | ∼ |aD| � |cD| ∼ |hD| ∼ |cC | ∼ |hC | � |bD| ∼ |bC |.
(65)

Table I is taken from Ref. [44], from which it can seen that the
predicted hierarchy in Eq. (65) is indeed satisfied, even though
the value of K + 2J is already large (equal to 1).

Next we define λD and λC as

λD(b) = λ11(b) − λ21(b) − λ31(b) + λ41(b),

λC (b) = λ11(b) + λ21(b) − λ31(b) − λ41(b). (66)

Using λ41 = λ45, as well as the inversion and translation sym-
metries, we obtain λ21 = λ41, which demonstrates that up to
one-loop level, there is the relation

λD(b) = λC (b). (67)

Hence it enough to consider λC (b). Figure 8 shows λC (b)
as a function of ln b obtained by numerically calculating the
integral in Eq. (35), and it can be seen that λC (b) is always
negative. We note that the integral

∫
d ln bλC (b) converges

when b is integrated from 0 to bs ∼ 4. When b � 1, the
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FIG. 8. λC (b) as a function of ln b, where the hopping t is taken
as 1.

integration in Eq. (35) is restricted within a narrow range
θ ∼ b due to the factor f (ν, m, θ, b). Let x = ln b, and split∫ xs

−∞ dxλC (x) as
∫ y
−∞ dxλC (x) + ∫ xs

y dxλC (x) where xs ∼ ln 4

and y � 1. Since
∫ y
−∞ dxλC (x) goes like

∫ y
−∞ dxex which

converges, we see that
∫ xs

−∞ dxλC (x) is a converging integral.
As a result, we conclude from Eqs. (60) and (61) that RG
predicts

cC < 0, hC < 0, cD < 0, hD < 0. (68)

D. Comparison with numerics

Next we check if the predictions in Eq. (68) are consistent
with the numerical results. The method for numerically de-
termining the signs of the bosonization coefficients has been
discussed in detail in Supplementary materials in Ref. [44].
In this section, we follow the method in Ref. [44]. We will
focus on the “C” coefficients, since they correspond to Nα

(α = x, y, z), which are relevant operators and open a spin gap
at low energies. Appendix G discusses the numerical determi-
nations of the “D” coefficients, which are not successful, and
the reasons remain not clear.

Throughout this section, we work in the four-sublattice ro-
tated frame and take the parameters as K + 2J = 1, J = −1,
and � = 0.35 in accordance with Ref. [44]. DMRG numeri-
cal simulations are performed on a system of L = 144 sites
with periodic boundary conditions. The bond dimension m
and truncation error ε in DMRG simulations are taken as
m = 1400 and ε = 10−9.

Applying a small staggered magnetic field hz
π along z

direction, the low-energy Hamiltonian can be derived as
−hz

π iC
∫

dxNz. Since Nz is a relevant operator, a spin gap
opens and a nonzero expectation value 〈Nz〉 is developed in
the low-energy theory. Using the nonsymmorphic bosoniza-
tion formulas, the spin expectation values are

〈�S1+4n〉 = 〈Nz〉(−hC, hC,−iC ),

〈�S2+4n〉 = 〈Nz〉(−hC,−hC, iC ),

〈�S3+4n〉 = 〈Nz〉(hC,−hC,−iC ),

〈�S4+4n〉 = 〈Nz〉(hC, hC, iC ). (69)

Taking hz
π = 10−3, DMRG simulations are able to verify the

pattern in Eq. (69), with

〈Nz〉hC = −4.5 × 10−4, 〈Nz〉iC = 0.0119. (70)

This shows that

hC/iC = −0.0378. (71)

Notice that iC is the dominant coefficient, and we expect that
it does not change sign compared with the U(1) symmetric
case for the microscopic Hamiltonian (i.e., when K + 2J = 0
and � = 0). Therefore hC < 0 as determined from Eq. (71),
which is consistent with the prediction in Eq. (68). In addition,
Table I gives a ratio |hC/iC | equal to 0.0380 where the values
are obtained from studying spin correlation functions [44]. It
can be seen that the two approaches (magnetic field response
versus correlation functions) are fully consistent with each
other.

