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Chirality-dependent spin-transfer torque and current-induced spin rotation in helimagnets
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We have built a theory of the spin-transfer torque (STT) effect in a conductive chiral helical magnet (CHM).
It is shown that the STT effect induced by a spin current flowing through CHM leads to the rotation of
the CHM magnetization spiral around its axis. The frequency of such rotation of the CHM magnetization is
found. The former is expressed in terms of the parameters of the quantum-exchange Hamiltonian that specifies
helical magnetic ordering in a conductive crystal. We have showcased that both the direction of rotation of the
CHM magnetization and the direction of changes in the shape of the magnetic spiral are determined by the
electron flow direction and the chirality of the magnet. The theory developed accounts for the generation of
an electromagnetic field when rotating the magnetic spiral in the CHM subjected to an electric current flowing
through the helimagnet.
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I. INTRODUCTION

Spin-transport phenomena in conductive solids are today
the subject of numerous research activities in spintronics.
The theory of the magnetic dynamics of conductive chiral
helimagnets (CHMs) under conditions of electric and spin
currents flowing through them underlies the subject of this
paper.

This paper aims to find the conditions under which the
magnetic system of the conductive CHM, termed “helicoid”
hereafter for brevity, rotates as a whole when direct elec-
tric current and related spin-moment flux pass through the
helimagnet. To date in the literature, there are quite a few
publications on the motion of a magnetic subsystem of con-
ductive ferromagnetic materials under an electric current.
Slonczewski [1] and Berger [2–4] were the first to initiate
such investigations. When a spin-polarized electric current
flows through the material, a spin moment of moving electrons
is transferred to the magnetically ordered system of the mate-
rial. This happens due to the exchange interaction between
the traveling electrons and electrons localized at the crystal
lattice sites, and due to the fulfillment of the conservation law
for spin. As a consequence, a torque acting on the ferromagnet
magnetization emerges. Such a process is called “spin-transfer
torque” (STT). STT induced by the electric current can lead
to the motion of domain walls, magnetization reversal of mag-
netic systems, generation of spin waves, and other fascinating
effects.

In Refs. [5–9], an experiment was conducted on a system
consisting of a fixed ferromagnetic layer, a nonmagnetic layer,
and a free ferromagnetic layer. Its essence lies in the follow-
ing: an electric current flowing through the first layer becomes
spin polarized and can induce stationary precessional mo-
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tion of the magnetization of the free ferromagnetic layer.
Such a system, which gained the name of the spin-torque
nano-oscillator, can be used as a generator of high-frequency
electromagnetic waves ranging from GHz to THz. The gen-
eration of electromagnetic radiation due to the STT effect is
possible not only in multilayer spintronic devices, but also
in bulk magnets, for example, in ferromagnets possessing
regions with an inhomogeneous distribution of magnetization
[10]. It was demonstrated in Ref. [11] that when exposed to
a spin-polarized current, the domain walls (DW) of a ferro-
magnet cause a change in the orientation of the conduction
electron spins. In response to this action, the electrons create
an equal but counterdirectional torque acting on DW. As a
result, rotation and/or linear DW motion can occur.

In recent years, some papers have reported on the possible
manipulation of the magnetization of helimagnets through
the STT effect. The publications of Refs. [12–15] research
the influence of an electric current on the magnetization
motion of CHMs using numerical simulation of the solution
to the Landau-Lifshitz-Gilbert (LLG) equation supplemented
by phenomenological “adiabatic” and “nonadiabatic” terms
describing the STT effect. When the current passes through
CHMs, the spin spiral was found to shift as a whole, which
is equivalent to the harmonic rotation of the spiral around
its axis. It is shown that the helicoid displacement velocity is
linearly dependent on the applied electric current. In this case,
a transition arises from spin ordering of the “simple helix”
type to “conical helix” ordering, with the angle of deviation
from the simple helix increasing, as the current goes up. The
paper of Ref. [16] explores the dynamics of a spiral spin-
density wave in an easy-plane anisotropy CHM affected by an
electric current, having combined calculations from first prin-
ciples and the semiclassical linear response theory. Similarly
to phenomenological calculations, it was found that the torque
driven by the current causes the rotation of the spin spiral
as a whole. In the most recent years, experimentally induced
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electric current motion of a spin spiral has been discovered
and reflected in Refs. [17,18].

