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Hidden magnetic order on a kagome lattice for KV3Sb5

V. Scagnoli ,1,2 D. D. Khalyavin,3 and S. W. Lovesey 3,4

1Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
2Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

3ISIS Facility, STFC, Didcot, Oxfordshire OX11 0QX, United Kingdom
4Diamond Light Source Ltd, Didcot, Oxfordshire OX11 0DE, United Kingdom

(Received 25 May 2022; revised 24 July 2022; accepted 25 July 2022; published 12 August 2022)

KV3Sb5 has recently attracted considerable attention due to its low-temperature superconducting properties,
which are heralded by a charge-density wave. The apparent presence of a very weak magnetism does not result
in long-range ordering. An explanation of the properties we present invokes higher-order terms in the vanadium
magnetization density and a “hidden order” of Dirac (polar) multipoles. The Dirac dipole, known as an anapole
or toroidal dipole, is one of a family of electronic multipoles visible in x-ray and magnetic neutron diffractions
while undetectable with standard laboratory-based techniques. Actually, two viable magnetic structures, direct
descendants of the established chemical structure, are studied with a view to testing their suitability in future
experiments. One model structure is magnetoelectric and restricted to the linear type, whereas a second model
cannot show a magnetoelectric effect of any type. The latter hosts a strange vanadium entity that is a true
scalar and magnetic (time-odd), and associated in our paper with a fictitious charge distribution that is purely
imaginary. Calculated x-ray and neutron-scattering amplitudes are symmetry-informed expressions of vanadium
Dirac multipoles. Bragg diffraction patterns for the two models are found to be distinctly different, fortunately.
Likewise, magnetochiral signals derived from our x-ray scattering amplitudes.
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I. INTRODUCTION

High-temperature superconductors are arguably among the
most studied systems in solid-state physics. Decades after
its first observation in a Ba-La-Cu-O system, there is still
no consensus on its microscopic origin [1–3]. One hoary
question is the relevance of orbital currents, once predicted
to be the origin of the hidden phase of high-temperature
cuprate superconductors as well as the origin of the quan-
tum anomalous Hall effect [4–6]. Such currents run through
the lattice breaking time-reversal symmetry, and there are
recent reports suggesting their presence in the kagome (tri-
hexagonal tiling) superconductors AV3Sb5 (A = K, Rb, and
Cs) [7]. This family of compounds, which crystallizes in
the hexagonal P6/mmm space group, has recently attracted
a significant attention due to anomalies observed in its mag-
netic and electrical properties. At around a temperature T ∗ ∼
100 K changes in the electrical resistivity and magnetic sus-
ceptibility are observed [8,9]. Such anomalies have been
associated with the development of a charge-density wave,
whose response under an applied magnetic field points to
the presence of chirality in the system [7]. This particular
scenario uses an amalgam of 3q (quadruple) instabilities on
a two-dimensional kagome lattice where it is energetically
favorable for electrons to organize into a pattern of high and
low concentrations (charge-density wave). Purely imaginary
hopping parameters between the three sublattices creates a
chiral flux ground state that responds to an applied magnetic
field. Additionally, AV3Sb5 becomes superconducting in the

0.9–2.5 K temperature region [8,10,11]. Understandably,
there are speculations on the exact nature of the electronic and
magnetic state of AV3Sb5 below the temperature T ∗ associ-
ated with the development of the charge-density wave.

No magnetic order and concomitant time-reversal symme-
try breaking has been revealed in KV3Sb5 to date. Powder
neutron diffraction measurements find no obvious evidence
of long-range or short-range magnetic ordering below 80
K [10]. In addition, Kenney et al., find no evidence from
muon spin rotation (μSR) and relaxation spectroscopy of a
local vanadium V4+ magnetic moment [12]. However, weak
internal magnetic fields are observed with zero-field μSR,
and the authors speculate that it is due to simultaneous time-
reversal and rotational symmetry breaking [13]. (Implanted
muons occupy a variety of sites in a sample, and the origin of
detected magnetic fields is speculation.) Here, we show that
these experimentally determined properties can be reconciled
in a magnetic structure not visible with standard experimen-
tal techniques. Notably, Bragg diffraction patterns gathered
with a polarized neutron beam, or x-rays tuned in energy
to a vanadium atomic resonance can validate our magnetic
models for KV3Sb5. (Neutron polarization analysis offers a
significantly higher sensitivity to magnetic scattering than the
standard powder diffraction technique.) Scattering amplitudes
for neutron and x-ray diffractions presented here have been
calculated with crystal and magnetic symmetry tools.