Next applying a small staggered magnetic field hx
π along

x direction, the low-energy Hamiltonian can be derived as
−hx

π (aC
∫

dxNx − bD
∫

dxJy). Since the scaling dimension of
Nx is smaller than that of Jy, we expect that a nonzero expec-
tation value 〈Nx〉 develops in the low-energy theory. Then the
spin expectation values can be determined as follows from the
nonsymmorphic bosonization formulas:

〈�S1+4n〉 = 〈Nx〉(−aC,−bC,−cC ),

〈�S2+4n〉 = 〈Nx〉(aC,−bC,−cC ),

〈�S3+4n〉 = 〈Nx〉(−aC,−bC, cC ),

〈�S4+4n〉 = 〈Nx〉(aC,−bC, cC ). (72)

Since aC is the dominant coefficient, again aC is expected to
be positive. The patterns in Eq. (72) are verified by DMRG
numerics, with the following values:

〈Nx〉aC = 0.0890,

〈Nx〉bC = 1.54 × 10−4,

〈Nx〉cC = −0.00431, (73)

which give the ratios as

bC/aC = 0.0017, cC/aC = −0.0484. (74)

Hence the sign of cC is consistent with the prediction in
Eq. (68). However, Table I gives a ratio |cC/aC | = 0.189, not
consistent with the result in Eq. (74). The reason for such
discrepancy is unclear, and one possibility may be neglecting
the Jy term in the analysis.

VI. SUMMARY

In summary, we have performed an RG study on the origin
of the U(1) breaking terms in the bosonization formulas in
the Luttinger liquid phase of the one-dimensional spin-1/2
Kitaev-Heisenberg-Gamma model with an antiferromagnetic
Kitaev interaction. The RG analysis provides explanations for
the origin of the ten nonuniversal bosonization coefficients in
the Abelian bosonization formulas of the spin operators. It can
also give predictions on the signs and order of magnitudes of
these bosonization coefficients. Our work is helpful to under-
stand the rich physics related to nonsymmorphic symmetries
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in the gapless Luttinger liquid phases of the one-dimensional
Kitaev spin models.

ACKNOWLEDGMENTS

W.Y. and I.A. acknowledge support from NSERC Dis-
covery Grant No. 04033-2016. C.X. is partially supported

by Strategic Priority Research Program of CAS (No.
XDB28000000). A.N. acknowledges support from the Max
Planck-UBC-UTokyo Center for Quantum Materials and the
Canada First Research Excellence Fund (CFREF) Quantum
Materials and Future Technologies Program of the Stewart
Blusson Quantum Matter Institute (SBQMI).

APPENDIX A: EXPLICIT FORMS OF THE HAMILTONIANS

The Hamiltonian in the unrotated frame is two-site periodic, which has the form

H2n+1,2n+2 = KSx
2n+1Sx

2n+2 + �
(
Sy

2n+1Sz
2n+2 + Sz

2n+1Sy
2n+2

) + J �S2n+1 · �S2n+2,

H2n+2,2n+3 = KSy
2n+2Sy

2n+3 + �
(
Sz

2n+2Sx
2n+3 + Sx

2n+2Sz
2n+3

) + J �S2n+2 · �S2n+3. (A1)

After the four-sublattice rotation, the Hamiltonian becomes four-site periodic, given by

H ′
4n+1,4n+2 = (K + 2J )Sx

4n+1Sx
4n+2 − J �S4n+1 · �S4n+2 + �

(
Sy

4n+1Sz
4n+2 + Sz

4n+1Sy
4n+2

)
,

H ′
4n+2,4n+3 = (K + 2J )Sy

4n+2Sy
4n+3 − J �S4n+2 · �S4n+3 + �

(
Sz

4n+2Sx
4n+3 + Sx

4n+2Sz
4n+3

)
,

H ′
4n+3,4n+4 = (K + 2J )Sx

4n+3Sx
4n+4 − J �S4n+3 · �S4n+4 − �

(
Sy

4n+3Sz
4n+4 + Sz

4n+3Sy
4n+4

)
,

H ′
4n+4,4n+5 = (K + 2J )Sy

4n+4Sy
4n+5 − J �S4n+4 · �S4n+5 − �

(
Sz

4n+4Sx
4n+5 + Sx

4n+4Sz
4n+5

)
. (A2)

APPENDIX B: EXPLICIT FORMS OF THE NONSYMMORPHIC BOSONIZATION FORMULAS

In the four-sublattice rotated frame, the explicit forms of the Abelian bosonization formulas in the Luttinger liquid phase in
Fig. 2 are given by