The aim of the present paper is to build a consistent the-
ory of the STT effect in chiral conductive helimagnets. Its
results should be (i) analytical formulas relating the frequency
of the current-induced rotation of the magnetic spiral of a
helimagnet and the characteristics of quantum-exchange inter-
actions responsible for the formation of helimagnetic ordering
in crystals; (ii) explicit expressions describing a change in
the characteristics of a spin spiral due to a flowing current,
including the conicity angle of the spiral and its spatial period.

Here, we consider the phenomena of spin-transfer torque
in chiral helimagnets. In doing so, we take into account the
essential circumstance that the motion of conduction elec-
trons in an inhomogeneously magnetized system as a chiral
helimagnet occurs in a substantially inhomogeneous magnetic
field of the quantum-exchange origin. This leads to additional
forces assigned by the gradients of exchange-field compo-
nents, which act on the electron spin. As a consequence, they
can noticeably affect the picture of the motion of the spin
carriers. The existence of such effects was first demonstrated
in the famous experiments of Stern-Gerlach [19]. In Ref. [20],
the authors of the present paper showcased that the existence
of the above-mentioned forces give rise to an augment in elec-
trical resistance of chiral helimagnets. The paper of Ref. [21]
describes the electrical magnetochiral and kinetic magneto-
electric effects induced by chiral exchange fields in CHMs.
To analyze the influence of the STT effect on the dynamics of
chiral magnetization in CHMs, we further exploit the quantum
theory for spin transport of conduction electrons, developed in
Refs. [20,21]. The equations of motion for the magnetization
of conduction electrons, formulated in Refs. [20,21], will be
supplemented by both equations describing the motion of the
magnetization of localized electrons and Maxwell’s equations
describing the electromagnetic field generated by the rotating
magnetization.

II. BASIC EQUATIONS

To outline the spin dynamics of helimagnets, we resort
to the well-known model that offers the existence of “itin-
erant” and “localized” carriers of electric charge and spin in
a conductive magnetically ordered crystal. Conduction elec-
trons populating the overlapping exterior s shells of the atoms
(further called s electrons) are as a rule responsible for the
transport properties of conductive magnets. Localized elec-
trons residing in the inner d(or f ) shells of the crystal atoms
and therefore called d electrons govern magnetic ordering in
a crystal.

It is well known that the helical magnetic order in a system
of localized electrons of inversion-center-free crystals can be
described accounting for the direct Heisenberg exchange in-
teraction and the Dzyaloshinskii-Moriya interaction between
localized electrons, as well as magnetocrystalline anisotropy.
Spin interactions in the system of localized electrons can be
effectively covered in the language of spin operators. Let us
introduce the spin operator Ŝn for the electrons localized at
crystal lattice sites with numbers n. We designate the spin
operator for the itinerant electrons as a lowercase letter ŝ. For
illustrating the interaction between the itinerant and localized

electrons, we apply the well-known s-d exchange model. The
spin Hamiltonian of the system subjected to the external field
B can be written in the form

Ĥ = − (1/2)

{∑
n,m

InmŜn · Ŝm +
∑
n,m

Dnm · [Ŝn × Ŝm]

− K
∑

n

(
Ŝn · ez

)2
}

+ gμB

(∑
n

Ŝn +
∑

i

ŝi

)
· B

−
∑
i,n

I (ri − rn)ŝi · Ŝn. (1)

Here, Inm are the values of the Heisenberg exchange inter-
action of spins localized at crystal lattice sites with numbers
n and m, vector quantities Dnm characterize the anisotropic
Dzyaloshinskii-Moriya interaction between spins Ŝn and Ŝm,
I (ri − rn) is the integral of the s-d exchange interaction of
a conduction electron with a coordinate ri and electrons lo-
calized at a lattice site rn, K is the single-ion anisotropy
constant, g is the g factor of the electron, and μB is the Bohr
magneton, ez is the unit vector pointing along the preferred
direction in a magnetically uniaxial crystal, which in this
study was assumed to be aligned with the axis OZ .