In more detail, we assign Dirac multipoles on vana-
dium ions to address the enigmatic magnetic properties of
KV3Sb5. They are polar (parity-odd) and magnetic (time-odd)
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FIG. 1. Depiction of a toroidal dipole also known as an anapole.

electronic multipoles. An intra-unit-cell loop current order
[13,16], likewise breaking both parity and time-reversal sym-
metries, is fundamentally different from one derived directly
from a symmetry-informed magnetic structure. For, the for-
mer type of order uses nebulous loop currents circulating
coherently between vanadium and ligand orbitals, whereas
our magnetic order is built with local vanadium electronic
multipoles with defined discrete symmetries decorating a
lattice. The proposed magnetic motifs are undistorted descen-
dants of the kagome chemical structure. Hosting a vanadium
entity, defined in Sec. III A, that is a true scalar and mag-
netic epitomizes an absence of current loops. Likewise in the
case of ceramic superconductor materials, where copper Dirac
multipoles furnish a good account of magnetism in the pseu-
dogap phase. The value of the successful analysis of a neutron
Bragg diffraction pattern from Hg1201 has been bolstered
by a microscopic account of the formation of the relevant
magnetic order parameter [14–16]. Specifically, anti-inversion
symmetry in Cu sites emerges from centrosymmetric sites
in the parent chemical structure. Moreover, the Dirac dipole
depicted in Fig. 1, also called an anapole or a toroidal dipole,
has been directly observed in both neutron and x-ray diffrac-
tions [17,18]. The work of Fernández-Rodríguez et al. [18]
is particularly relevant to our current story for they deployed
resonant x-ray diffraction to observe the vanadium anapole in
vanadium sesquioxide (V2O3).

II. SYMMETRY CONSIDERATIONS
AND MAGNETIC MOTIFS

First, the chemical structure of the kagome metal. It
incorporates a net of two regular tilings, one hexagonal
and one triangular, that accommodate V3Sb1 with vanadium
cations coordinated by octahedra of antinomy. Specifically,
KV3Sb5 is described by the centrosymmetric space-group
P6/mmm (No. 191) with cell dimensions a ≈ 5.483, c ≈
8.954 Å [10,13]. Ions occupy centrosymmetric sites, namely,
Sb1 1(a) D6h, Sb2 4(h) C3v , V 3( f ) D2h, and K 1(b) D6h. Vana-
dium ions originate the kagome network, whereas the Sb1 ions
fill the centers of the triangles. Also, V3Sb1 layers alternates
with Sb2 layers, resulting in a quasi-two-dimensional struc-
ture. Vectors describing the KV3Sb5 unit cell are a = (a, 0, 0),
b = (1/2) (–a, a

√
3, 0), and c = (0, 0, c) in an orthonormal

coordinate system.

Conventionally, the development of magnetic order leads
to a lowering of the symmetry in the sample and the magnetic
ordering pattern can be inferred by confronting experimental
patterns derived by neutron diffraction (and to a minor extend
also by x-ray magnetic diffraction) with a symmetry analysis
in which selected elements of crystal symmetry are assumed
to have disappeared. In the case of KV3Sb5, complete ab-
sence of conventional axial magnetic dipoles implies that
any other magnetism is not visible using many experimental
techniques—symmetry protects a magnetic order hidden from
view. Following the mentioned experimental reports, we pos-
tulate that a presence of anti-inversion (the union of spatial
and time reversals) forbids all axial magnetic moments in
KV3Sb5 (anti-inversion occurs in 21 out of the 122 magnetic
point groups). Our models of hidden magnetic order are de-
rived from the chemical structure with exclusive deployment
of vanadium Dirac multipoles. Actually, symmetry in the two
models of KV3Sb5 protects against axial magnetic dipoles
at all occupied sites, and, consequently, the models respond
like a nonmagnetic material in usual experimental investiga-
tions in a laboratory environment. Furthermore, by stipulating
structures harboring hidden order be direct descendants of the
chemical structure, we find there are just two candidates. By
not seeking alternative hidden-order structures we appeal to
Occam’s Razor.