Sx
1+4n = aDJx + bDJy + hDJz − aCNx − bCNy − hCNz,

Sy
1+4n = bDJx + aDJy − hDJz − bCNx − aCNy + hCNz, (B1)

Sz
1+4n = cDJx − cDJy + iDJz − cCNx + cCNy − iCNz,

Sx
2+4n = aDJx − bDJy − hDJz + aCNx − bCNy − hCNz,

Sy
2+4n = −bDJx + aDJy − hDJz − bCNx + aCNy − hCNz, (B2)

Sz
2+4n = −cDJx − cDJy + iDJz − cCNx − cCNy + iCNz,

Sx
3+4n = aDJx + bDJy − hDJz − aCNx − bCNy + hCNz,

Sy
3+4n = bDJx + aDJy + hDJz − bCNx − aCNy − hCNz, (B3)

Sz
3+4n = −cDJx + cDJy + iDJz + cCNx − cCNy − iCNz,

Sx
4+4n = aDJx − bDJy + hDJz + aCNx − bCNy + hCNz,

Sy
4+4n = −bDJx + aDJy + hDJz − bCNx + aCNy + hCNz,

Sz
4+4n = cDJx + cDJy + iDJz + cCNx + cCNy + iCNz. (B4)

APPENDIX C: NON-ABELIAN BOSONIZATION OF 1D REPULSIVE HUBBARD MODEL AT HALF FILLING

Here we give a quick review of the non-Abelian bosonization method (for details, see Ref. [49]). The 1D spin-1/2 Dirac
fermion exhibits the phenomenon of spin-charge separation and can be decomposed into an SU(2)1 spin boson g and a U(1)
charge boson φ, where the actions in real time for the SU(2) matrix g and the real scalar φ are given by

Sg = 1

8π

∫
d2xTr(∂μg−1∂μg) + 1

12π

∫
d3xεμνλTr(g̃−1∂μg̃g̃−1∂ν g̃g̃−1∂λg̃),

Sφ = 1

2

∫
d2x∂μφ∂μφ, (C1)

in which g̃ is an extension of g from two-dimensional space-time to three-dimension, and the velocities in Sg and Sφ have been
absorbed into a redefinition of time. We note that because of the topological nature of the second term (i.e., WZW term) in Sg,
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the partition function does not depend on the way of extension. In terms of g and φ, the hopping term between the left and right
movers can be bosonized as follows:

cLc†
R = const.gei

√
2πφ, (C2)

where const. is a real constant. When a repulsive Hubbard interaction U > 0 is introduced, Sg and Sφ are changed into

S′
g = Sg + 2U

t

∫
d2x �JL · �JR,

S′
φ = 1

2

(
1 + U

2πt

) ∫
d2x∂μφ∂μφ − λφU

∫
d2x cos(

√
8πφ), (C3)

in which λφ > 0 is a constant, and the WZW current operators �JL and �JR are defined as

�JL = i

4π
Tr(∂+g · g−1 �σ ),

�JR = − i

4π
Tr(g−1∂−g�σ ), (C4)

where ∂± = ∂t ± ∂x. It can be shown that the spin sector remains gapless since �JL · �JR is marginally irrelevant. However, a gap
opens in the charge sector since the cos(

√
8πφ) term is relevant at low energies. The scaling of the charge gap can be solved as

mc ∼ e−U/(πt ).
The above analysis shows that in the weak-U limit, the low-energy physics of the 1D repulsive Hubbard model is described

by the SU(2)1 WZW theory. On the other hand, we know that according to the standard second-order perturbation, the large-U
limit reduces to the SU(2) AFM Heisenberg model. Since there is no phase transition between the weak-U and large-U limits,
the low-energy physics of the SU(2) AFM Heisenberg model is also described by the SU(2)1 WZW theory. This provides a
non-Abelian bosonization description for the low-energy physics of the AFM Heisenberg model in 1D.