Let us go over from the quantum-mechanical description
of the system in the language of spin operators Ŝn to the
classical one by formally replacing the spin operators in the
Hamiltonian Ĥ by the classical vectors Sn =
−(V/gμB)M(rn), where M(rn) is the magnetization of
localized electrons at the lattice sites rn, V is the volume of
the Wigner-Seitz cell of a crystal. The magnetization M(r) is
assumed to be a continuously varying quantity in coordinate
space. Consequently, from Eq. (1) we arrive at the following
representation for the magnetic energy density of the crystal
in terms of the magnetizations M(r) and m(r) for localized
electrons and conduction electrons, respectively:

F = − (1/2){CM2 + M · ∇ · ↔
A · ∇M−2M · [

↔
D · ∇ × M]

− B(M · ez )2} − (M + m) · B − �M · m. (2)

Here, C = (V/g2μ2
B)

∑
m I0m,

↔
A = (V/2g2μ2

B)
∑

m

I0mδrm0 ⊗ δrm0,
↔

D = (V/2g2μ2
B)

∑
m D0m ⊗ δrm0, B =

(V/g2μ2
B)K, and � = (1/g2μ2

B)
∫

I (r)d3r.
The sign ⊗ is used here to denote the tensor product

of vectors, so that the quantities
↔

A and
↔

D in Eq. (2) are
the second-rank tensors. Restricting ourselves to considering

crystals of cubic symmetry, we represent the tensors
↔

A and
↔

D in the form
↔

A = A
↔

E and
↔

D = D
↔

E, where A and D are
constants, and

↔
E is the unit second-rank tensor. The quantity

A is referred to as “exchange stiffness,” while the special term
“spiralization” can be utilized for verbal identification of the
quantity D.

Calculating the free energy F = ∫
Fd3r of the crystal fol-

lowed by the variational derivatives of F over the variables m
and M, we find the effective magnetic fields B(eff )

m = −δF/δm
and B(eff )

M = −δF/δM acting on the magnetization m and M:

B(eff )
m = B + �M, (3)

B(eff )
M = B + A�M − B(M · ez )ez + CM − 2D[∇ × M]

+ �m. (4)

064417-2



CHIRALITY-DEPENDENT SPIN-TRANSFER TORQUE AND … PHYSICAL REVIEW B 106, 064417 (2022)

The dynamics of the magnetization m can be interpreted
by the Bloch-Torrey equation to take into account the spin-
diffusion currents carried by conduction electrons:

∂m/∂t + γ
[
m × B(eff )

m

] + ∇ · ↔
J m + δm/τS = 0. (5)

The second term on the left-hand side of Eq. (5) describes
the precessional motion in the effective magnetic field B(eff )

m .
The third term that underlies changes in m under spin currents
contains a quantity

↔
J m. The latter is the spin-current tensor of

the itinerant electrons. The rigorous derivation of the equation
of motion for the spin-current tensor

↔
J m has been published

elsewhere [20,21]. The tensor
↔
J m can be written as

↔
J m = −D∇ ⊗ δm + w ⊗ m. (6)

The first term on the right-hand side of Eq. (6) describes the
diffusion spin current arising in the inhomogeneously magne-
tized system of conduction electrons. Here, D is the electron
diffusion coefficient, and δm ≡ m − χB(eff )

m is the deviation
of the electron magnetization m from its local equilibrium
value χB(eff )

m , where the quantity χ is the Pauli susceptibility
of a conduction electron gas. The second summand on the
right-hand side of Eq. (6) is responsible for the spatial transfer
of the spin moment by a flow of electrons moving with a drift
velocity w. The latter regulates the value of the density of
the electric current j passing through the system: j = New.
Here, N is the carrier concentration and e is the charge of an
electron. Expression (6) for the spin-electron current is valid
when the cyclotron frequency and the Larmor frequency of
conduction electrons are negligibly small compared to 1/τ ,
where τ is the momentum relaxation time of electrons.

The last term on the left-hand side of Eq. (5) operates the
spin-lattice relaxation of the magnetization m to its local-
equilibrium value χB(eff )

m and includes the quantity τS being
the spin-lattice relaxation time of the itinerant electrons.