Plausible magnetic motifs derived from the parent struc-
ture of KV3Sb5 include P6/m′mm and P6′/mmm′ (Nos.
191.235 and 191.237 BNS [19]) selected for study. Ions in
these two magnetic space groups do not possess conventional
magnetism with Sb1, V, and K ions in sites that include anti-
inversion (1′) and Sb2 occupies sites with polar symmetry that
prohibits axial dipoles. Spatial inversion is absent at all sites in
question. Magnetic crystal classes 6/m′mm and 6′/mmm′ are
centrosymmetric and not compatible with ferromagnetism.
Any kind of magnetoelectric (ME) effect is prohibited by
symmetry in 6′/mmm′. Likewise, a magnetochiral signal dis-
cussed in the Appendix. The magnetic motif P6′/mmm′ hosts
a new and novel entity that is a true scalar and time odd. We
can associate it with a purely imaginary charge density and a
fictitious electric field that satisfies Gauss’s law. A linear ME
effect (EH type) is allowed by 6/m′mm but nonlinear types
are not symmetry allowed, e.g., EHH and EEH are forbidden
where E (polar and time even) and H (axial and time odd)
are electric and magnetic fields, respectively. Also, the afore-
mentioned magnetochiral signal can be different from zero.
Crystal chirality does not exist in the two models of KV3Sb5.

For our atomic description of electronic properties, vana-
dium ions are assigned spherical multipoles 〈OK

Q〉 with
integer rank K and projections Q in the interval –K � Q �
K. Cartesian and spherical components of a dipole R =
(x, y, z), for example, are related by x = (R−1 − R+1)/

√
2,

y = i(R−1 + R+1)/
√

2, z = R0 [21]. A complex conjugate
is defined as 〈OK

Q〉∗ = (–1)Q〈OK
–Q〉, and a phase convention

〈OK
Q〉 = [〈OK

Q〉′ + i〈OK
Q〉′′] for real and imaginary parts labeled

by single and double primes, respectively. In which case, the
diagonal multipole 〈OK

0 〉 is purely real. Angular brackets 〈· · · 〉
denote the time average or expectation value of the enclosed
tensor operator, i.e., vanadium multipoles feature in the elec-
tronic ground state of KV3Sb5.
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To establish the experimental conditions required to val-
idate our predictions we present amplitudes or unit-cell
structure factors for resonant x-ray and magnetic neutron
diffraction derived from an electronic structure factor [21]. Its
generic form is identical for vanadium ions at Wyckoff posi-
tion 3( f ) in P6/m′mm and P6′/mmm′ as we see in Eq. (A2).
Different site symmetries alone account for differences in
diffraction amplitudes.

Our starting point is the selection of the most appro-
priate reference frame to describe the symmetry proper-
ties of the V ions. Reciprocal lattice vectors are found
to be a∗ = (ac/2)(

√
3, 1, 0) ∝ [2, 1, 0], b∗ = (ac)(0, 1, 0) ∝

[1, 2, 0], and c∗ = √
3(a2/2) (0, 0, 1) all in units of (2π )/vo

with a volume vo = √
3(a2c/2). Miller indices (h, k, l ) are

integers. Our local axes for vanadium ions labeled (ξ, η, ζ )
match orthogonal vectors a, b*, and c. Regarding site sym-
metries for vanadium ions, antidyad 2′

ξ and anti-inversion
elements occur in sites 3( f ) in the two candidate structures.
Additional elements 2′

η, 2ζ and 2η, 2′
ζ for P6/m′mm and

P6′/mmm′, respectively, complete lists of site symmetries. X-
ray and neutron-diffraction amplitudes for reflection vectors
(h, 0, 0) and (0, 0, l) are very different in the two candidates
as we will see.

III. RESONANT X-RAY DIFFRACTION

Valence states that accept the photoejected electron, a few
eV above the Fermi level, interact with neighboring ions. In
consequence, any corresponding electronic multipole is rota-
tionally anisotropic with a symmetry corresponding to the site
symmetry of the resonant ion. This anisotropy is most pro-
nounced in the direct vicinity of an absorption edge whereas
it is negligible far from the edges. Nonresonant ions can be ne-
glected in calculations of forbidden reflection structure factors
to a good approximation. There are many reported examples
of Bragg diffraction enhanced by absorption at the K edge of
a 3d transition ion. Results on haematite (Fe3+, 3d5) reported
by Finkelstein et al. [22] are thoroughly discussed by Carra
and Thole [23], whereas diffraction patterns gathered at a
later date revealed a chirality [24]. The time between the
publications saw reports of diffraction patterns enhanced by
nickel and vanadium K edges [18,25–27].