APPENDIX D: EVALUATION OF FEYNMAN DIAGRAMS

1. Evaluation of diagram in Fig. 5

We need to express the interactions and the spin operators in the frequency and momentum space. The interaction term is∫
dτ

∑
n

Sα
i+4n(τ )Sβ

j+4n(τ ) = 1

Nβ

∫
dτ

∑
n

∑
k1,k2,k3,k4

c†(k1)
1

2
σαc(k2) · c†(k3)

1

2
σβc(k4)

× ei(ω1−ω2+ω3−ω4 )τ ei(�k1−�k2 )·(i+4n)ax̂ei(�k3−�k4 )·( j+4n)ax̂, (D1)

in which k = (iω, �k) where ω is Matsubara frequency and �k is the wave vector in space (we define the spatial wave vector as a
vector to distinguish it from the space-time combined index k, even though the system is 1D and �k is in essence a scalar), a is the
lattice spacing, N is the system size, β is the inverse of the temperature, n is summed over the unit cells, and x̂ is the unit vector
in the spatial direction. Using the identity

1

N

∑
n

ei(�k1−�k2+�k3−�k4 )·4nax̂ = 1

4

4∑
m=1

δ�k1−�k2+�k3−�k4,
π
2a mx̂, (D2)

Eq. (D1) can be written as

�

Nβ

1

4

∑
m

∑
k1,k2,k3,k4

ei(�k1−�k2 )·(i− j)ax̂e−i π
2 m jδk1−k2+k3−k4+ π

2a mx̂,0c†(k1)
1

2
σαc(k2) · c†(k3)

1

2
σβc(k4), (D3)

i.e.,

�

Nβ

1

4

∑
m

∑
kk′q

ei �q·(i− j)ax̂e−i π
2 m jc†(k + q)

1

2
σαc(k) · c†(k′ − q)

1

2
σβc

(
k′ + π

2a
mx̂

)
, (D4)

where

c†(k) = 1√
Nβ

∫
dτ

N∑
j=1

c†
j (τ )ei(ωτ−�k· jax̂). (D5)
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By defining the Fourier transform hα
l (q) as

hα
l (q) = 1√

Nβ

∫
dτ

N/4∑
n=1

hα
l (τ, n)ei(ωτ−�q·4nax̂), (D6)

the coupling to the magnetic field becomes∫
dτ

∑
n

hα
l (τ, n)Sα

l+4n(τ ) = 1

4

∑
kq

∑
m

ei �q·lax̂ei π
2 mlhα

l (−q)c†

(
k + π

2a
mx̂

)
1

2
σαc(k − q). (D7)

Notice that �q ∈ [0, π
2a ) in hα

l (q) since hα
l (n) is defined every four sites.

We set the momentum transfer �q′ in hα
l (q′) as | �q′| ∼ 0 (both Sα

u and Sα
s correspond to | �q′| ∼ 0, which is the reason why they

are not separated above the energy scale s). The expression corresponding to the diagram in Fig. 5 is given by

1

4Nβ

∑
m

e−i π
2 m j

∑
kpq

ei �q·(i− j)ax̂c†(k + q)
1

2
σμc(k) · 1

4

∑
k′q′m′

ei �q′ ·lax̂ei π
2 m′l hα

l (−q′)

×
〈
c†(p − q)

1

2
σ νc

(
p + π

2a
mx̂

)
c†

(
k′ + π

2a
m′x̂

)
1

2
σαc(k′ − q′)

〉
f

. (D8)

Since the free fermion propagator is diagonal in the frequency-momentum space, there are the following constraints (m̄ =
1, 2, 3, 4)

m′ = m + m̄, p = k′ + π

2a
m̄, q = q′ + π

2a
m̄. (D9)

Plugging Eq. (D9) into Eq. (D8) and rearranging the terms, we obtain the following alternative expression for Eq. (D8):

1

4

∑
m̄

ei π
2 m̄i

∑
kq′

ei �q′ ·iax̂hα
l (−q′)c†

(
k + q′ + π

2a
m̄x̂

)
1

2
σμc(k)e−i �q′ ·( j−l )ax̂

× 1

4Nβ

∑
m

∑
k′

e−i π
2 (m+m̄)( j−l )

〈
c†(k′ − q′)

1

2
σ νc(k′ + π

2a
(m + m̄)x̂)c†

(
k′ + π

2a
(m + m̄)x̂

)
1

2
σαc(k′ − q′)

〉
f

. (D10)

In Eq. (D10), the factor e−i �q′ ·( j−l )ax̂ can be set as 1 since �q′ is a slowly varying variable. In fact, if we expand the exponential
e−i �q′ ·( j−l )ax̂, | �q′|n becomes gradients in the real space, which renders the n 	= 0 terms less relevant than the leading n = 0 term in
the RG sense. This justifies in a more rigorous way why e−i �q′ ·( j−l )ax̂ can be taken as 1.