To gain an insight into the dynamics of magnetization M,
we utilize the LLG equation:

∂M/∂t + γ
[
M × B(eff )

M

] + (α/M )[∂M/∂t × M] = 0, (7)

where γ is the gyromagnetic ratio, α is the Gilbert damping
constant, M = |M|. The use of the LLG equation ensures that
the length M of magnetization vector M will be uncondition-
ally conserved.

Plugging all the terms of expression (4) for the effective
magnetic field B(eff )

M into the LLG Eq. (7), we can write the
equation in the following form:

∂M/∂t + γ [M × (B + BB)] + ∇ · ↔
J M

+ (α/M )[∂M/∂t × M] + T = 0. (8)

The second term γ [M × (B + BB)] on the left-hand side
of Eq. (8) is obtained as a result of substitution of the first
three summands from expression (4) for B(eff )

M into Eq. (7).
It describes the precession of the magnetization M under the
field B and the uniaxial anisotropy field BB = B(M · ez )ez.

The third term ∇ · ↔
J M on the left-hand side of Eq. (8)

is derived after substitution of fourth and fifth terms from
expression (4) into Eq. (7). Using easily proven relations of
tensor algebra, such as [M × �M] = −∇ · [(∇ ⊗ M) × M]
and [M × [∇ × M]] = −∇ · M ⊗ M, we have come up with

∇ · ↔
J M, where we have introduced the exchange spin-current

tensor
↔
J M = −γ A[(∇ ⊗ M) × M] + 2γ DM ⊗ M. (9)

It should be separately emphasized that the exchange spin
current

↔
J M introduced above appears in the system of local-

ized electrons solely due to their mutual exchange interactions
rather than due to the “transport” spin transfer in coordinate
space, as in the case of the spin current

↔
J m in the system of

noninteracting conduction electrons.
The last term T on the left-hand side of Eq. (8) is a result of

substitution of the sixth term from expression (4) into Eq. (7).
It is dictated by the equation

T = γ�[M × m], (10)

and reflects the STT effect between the systems of itinerant
and localized electrons. The vector T has the meaning of a
torque acting on the magnetization M of the localized elec-
trons from the conduction electrons with the magnetization
m.

Since the change in time and space of the total magne-
tization M + m of the system generates an inhomogeneous
alternating electromagnetic field, in the general case, the set
of coupled equations of motion (5) and (8) should be solved
jointly with Maxwell’s equations for the strengths of the mag-
netic H and electric E fields:

[∇ × H] = (4π/c)j + (1/c)∂E/∂t,

[∇ × E] = −(1/c)∂B/∂t . (11)

Knowing the strength of the H = B − 4π (M + m) and E
fields, we can evaluate the Umov-Poynting vector:

U = (c/4π )[E × H]. (12)

This vector defines the energy flux density vector of the
electromagnetic field excited in the helimagnet when the in-
homogeneous magnetization varies with time.

III. EQUILIBRIUM STATE OF A HELIMAGNET

Let us look into the case when a constant external magnetic
field B� is directed along the OZ axis.

In the absence of an electric current, the M and m magne-
tizations in the equilibrium state are time independent and are
functions of only the z coordinate. Equilibrium magnetization
of the itinerant electrons is equal to m0 = χ (B� + �M0). An
equilibrium distribution M0(z) is defined as an extremal of the
energy functional F to meet the condition |M0(z)| = M and
to provide the minimum value of the functional F . To find the
extremes of the functional F with the additional requirement
M2 − M2 = 0, the set of Euler-Poisson equations needs to be
solved.