Absorption at the K edge and an electric dipole event (E1)
gives access to valence states with atomic p-like character,
and an electric quadrupole event (E2) at the same edge gives
access to d-like states (1s → 3d ). Bragg diffraction from
V2O3 enhanced by the pre-edge ≈5.464 keV (wavelength
λ ≈ 2.27 Å) feature of the vanadium K shell has been success-
fully analyzed using the electric dipole- electric quadrupole
(E1-E2) absorption event [18,28]. With an x-ray wave-
length λ ≈ 2.27 Å, Bragg angles in Fig. 2 are determined by
sin(θ ) = (hλ)/(a

√
3) ≈ (h 0.239) and sin(θ ) = (lλ)/(2c) ≈

(l 0.127) for reflection vectors (h, 0, 0) and (0, 0, l ), respec-
tively. The triangle rule says that multipoles possess ranks
K = 1–3 for this parity-odd event [21,29]. Dipoles (K = 1)
in the parity-even E1-E1 absorption event are magnetic, and
irrelevant to our study of KV3Sb5. First, parity-even (axial)
magnetic multipoles do not exist at sites that contain anti-
inversion, and such is the case for Sb1, V, and K ions. Second,
axial dipoles do not exist at sites 4(h) used by Sb2. How-

FIG. 2. Primary (σ, π ) and secondary (σ ′, π ′) states of polariza-
tion. Corresponding wave-vectors q and q’ subtend an angle 2θ . The
Bragg condition for diffraction is met when q − q′ coincides with
the reflection vector indexed (h, k, l ). Crystal vectors a, b∗, and c
that define (ξ, η, ζ ) and depicted Cartesian (x, y, z) coincide in the
nominal setting of the crystal.

ever, a parity-even quadrupole and octupoles (K = 3) with
projections Q = ± 3 are permitted by 4(h) symmetry. The Sb
multipoles would contribute to diffraction enhanced by a Sb
E1-E1 or E2-E2 absorption events, but it does not exist at
the vanadium K edge of interest here. To summarize, vana-
dium diffraction patterns presented below exist with broken
time-reversal symmetry, polar magnetism, and concomitant
vanadium Dirac multipoles. We focus on x-ray amplitudes
in which polarization is rotated, e.g., σ → π ′ in Fig. 2 for
Thomson scattering is absent in the rotated channel of polar-
ization. In the nominal setting of the crystal (ξ, η, ζ ) coincide
with (x, y, z) in Fig. 2, which depicts four states of x-ray
polarization.

A resonant atomic process may dominate all other con-
tributions to the x-ray scattering length should the photon
energy E match a resonance energy 	. Assuming virtual
intermediate states in the process are spherically symmet-
ric, to a good approximation, the x-ray scattering length ≈
{(μη)/(E − 	 + i
/2)} in the region of the resonance, where

 is the total width of the resonance [21]. The numerator
(μη) is an amplitude or unit-cell structure factor for Bragg
diffraction in the scattering channel with primary (secondary)
polarization η(μ). By convention, σ denotes polarization nor-
mal to the plane of scattering, and π denotes polarization
within the plane of scattering as in Fig. 2. The illuminated
crystal is rotated about the reflection vector in an azimuthal
angle scan. Intensity of a Bragg spot in the σ → π ′ channel
of polarization is proportional to |(π ′σ )|2 and likewise for
unrotated channels of polarization.

A signature of crystal chirality is the difference between
Bragg intensities measured with left- and right-handed pri-
mary x-rays, or x-rays with opposite helicities. A relevant
quantity ϒ depends on all four scattering amplitudes ϒ =
{(σ ′π )∗(σ ′σ ) + (π ′π )∗(πσ )′′}. Specifically, crystal chirality
means an intensity P2ϒ different from zero where the Stokes
parameter P2 (a purely real pseudoscalar) measures helicity in
the primary x-ray beam. Since intensity is a true scalar, ϒ and
P2 must possess identical discrete symmetries, specifically,
both scalars are time even and parity odd. The chiral signature
ϒ for vanadium ions is zero for all Bragg diffraction patterns
that we choose to discuss.

064419-3



SCAGNOLI, KHALYAVIN, AND LOVESEY PHYSICAL REVIEW B 106, 064419 (2022)

FIG. 3. Anapole motif in P6′/mmm′ (No. 1911. 237) viewed in
two perspectives. They are depicted in Fig. 1 and are represented
here by dark blue arrows. Two anapoles are normal to the crystal a
axis and parallel to hexagonal [1, 2, 0] ∝ b∗ in the bottom panel. Cell
vectors a and b subtend an angle 120◦ (Sec. II). Light blue and gray
spheres represent Sb and K ions, respectively.