Then by using Eq. (D7), it can be checked that Eq. (D10) becomes

λ jlδνα� ln b ·
∫

dτ
∑

n

hμ

l (τ, n)Sμ

u,l (τ, n), (D11)

in which

λ jl� ln b = −a

8

∑
m

e−i π
2 m( j−l )

∫ /b

/b′
d2kG(k)G(k + π

2a
mx̂), (D12)

where G(k) is the free fermion Green’s function defined as

G(k) = 1

iω − ε(k)
. (D13)

In Eq. (D13), ε(k) is the free fermion dispersion which includes the chemical potential term.

2. Evaluation of diagram in Fig. 6

The expression corresponding to Fig. 6 is

1

16Nβ

∑
kpq

∑
m

∑
k′q′

∑
m′

e−i π
2 m jei π

2 m′l ei �q·(i− j)ax̂ei �q′ ·lax̂hα
l (−q′)

× c†(k + q)
1

2
σμ

〈
c(k)c†

(
k′ + π

2a
m′

)
1

2
σαc(k′ − q′)c†

(
p − q − π

2a
m

)〉
f

1

2
σ νc(p). (D14)
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Momentum conservation requires

k = k′ + π

2a
(m + m̄), q = p − k′ + q′ − π

2a
m, m′ = m + m̄. (D15)

Then it can be shown that Eq. (D14) becomes

1

16Nβ

∑
pq′

∑
m̄

ei π
2 m̄iei �p·(i− j)ax̂ei �q′ ·(i− j+l )ax̂hα

l (−q′)c†

(
p + q′ + π

2a
m̄

)
1

2
σμσασ νc(p)

×1

4

∑
k′

∑
m

e−i�k′ ·(i− j)ax̂ei π
2 (m+m̄)(l−i)2G(k′ + π

2a
(m + m̄)x̂)G(k′ − q′), (D16)

in which the factor of two before the Green’s function comes from the sum over the spin degree of freedom, and
∑

k′ is restricted
within the momentum shell, i.e., the fast modes. Notice that∫

dτ
∑

n

c†
i+4n

1

2
σρc j+4nhρ

i j (n) = 1

4Nβ

∑
pq′

∑
m̄

ei �p·(i− j)ax̂ei �q′ ·iax̂ei π
2 m̄ihi j (−q′)c†

(
p + q′ + π

2a
m̄

)
1

2
σρc(p). (D17)

Plugging Eq. (D17) into Eq. (D16) and neglecting the ei �q′ ·(− j+l )ax̂ factor in Eq. (D16) since �q′ is a very small wave vector, we
obtain

λil j� ln b
∫

dτ
∑

n

hμ·α·ν
i j Sμ·α·ν

l+4n (τ ), (D18)

where the coefficient λil j is

λil j� ln b = a

8

∑
m

ei π
2 m(l−i)

∫ 

/b
d2k′e−i�k′ ·(i− j)ax̂G(k′)G

(
k′ + π

2a
mx̂

)
. (D19)

Notice that shifting l by a multiple of 4 does not affect the result in Eq. (D19), hence we can impose the condition l � min{i, j}.
Apparently, Eq. (D19) is invariant under spatial translation (i, j, l → i + t, j + t, l + t) and inversion (i, j, l → −i,−l,− j), as
it must be.

APPENDIX E: EXPLICIT RG FLOW EQUATIONS

The explicit flow equations for hμ

l (1 � l � 4 and μ = x, y, z) are

dhx
1

d ln b
= hx

1 − (K + 2J )
∑

j

λ2 jh
x
j + �

∑
j

λ4 jh
z
j,

dhy
1

d ln b
= hy

1 − (K + 2J )
∑

j

λ4 jh
y
j − �

∑
j

λ2 jh
z
j,

dhz
1

d ln b
= hz

1 + �
∑

j

λ4 jh
x
j − �

∑
j

λ2 jh
y
j, (E1)

dhx
2

d ln b
= hx

2 − (K + 2J )
∑

j

λ1 jh
x
j − �

∑
j

λ3 jh
z
j,

dhy
2

d ln b
= hy

2 − (K + 2J )
∑

j

λ3 jh
y
j − �

∑
j

λ1 jh
z
j,

dhz
2

d ln b
= hz

2 − �
∑

j

λ3 jh
x
j − �

∑
j

λ1 jh
y
j, (E2)