It can be shown that the solution to the Euler-Poisson
equation that includes an energy density (2) is a magnetic
helicoid, M(z) = M� + Mt (z). The longitudinal (with re-
spect to the OZ axis) magnetization component M� of this
helicoid is z-coordinate independent. The transverse compo-
nent Mt alters harmoniously abiding by the law Mt (z) =
Mt (ex cos qzz + ey sin qzz) with growth of z. In this case,
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FIG. 1. Scheme of the spatial configuration of a simple magnetic
spiral of a helimagnet with a chirality vector k in the absence of a
magnetic field: (a) a right-handed spiral, chirality is K = +1; (b) a
left-handed spiral. Chirality is K = −1.

the length Mt of the vector Mt (z) is conserved, and its di-
rection changes in space with a period 2π/q, where q = |q|
is the wave number of the helicoid with the wave vector
q = [Mt × ∂Mt/∂z]/M2

t , and qz = q · ez. It is convenient to
write down the value of the z component of the wave vector q
as qz = Kq, where K is the spin spiral chirality that takes the
values of K = ±1. Hereinafter in this paper, we exploit the
unit chirality vector k = q/q = Kez to characterize the chiral
helicoid, apart from the scalar quantity K .

When the wave number and the chirality are q = q0 ≡
|D|/A and K = sgnD, respectively, the value of the magnetic
spiral energy in equilibrium is minimum. For equilibrium, we
get a relationship between M0� and B� as

M0� = 1 + χ�

B + D2/A
B�. (13)

In the absence of a magnetic field, a magnetic structure of
the “simple spiral” type emerges. Only the transverse com-
ponents of the magnetization Mt are nonzero in this structure.
Scheme of the magnetic structure of a simple spiral is depicted
in Fig. 1.

By applying external magnetic field along the axis of
magnetic spiral, one can transform the latter into a magnetic
structure of the “conical spiral” type. In such a magnetic struc-
ture, both the transverse components of the magnetization Mt

and the longitudinal component of the magnetization M� are
nonzero. Let us introduce the angle θ of the magnetic spiral
conicity to characterize the deviation of the vector M from the
XY plane through the ratio sin θ = (M� · ez )/M. Then, for the
equilibrium helicoid, we can claim that sin θ0 = Bz/BF , where
Bz = B · ez, and BF = M(B + D2

/A)/(1 + χ�). In equilib-
rium, the anisotropy type chosen above assigns no direction
of the transverse magnetization. Upon reaching the value BF ,
the magnetic field B makes the conical spiral undergo a phase

transition to the “ferromagnetic” state with |M�| = M and
Mt (z) = 0. The characteristic conical spiral configuration of
magnetic moments is illustrated in Fig. 2.

IV. MAGNETIC DYNAMICS OF A HELIMAGNET

Let us explore the dynamics of the M and m magnetiza-
tions of a helimagnet under a constant electric density current
j� flowing along the magnetic spiral axis. We can show that a
set of coupled equations for M, m, and B has a solution that
describes the harmonic rotation of the magnetic spiral around
its axis with a j�-dependent frequency ω. The solutions for
M, m, and B should be sought under the assumption that
the lengths of the vectors Mt , mt , and Bt are coordinates-
and time independent, whereas their directions obey the law
∼ [ex cos(qzz−ωt ) + ey sin(qzz−ωt )].

When solving the Maxwell equations (11), we suppose a
relationship between the density of the current j and the elec-
tric field E through Ohm’s law j = σE, where σ is the specific
electrical conductivity of the magnet. From Eqs. (11) it fol-
lows that the transverse components of the magnetic induction
B and the total magnetization M = M + m of the helimagnet
are related by the equation Bt = η||Mt + η⊥[ez × Mt ]. Ne-
glecting the bias currents, we can express the quantities η||
and η⊥ as η|| = 4π/(1 + ξ 2) and η⊥ = 4πξ/(1 + ξ 2), respec-
tively, where ξ = ω/�σ , �σ = q2c2/4πσ . Next, we assume
that ω << �σ in the entire range of frequencies studied.
Then, ξ << 1, η|| ≈ 4π , and η⊥ ≈ 4πξ .

Solving the set of Eqs. (5)–(10) can be significantly fa-
cilitated by applying a small parameter χ called the Pauli
susceptibility that is smaller than unity by several orders
of magnitude. Estimates of χ for some specific metallic
helimagnets will be given below in Sec. VI. Taking into
account the discussed parameter ranges, it is estimated that
χ ∼ 10−7–10−6.