In the following, we give explicit expressions for scattering
amplitudes for the two models: (A) P6′/mmm′ with any kind
of ME effect prohibited by symmetry in 6′/mmm′, and (B)
P6/m′mm with a linear ME effect permitted by 6/m′mm. All
reported x-ray scattering amplitudes are derived from univer-
sal expressions for diffraction by Dirac multipoles visible in
x-ray scattering enhanced by an E1-E2 absorption event [29].

A. P6′/mmm′ (nonmagnetoelectric)

In this model, sites 3( f ) used by V ions possess symmetry
mmm′. Projections Q on Dirac multipoles 〈GK

Q〉 are odd by
virtue of the antidyad 2′

ζ in the symmetry elements of the
point group, and, consequently, magnetic charge 〈G0〉 is not
allowed. In addition, symmetry 2′

ξ is satisfied by 〈GK
−Q〉 =

(–1)K+1 〈GK
Q〉 that leads to the identity 〈GK

Q〉∗ = (–1)K 〈GK
Q〉

for Q odd. Anapoles 〈G1〉 depicted in Fig. 3 are parallel to the
reciprocal vector b*, i.e., the local η axis.

Inspection of Fig. 3 reveals a strange entity at the midpoint
of each triangle with antimony ions displaced above and be-
low the plane of the triangle. The entity is a true scalar and
time odd. Whereas, a like entity created with axial dipoles is
a Dirac monopole that can be accommodated in Maxwell’s
equations of electrodynamics. We equate the entity with iρ,
where ρ is a purely real charge density. This line of argu-
ment uses the fact that time reversal includes the operation of
complex conjugation [30]. Upon associating ρ with charge a
conjugate (fictitious) field E satisfies div E = ρ (Gauss’s law),

and its magnitude as a function of distance obeys an inverse
square law.

Evaluated for (0, 0, l), the unit-cell structure factor
Eq. (A2) is proportional to [1 + 2cos(2πQ/3)] that is zero
for projections Q = ± 1. Projections Q = ± 3 are allowed,
however, and can only belong to an octupole accessed in the
E1-E2 absorption event (K = 3). Amplitudes of diffraction in
rotated channels of polarization (π ′σ ) and (σ ′π ), and a Bragg
spot (0, 0, l ) are as follows:

(π ′, σ ) = −(σ ′π ) = 3 sin(2θ )sin(3ψ )
〈
G3

+3

〉′′
, (0, 0, l ).

(1)
Here, θ is the Bragg angle depicted in Fig. 2, and ψ is the
angle of rotation of the crystal around the reflection vector
(0, 0, l). At the azimuthal origin ψ = 0 the crystal a axis is
normal to the plane of scattering in Fig. 2. Notable features of
amplitudes in Eq. (1) include a threefold periodicity in ψ from
the tertiary axis of rotation symmetry, sole dependence on a
lone octupole, and handedness observed in the sign difference
between (π ′σ ) and (σ ′π ). Amplitudes in unrotated channels
of polarization are significantly different with respect to ψ .
For example,

(σ ′σ ) = −(3/2)cos(θ )[19 cos(3ψ ) + cos(ψ )]
〈
G3

+3

〉′′
,

(0, 0, l ). (2)

Amplitudes (σ ′σ ) and (π ′σ ) have opposite trends with respect
to increasing l and are even and odd functions of ψ , respec-
tively.

Amplitudes (σ ′σ ) and (π ′π ) for a reflection vector (h, 0, 0)
are zero. Amplitudes (π ′σ ) and (σ ′π ) can be nonzero, how-
ever, and they are different for h odd and h even. First, h even
amplitudes depend on the octupole visible in (0, 0, l) Bragg
spots, namely,

(π ′σ ) = (σ ′π ) = −3 cos2(θ )sin(2ψ )
〈
G3

+3

〉′′
, (2n, 0, 0).

(3)
The crystal c axis is normal to the plane of scattering for ψ

= 0. Amplitudes for h odd engage another three multipoles
yet possess the dependence on θ and ψ displayed in Eq. (3).
Additional multipoles are 〈G2

+1〉′, 〈G3
+1〉′′, and 〈G3

+3〉′′.