dhx
3

d ln b
= hx

3 − (K + 2J )
∑

j

λ4 jh
x
j − �

∑
j

λ2 jh
z
j,

dhy
3

d ln b
= hy

3 − (K + 2J )
∑

j

λ2 jh
y
j + �

∑
j

λ4 jh
z
j,

dhz
3

d ln b
= hz

3 − �
∑

j

λ2 jh
x
j + �

∑
j

λ4 jh
y
j, (E3)
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dhx
4

d ln b
= hx

4 − (K + 2J )
∑

j

λ3 jh
x
j + �

∑
j

λ1 jh
z
j,

dhy
4

d ln b
= hy

4 − (K + 2J )
∑

j

λ1 jh
y
j + �

∑
j

λ3 jh
z
j,

dhz
4

d ln b
= hz

4 + �
∑

j

λ1 jh
x
j + �

∑
j

λ3 jh
y
j, (E4)

in which λ41 and λ14 should be understood as λ45 and λ54, respectively.

APPENDIX F: INVARIANCE OF RG FLOW EQUATIONS UNDER SYMMETRIES

Apparently, Eq. (38) does not respect the U(1) symmetry. We will verify that they are invariant under the nonsymmorphic
symmetries in Eq. (4).

(1) Equation (38) remains invariant under hμ

l → −hμ

l , hence time reversal symmetry is satisfied.
(2) Suppose we shift l to l + 1, and perform the rotation on spin indices by Rz = R(ẑ,−π

2 ), then Eq. (38) becomes

dhRzμ

l+1

d ln b
= hRzμ

l+1 −
∑
γ ,k

(K + 2J )
[
δl+1,iδRzμ,γ λ jkhγ

k + δl+1, jδRzμ,γ λikhγ

k

]

−
∑
γ ,k

ε(γ )
[
δl+1,iδRzμ,αλ jkhβ

k + δl+1, jδRzμ,βλikhα
k + δl+1,iδRzμ,βλ jkhα

k + δl+1, jδRzμ,αλikhβ

k

]
. (F1)

Define R′
z as R′

z(x, y, x̄, ȳ) = (y, x̄, ȳ, x). Then <i + 1, j + 1> = R′
zγ . Notice that Rzα 	= Rzβ 	= Rzγ if α 	= β 	= γ , and

ε(R′
zγ ) = (−)i−1ε(γ ) where γ =< i, j >. Then we can change the dummy variable from γ to R′

zγ and also from k to k + 1. As
a result, Eq. (F1) becomes

dhRzμ

l+1

d ln b
= hRzμ

l+1 −
∑
γ ,k

(K + 2J )
[
δl+1,i+1δRzμ,Rzγ λ j+1,k+1hRzγ

k+1 + δl+1, j+1δRzμ,Rzγ λi+1,k+1hRzγ

k+1

]

− (−)i−1
∑
γ ,k

ε(γ )
[
δl+1,i+1δRzμ,Rzαλ j+1,k+1hRzβ

k+1 + δl+1, j+1δRzμ,Rzβλi+1,k+1hRzα

k+1

+ δl+1,i+1δRzμ,Rzβλ j+1,k+1hRzα

k+1 + δl+1, j+1δRzμ,Rzαλi+1,k+1hRzβ

k+1

]
, (F2)

in which i, j, α, β have been changed to i + 1, j + 1, Rzα, Rzβ, respectively, in accordance with changing γ to Rzγ . Using
λ jk = λ j+1,k+1 and δμγ = δRzμ,Rzγ , we obtain

dhRzμ

l+1

d ln b
= hRzμ

l+1 −
∑
γ ,k

(K + 2J )
[
δliδμγ λ jkhRzγ

k+1 + δl jδμγ λikhRzγ

k+1

]

−
∑
γ ,k

(−)i−1ε(γ )
[
δliδμαλ jkhRzβ

k+1 + δl jδμβλikhRzα

k+1 + δliδμβλ jkhRzα

k+1 + δl jδμαλikhRzβ

k+1

]
. (F3)

Using the fact that the site index i in Eq. (F5) is the left point of the bond γ , we see that

(−)i−1 = (−)δα,x+δβ,x . (F4)