The magnitude of the s-d exchange interaction is character-
ized by a dimensionless parameter �. For typical conductive
magnets, the value of � is much greater than unity. Below, in
Sec. VI we will present estimates of � for some metallic heli-
magnets. Considering the discussed parameter values, one can
expect that � ∼ 103–104. Taking into account the discussed
χ and � parameter ranges, it is estimated that the product
of the small χ 	 1 and large � >> 1 parameters is small in
comparison with unity: χ� << 1.

The smallness of the parameters χ , �−1, χ�, and ξ brings
Eq. (5) to the following set of equations for δmt and δm�:

(ω − q · w + �z + �H sin θ )[δmt × ez] + (νS + νD)δmt

+ γ�[δm� × Mt ] = χ (q · w − ω)[(Bt + �Mt ) × ez],
(14)

νSδm� + γ [δmt × (Bt + �Mt )] = 0. (15)

Equation (14) includes the following designations: �z =
γ Bz is the frequency of precession in the field Bz, �H = γ�M
is the frequency of precession in the exchange field �M, νS =
1/τS is the spin-lattice relaxation rate, νD = q2D is the spin-
diffusion relaxation rate. The rates νS and νD have the units of
frequency. The solution to the set of equations (14) and (15)
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FIG. 2. Stable conical magnetic spiral formed in a helimagnet subjected to an external magnetic field, the direction of which is given by
the unit vector b = B�/|B�|: (a) right-handed spiral, b is parallel to k; (b) right-handed spiral, b is antiparallel to k; (c) left-handed spiral, b is
antiparallel to k; and (d) left-handed spiral, b is parallel to k.

can be represented as

δm� = −(γ /νS )χ⊥(Bt + �Mt )
2ez,

δmt = χ ||(Bt + �Mt ) + χ⊥[(Bt + �Mt ) × ez], (16)

where the χ⊥ and χ || components of the tensor of the trans-
verse magnetic permeability are defined as

χ⊥ = χ (q · w − ω)/ν, (17)

χ || = χ (q · w − ω)(ω + �z+�H sin θ−q · w)/ν(νS + νD),
(18)

where ν = νS + νD + (�2
H/νS ) cos2θ + (ω + �z + �H ×

sin θ − q · w)2/(νS + νD).
Plugging the expressions derived for δmt and δm� into

Eq. (10) for T, from the LLG Eq. (8) we obtain a closed
set of equations for the longitudinal M� and transverse Mt

components of the magnetization M. The condition for the
existence of the solution as a helical wave with a wave vector
q under the assumptions made above about the smallness of
the χ� and ξ parameters can be written in the form of a set of
two coupled equations:

(α + �M /�σ )ω − χ⊥��H = 0, (19)

ω + �z − � sin θ = 0. (20)

Here, �M = 4πγ M, �F = γ BF , � = �F +
�M[1 − (1/4π )A(q − q0)2].

The wave number q is computed from the condition of the
minimum magnetic energy F . If the exchange stiffness A is
sufficiently large, so that the condition Aq2

0 > 1 holds, then q
acquires the form of q = q0(1 + 16πξ 2/Aq2

0 ). It is easy to see
that the wavelength of the rotating helicoid is always some-
what less than that of a stationary magnetic spiral. By virtue
of the fulfillment of the condition ξ << 1, the deviation of q

from the equilibrium value q0 is small and can be neglected
further on, with q = q0 and � = �F + �M .

Next, we assume that the magnitude of the drift velocity
w of conduction electrons is small in comparison with the
magnitude of qD. The condition w/qD << 1 allows one to
omit the term q · w when calculating the value of ν. Using
Eq. (20), we can now represent the effective spin-relaxation
rate ν for conduction electrons in CHM as

ν = νS + νD + (
�2

H

/
νS

)
cos2θ

+ [
(� + �H )2

/
(νS + νD)

]
sin2θ, (21)

where the angle θ that defines the magnetic spiral conicity is
equal to

θ = arcsin [(ω + �z )/�]. (22)

Substituting the expression (17) for χ⊥ into Eq. (19), we
come up with an implicit expression for the frequency ω:

ω = �

αeff + �
(q · w), (23)

where � = χ��H/ν is a dimensionless quantity characteriz-
ing the efficiency of the SST process in the helimagnet, and
αeff = α + β, where β = �M/�σ is the parameter of damp-
ing of magnetic oscillations, caused by losses upon switching
on the electromagnetic field.