B. P6/m′mm (magnetoelectric)

Sites 3( f ) occupied by V ions possess symmetry m′mm.
Projections on Dirac multipoles 〈GK

Q〉 are even by virtue of
the dyad 2ζ , meaning Q = 0, ± 2 for an E1-E2 absorption
event with K = 1, 2, 3. The anapole 〈G1

0〉 is parallel to the
hexagonal axis c, and the ferromotif is depicted in Fig. 4.
Results 〈GK

−Q〉 = (–1)K+1 〈GK
Q〉 and 〈GK

Q〉∗ = –(–1)K 〈GK
Q〉

follow from the symmetry element 2′
ξ . Like the non-ME motif,

magnetic charge 〈G0〉 is prohibited. All P6/m′mm scatter-
ing amplitudes are zero for Bragg spots (0, 0, l), however,
whereas like spots offer a direct test on the existence of 〈G3

+3〉′′
in the other candidate structure.

Turning to (h, 0, 0) and h even,

(π ′σ ) = −(σ ′π )

= sin(2θ )cos(ψ )
{√

6
〈
G1

0

〉 − [5 cos(2ψ ) − 3]
〈
G3

0

〉}
,

(2n, 0, 0). (4)
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FIG. 4. Ferromotif of anapoles in P6/m′mm (No. 191.235). Cell
vectors a and b subtend an angle 120◦ (Sec. II). Light blue and gray
spheres represent antimony and potassium ions, respectively.

Notably, only diagonal multipoles (Q = 0) contribute, includ-
ing the anapole parallel to the crystal c axis. With regard
to a dependence on the azimuthal angle, cos(ψ) identifies
[〈G1

0〉 + √
(3/2)〈G3

0〉] and cos(ψ )cos(2ψ ) identifies 〈G3
0〉, i.e.,

the two contributing multipoles can be separated in an analysis
of experimental data. Similar results are obtained for unro-
tated amplitudes, e.g.,

(σ ′σ ) = −2 cos(θ )sin(ψ )
{√

6
〈
G1

0

〉 + [5 cos(2ψ ) + 3]
〈
G3

0

〉}
,

(2n, 0, 0). (5)

There are an additional two multipoles in amplitudes with h
odd. Specifically,

(π ′σ ) = − (σ ′π ) = (2/3)
√

(5/3) sin(2θ ) cos(ψ )

× {−√
(3/20)

[√
6
〈
G1

0

〉 − (5 cos(2ψ ) − 3)
〈
G3

0

〉]

− 4
〈
G2

+2

〉′′ + √
2(3 cos(2ψ ) − 1)

〈
G3

+2

〉′}
,

(2n + 1, 0, 0). (6)

The (σ ′σ ) amplitude is composed of the same multipoles, and
cos(θ ) sin(ψ) multiplies and even function of ψ . Thus, for
h = 2n + 1, amplitudes (σ ′σ ) and (π ′σ ) are odd and even
functions of ψ , respectively.

IV. MAGNETIC NEUTRON DIFFRACTION

A magnetic scattering amplitude 〈Q⊥〉 generates an in-
tensity |〈Q⊥〉|2 of unpolarized neutrons. Dirac multipoles
contribute to scattering, and each one is accompanied by an
atomic form factor that depends on the magnitude of the
reflection vector and the electronic configuration [31].

Polarization analysis measures the magnetic content of a
Bragg spot with overlapping nuclear and magnetic ampli-
tudes, which occurs when the magnetic motif and chemical
structure coincide [16,20]. Primary and secondary polariza-
tions are denoted P and P′, and a fraction (1 − P · P′)/2
of neutrons participate in events that change (flip) the neu-
tron spin orientation. For a collinear magnetic motif one
finds (1 − P · P′)/2 ∝ {(1/2)(1 + P2)|〈Q⊥〉|2 − |P · 〈Q⊥〉|2}.

A quantity called spin flip,

(SF) = {|〈Q⊥〉|2 − |P · 〈Q⊥〉|2} (7)

obtained with P2 = 1 is a standard measure of the strength of
magnetic scattering [16].

A Dirac dipole 〈D〉 in neutron diffraction is the sum of
three contributions that include expectation values of spin and
orbital anapoles. Electronic spin, orbital angular momentum,
and position operators are S, L and R, respectively. Operators
for the three contributions to D are a spin anapole (S ×
R), orbital anapole � = [L×R − R×L], and (iR). Specif-
ically, 〈D〉 = (1/2)[3(h1)〈(S×R)〉 − ( j0)〈�〉 + (g1)〈(iR)〉].
Form factors (h1), ( j0) and (g1) have been calculated for
several atomic configurations [32,33]. In what follows, we
retain 〈D〉 and a quadrupole 〈H2〉 that possess the largest
atomic form factors. A quadrupole of this type is a product of
(h1) and a correlation function 〈{S ⊗ R}2〉 written in terms of
a standard tensor product of two dipoles [31]. Notably, 〈H2〉 ∝
[(h1)〈{S ⊗ R}2〉] accounts for magnetic neutron diffraction by
the pseudogap phase of ceramic superconductors [20].