Hence, we note that the sign factor (−)i−1 in the second term in the right-hand side of Eq. (F5) can be replaced by either
(−)δμ,x+δβ,x (for the hRzβ

k+1 term), or (−)δμ,x+δα,x (for the hRzα

k+1 term), since in whichever case the sign factor is (−)δα,x+δβ,x because of

the Kronecker delta δμα (for the hRzβ

k+1 term), and δμβ (for the hRzα

k+1 term). Therefore Eq. (F5) can be rewritten as

dhRzμ

l+1

d ln b
= hRzμ

l+1 −
∑
γ ,k

(K + 2J )
[
δliδμγ λ jkhRzγ

k+1 + δl jδμγ λikhRzγ

k+1

] −
∑
γ ,k

ε(γ )
[
δliδμαλ jk (−)δμ,x+δβ,x hRzβ

k+1

+ δl jδμβλik (−)δμ,x+δα,x hRzα

k+1 + δliδμβλ jk (−)δμ,x+δα,x hRzα

k+1 + δl jδμαλik (−)δμ,x+δβ,x hRzβ

k+1

]
. (F5)

On the other hand, using Rz(Sx, Sy, Sz ) → (−Sy, Sx, Sz ), it can be seen that the invariance of the RG flow equations under the
symmetry operation RzTa exactly requires Eq. (F5). Hence we conclude that the flow equations have the symmetry imposed by
RzTa.
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(3) Suppose we perform an operation on hα
i (1 � i � 4, α = x, y, z) as

hα
i → h

Ryα

5−i , (F6)

in which Ry is R(ŷ, π ) for short. Then Eq. (38) becomes

dh
Ryμ

5−l

d ln b
= h

Ryμ

5−l −
∑
γ ,k

(K + 2J )
[
δ5−l,iδRyμ,γ λ jkh

Ryγ

k + δ5−l, jδRyμ,γ λikh
Ryγ

k

]

−
∑
γ ,k

ε(γ )
[
δ5−l,iδRyμ,αλ jkh

Ryβ

k + δ5−l, jδRyμ,βλikh
Ryα

k + δ5−l,iδRyμ,βλ jkh
Ryα

k + δ5−l, jδRyμ,αλikh
Ryβ

k

]
. (F7)

Define R′
y as R′

y(x, y, x̄, ȳ) = (x̄, y, x, ȳ). Then <5 − i, 5 − j> = R′
yγ . Notice that Ryα 	= Ryβ 	= Ryγ if α 	= β 	= γ , and

ε(R′
yγ ) = (−)iε(γ ) where γ =< i, j >. Then we can change the dummy variable from γ to R′

yγ and also from k to 5 − k.
As a result, Eq. (F7) becomes

dh
Ryμ

5−l

d ln b
= h

Ryμ

5−l −
∑
γ ,k

(K + 2J )
[
δ5−l,5−iδRyμ,Ryγ λ5− j,5−kh

Ryγ

5−k + δ5−l,5− jδRyμ,Ryγ λ5−i,5−kh
Ryγ

5−k

]

−
∑
γ ,k

(−)iε(γ )
[
δ5−l,5−iδRyμ,Rα

λ5− j,5−kh
Ryβ

5−k + δ5−l,5− jδRyμ,Ryβλ5−i,5−kh
Ryα

5−k

+ δ5−l,5−iδRyμ,Ryβλ5− j,5−kh
Ryα

5−k + δ5−l,5− jδRyμ,Ryαλ5−i,5−kh
Ryβ

5−k

]
, (F8)

in which i, j, α, β have been changed to 5 − j, 5 − i, Ryα, Ryβ, respectively, in accordance with changing γ to Rzγ . Using
λ jk = λ5− j,5−k and δμγ = δRyμ,Ryγ , we obtain

dh
Ryμ

5−l

d ln b
= h

Ryμ

5−l −
∑
γ ,k

(K + 2J )
[
δliδμγ λ jkh

Ryγ

5−k + δl jδμγ λikh
Ryγ

5−k

]

−
∑
γ ,k

(−)iε(γ )
[
δliδμαλ jkh

Ryβ

5−k + δl jδμβλikh
Ryα

5−k + δliδμβλ jkh
Ryα

5−k + δl jδμαλikh
Ryβ

5−k

]
. (F9)

Using the fact that the site index i in Eq. (F5) is the left point of the bond γ , we see that