A. P6′/mmm′ (nonmagnetoelectric)

The motif of anapoles is depicted in Fig. 3. No diffraction
takes place with anapoles and quadrupoles at Bragg spots
indexed by (0, 0, l ). Likewise, for (h, 0, 0) with h = 2n. Am-
plitudes for (h, 0, 0) with Miller index h odd are 〈Q⊥ξ 〉 ≈ 0,
〈Q⊥η〉 ≈ 0, and,

〈Q⊥ζ 〉 ≈ i
[−〈Dη〉 + (3/

√
5)

〈
H2

+1

〉′]
, (2n + 1, 0, 0). (8)

The dipole contribution is parallel to the reciprocal vector b*.
From Eqs. (7) and (8), (SF) = 0 for polarization P parallel to
the crystal c axis, whereas (SF) = |〈Q⊥〉|2 for P in the basal
plane.

B. P6/m′mm (magnetoelectric)

As with the motif depicted in Fig. 3, there is no diffraction
at Bragg spots indexed by (0, 0, l) in the ferro-type motif de-
picted in Fig. 4. However, diffraction at Bragg spots (h, 0, 0)
occurs at both h even and h odd. One finds, 〈Q⊥ξ 〉 ≈ 0,
〈Q⊥ζ 〉 ≈ 0 and

〈Q⊥η〉 ≈ i
[〈Dζ 〉 − (3/

√
5)

〈
H2

+2

〉′′]
, (2n + 1, 0, 0) (9)

for h odd. The quadrupole in Eq. (9) is absent for h = 2n.
Evidently, (SF) = |〈Q⊥〉|2 for P parallel to either [2, 1, 0] or
[0, 0, 1] crystal axes, whereas (SF) = 0 for P parallel to the
crystal b* axis.

V. CONCLUSIONS

In summary, we have studied two models of a magnetic
material on a kagome lattice with a view to interpreting
enigmatic properties of KV3Sb5 at a low temperature. Their
distinguishing features are a complete absence of conven-
tional (axial, parity-even) magnetic dipoles, and a lattice
structure that is a direct descendent of the kagome chemical
structure. The latter feature is self-evident in the specifi-
cation of the models by magnetic space groups P6′/mmm′
and P6/m′mm derived from the kagome structure P6/mmm.
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Anapole motifs are shown in Figs. 3 and 4. Magnetic prop-
erties of the models chime with the absence in KV3Sb5 of
magnetic long-range order and, also, a vanadium magnetic
moment in available measurements [10,12].

Symmetry in the form of anti-inversion, the union of space
and time inversions, prohibits all axial vanadium magnetic
multipoles. Magnetism exists in the form of vanadium Dirac
multipoles that are magnetic and polar. A vivid portrayal of
the unconventional nature of the magnetism is the existence
of a magnetic true scalar in one model (P6′/mmm′, Sec. III A
and Fig. 3). The strange entity formed with anapoles has not
been identified in the past to the best of our knowledge. It is
associated with a charge distribution that is purely imaginary.
Notably, a like entity formed with axial dipoles is the familiar
Dirac monopole that finds a place in Maxwell’s equations of
electrodynamics [34]. Dirac multipoles deflect neutrons and
x rays so future Bragg diffraction experiments using these
radiations can inform us whether the models we have studied
are noteworthy. To this end, scattering amplitudes for neu-
tron diffraction and x-ray diffraction with signal enhancement
by a vanadium atomic resonance are reported. Resonant x-
ray Bragg diffraction by vanadium Dirac dipoles, also called
anapoles (Fig. 1), has previously been identified in the diffrac-
tion pattern of V2O3 [18]. In addition, there is direct evidence
of neutron scattering by anapoles [17].

Our two models possess different megnetoelectric (ME)
properties. Any type of ME effect is prohibited in P6′/mmm′,
whereas a linear ME effect is permitted in P6/m′mm. Vana-
dium magnetic monopoles (Dirac scalars) are forbidden in
both models. Anapoles are aligned with b* (c) in P6′/mmm′
(P6/m′mm), where the reciprocal lattice vector b* is or-
thogonal to lattice vectors a and c in Figs. 3 and 4. As an
example of how neutron Bragg diffraction can be used to
differentiate between the two models, we mention the spin-
flip signal reported in Sec. IV. In brief, the signal is zero
for neutron polarization parallel to the crystal b* (c) axis
for P6/m′mm (P6′/mmm′). Regarding resonant x-ray diffrac-
tion with signal enhancement by an electric dipole - electric
quadrupole (E1-E2) event at the vanadium K edge, Bragg
spots are allowed for a reflection vector parallel to the c axis
in P6′/mmm′, whereas no such Bragg spots are allowed in
P6/m′mm. Section III includes scattering amplitudes for a
reflection vector on the basal plane. As for bulk responses,
natural circular dichroism is forbidden in both models. A
magnetochiral signal is permitted for P6/m′mm but not for
P6′/mmm′.