(−)i = (−)δα,x+δα,z+δβ,x+δβ,z . (F10)

Hence, we note that the sign factor (−)i in the second term in the right-hand side of Eq. (F8) can be replaced by either
(−)δμ,x+δμ,z+δβ,x+δβ,z (for the h

Ryβ

k+1 term), or (−)δμ,x+δμ,z+δα,x+δα,z (for the h
Ryα

k+1 term), since in whichever case the sign factor is

(−)δα,x+δα,z+δβ,x+δβ,z because of the Kronecker delta δμα (for the h
Ryβ

k+1 term), and δμβ (for the h
Ryα

k+1 term).
On the other hand, using Ry(Sx, Sy, Sz ) → (−Sx, Sy,−Sz ), it can be seen that the invariance of the RG flow equations under

the symmetry operation RyI exactly requires Eq. (F9). Hence we conclude that the flow equations have the symmetry imposed
by RyI .

APPENDIX G: NUMERICAL DETERMINATION FOR THE SIGNS OF THE “D” COEFFICIENTS

In this Appendix, we study the signs of the five “D” coefficients. As in Sec. V D, we work in the four-sublattice rotated
frame and take the parameters as K + 2J = 1, J = −1, � = 0.35. DMRG numerical simulations are performed on a system of
L = 144 sites with periodic boundary conditions. The bond dimension m and truncation error ε in DMRG simulations are taken
as m = 1400 and ε = 10−9.

We add a small uniform magnetic field along the z direction as

−hz
0

∑
n

(
Sz

1+4n + Sz
2+4n + Sz

3+4n + Sz
4+4n

)
. (G1)

The low-energy Hamiltonian can be derived as −hz
0iD

∫
dxJz. Using the nonsymmorphic bosonization formulas, the spin

expectation values are expected to be

〈�S1+4n〉 = 〈Jz〉(hD,−hD, iD),

〈�S2+4n〉 = 〈Jz〉(−hD,−hD, iD),

〈�S3+4n〉 = 〈Jz〉(−hD, hD, iD),

〈�S4+4n〉 = 〈Jz〉(hD, hD, iD). (G2)
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Choosing hz
0 = 10−3, DMRG numerical simulations give

Sx � −1.004 ∗ 10−6 ∗ (+,−,−,+), (G3)

Sy � −1.004 ∗ 10−6 ∗ (−,−,+,+), (G4)

Sz � 5.25 ∗ 10−7 ∗ (+,+,+,+). (G5)

Comparing with Eq. (G2), we obtain

〈Jz〉hD = −1.004 × 10−6,

〈Jz〉iD = 5.25 × 10−7. (G6)

If we add the following mixture of the magnetic fields in the xy plane,

−hxy

[
aC

∑
n

(
Sy

1+4n + Sy
2+4n + Sy

3+4n + Sy
4+4n

) + bC

∑
n

(−Sx
1+4n + Sx

2+4n − Sx
3+4n + Sx

4+4n

)]
, (G7)

then the low-energy Hamiltonian is

−hxy(aCaD − bCbD)
∫

dxJy. (G8)

Using the nonsymmorphic bosonization formulas, the spin expectation values are expected to be

〈�S1+4n〉 = 〈Jy〉(bD, aD,−cD),

〈�S2+4n〉 = 〈Jy〉(−bD, aD,−cD),

〈�S3+4n〉 = 〈Jy〉(bD, aD, cD),

〈�S4+4n〉 = 〈Jy〉(−bD, aD, cD). (G9)

Choosing hxy = 10−3, DMRG numerical simulations give

Sx � −9.53 ∗ 10−5 ∗ (+,−,+,−), (G10)

Sy � 1.30 ∗ 10−6 ∗ (+,+,+,+), (G11)

Sz � −4.13 ∗ 10−6 ∗ (−,−,+,+). (G12)

From Eqs. (G6) and (G12), the ratios can be determined as

hD/iD = −1.91,

bD/aD = −73.3,

cD/aD = −3.18. (G13)

Notice that in contrast with Table I where iD and aD are the dominant coefficients (which is consistent with RG predictions), the
absolute values of the ratios in Eq. (G13) severely violate the relations in Eq. (65). The huge discrepancies in the “D” coefficients
when magnetic field responses are studied remain puzzling, and the reasons are unclear.
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