Sites 4(h) used by Sb2 in our models do not contain
anti-inversion or inversion symmetries. In the absence of anti-
inversion conventional magnetism (parity σπ = + 1) is not
forbidden, unlike all other sites in our two models of KV3Sb5,
and might arise from backelectron transfer. For completeness,
we survey the multipoles 〈OK

Q〉 of rank K allowed by site
symmetries. For sites 4(h) they are 3ζ , mξ = I2ξ and 〈OK

Q〉 =
(–1)Qexp(–iπQ/3)[mξ 〈OK

Q〉] leading to projections Q = 3n

and 〈OK
Q〉 = σπ (−1)K+Q〈OK

Q〉∗. Orthogonal crystal vectors a,
b∗, and c define (ξ, η, ζ ). Allowed parity-even magnetism
includes multipoles 〈T 2

0 〉 and 〈T 3
+3〉′, and associated magnetic

fields might be sensed in zero-field μSR. Both multipoles
contribute to neutron scattering, whereas just 〈T 3

+3〉′ can be
seen in a parity-even absorption event, namely, E2-E2. Dirac
multipoles permitted in neutron scattering and an E1-E2 ab-
sorption event include an anapole 〈G1

0〉 and octupoles 〈G3
0〉,

and 〈G3
+3〉′′.

Anti-inversion symmetry at sites used by vanadium ions
is the key component of our filter of magnetic models that
descend from the kagome lattice. Absence by symmetry of
axial magnetic dipoles at all sites used by the three elements
in KV3Sb5 is a further requirement. The second component
eliminates P6′/mm′m (No. 191.236 [19]) and P6/m′m′m′ (No.
191.241) as acceptable models because magnetic dipoles are
permitted at sites 4(h). According to conventional displays of
magnetic space groups our two magnetic models of KV3Sb5

are actually classified as nonmagnetic.

APPENDIX

An electronic structure factor,

�K
Q = [

exp(iκ · d)
〈
OK

Q

〉
d

]
, (A1)

where the reflection vector κ is defined by Miller indices (h, k,
l), and the implied sum is over three vanadium ions in sites d,
3( f ). For candidates P6/m′mm and P6′/mmm′ (Nos. 191.235
and 191.237 [19]),

�K
Q (3 f ) = 〈

OK
Q
〉[

(−1)h + (−1)h+kγQ
∗ + (−1)kγQ

]
,

(A2)

with γQ = exp(i2πQ/3) and reference site (1/2, 0, 0) for
〈OK

Q〉. Our two candidates differ with respect to site symme-
tries that delineate properties of 〈OK

Q〉, namely, mmm′ (No.
191.237) or m′mm (No. 191.235).

Natural circular dichroism is forbidden by anti-inversion
in the symmetry of sites occupied by vanadium ions. Other
bulk properties are described by Eq. (A2) evaluated for the
forward direction of scattering. Miller indices are zero, and
�K

Q (3 f ) = 〈OK
Q〉 [1 + 2cos(2πQ/3)] = 3 〈OK

Q〉 for Q = 3n
and zero otherwise. With an E1-E2 absorption event and the
x-ray beam parallel to the crystal c axis the magnetochiral
signal is proportional to [〈G1

0〉 − √
(2/3)〈G3

0〉], which is per-
mitted for P6/m′mm but not for P6′/mmm′ [21,35].

Scattering amplitudes in Refs. [29,31] used here are func-
tions of two quantities, one even and one odd with respect to
the sign of Q. For neutron scattering AK

Q ± BK
Q = �K

±Q [31].
In the case of x-ray diffraction, it is necessary to align the
reflection vector κ with the –x axis depicted in Fig. 2. For
reflections (h, 0, 0), the result is AK

Q ± BK
Q = exp(±iQα) �K

±Q
with angle α = –30◦. The corresponding result for a reflection
vector (0, 0, l) is more complicated, and it can be found in
Eq. (104) in Ref. [21].
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