It is explicitly seen from Eq. (23) that the linear motion
of the conduction electrons moving in space with the drift
velocity w transforms into the rotational motion of the heli-
magnet magnetic spiral with the frequency ω.

It should be especially underscored that Eq. (23) also re-
flects the opposite effect: the rotation of the magnetic spiral
of a helimagnet, caused by an external electromagnetic field
with a frequency ω, can be converted into a constant electric
current of conduction electrons with a drift velocity w. This
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FIG. 3. Scheme of configurations of a conical magnetic spiral of a helimagnet with chirality k, rotating under the action of an electron flow,
the direction of which is given by a unit vector i, in the absence of a magnetic field: (a) right-handed spiral, i is parallel to k; (b) right-handed
spiral, i is antiparallel to k; (c) left-handed spiral, i is antiparallel to k; and (d) left-handed spiral, i is parallel to k.

inverse effect can be described by the equation

w =
(

1 + αeff

�

)ω

q
k. (24)

It can be shown that the magnitude of the Umov-Poynting
vector given by Eq. (12) within the approximations adopted
previously can be represented as

U ≈ 4π
w3M2

c2

(
�

αeff + �

)3

cos2θ. (25)

Regardless of the magnet chirality, the radiation propaga-
tion direction coinciding with the direction of the Poynting
vector is always parallel to the vector i denoting the drift
direction of the conduction electrons.

It is obvious that Eq. (20) implies the validity of the
result (23) conditional upon the inequality |ω + �z| � � is
fulfilled. Here, the frequency �z can take on both positive and
negative values, depending on the direction of the constant
magnetic field B�. Let, for definiteness, the B� and ez vectors
be antiparallel, then �z = −�L, where �L � 0 is the Larmor
frequency. Hence, the condition of applicability of Eq. (23)
can be written as −� + �L � ω � � + �L. If the B� and
ez vectors are parallel, the foregoing condition appears as
−� − �L � ω � � − �L because �z = +�L. Thus, a direct
electric current flowing in the helimagnet can induce the he-
limagnet’s magnetic spiral rotation with a maximum possible
frequency ωmax = � + �L.

V. MAGNETIC SPIRAL DYNAMICS WITHOUT AN
EXTERNAL MAGNETIC FIELD

In the absence of external magnetic field �L = 0 and
Eq. (23) holds true over the frequency range −� � ω � �. In
this case, the maximum possible value of the helicoid rotation
frequency is determined by the value of � = �F + �M . From
Eqs. (22) and (23) it follows that an electric current flowing

along the axis of the magnetic spiral leads not only to its
rotation but also to a change in its shape. When an external
magnetic field is zero, the angle of conicity of the spiral
rotated with a frequency ω, according to (22), is defined by
the equation

θ = arcsin
ω

�
. (26)

It clearly follows from Eq. (23) that due to the motion
of electrons with a drift velocity w, the sign of the helicoid
rotation frequency is provided by the sign of the scalar prod-
uct (k · i). Here, k = q/q is the unit vector of chirality, and
i = w/w is the unit vector that is directed along the motion of
the itinerant electron flow. Figure 3 schematically depicts the
dependence of the directions of the CHM magnetization spiral
rotation and the spiral conicity on the mutual orientation of the
chirality k and flow i vectors with no external magnetic field
present.

Due to the fact that the ω-dependent angle θ [according
to (26)] essentially affects the quantity ν determined by ex-
pression (21), relation (23) is an equation for finding ω as a
function of the independent variable w. Accordingly, relation
(24) is an equation for finding w as a function of the indepen-
dent variable ω. Below, we will carry out a detailed analysis
of the singularities of the solutions of these equations. For
definiteness, consider the case when the i and k vectors are
codirectional.

Let us introduce dimensionless parameters ν̄S = νS/�H ,
ν̄D = νD/�H , and a = αeff/χ�, as well as dimensionless
variables w̄ = wq/�, ω̄ = ω/�, and ν̄ = ν/�H . In the new
notations, Eq. (23) appears as

w̄ = (1 + aν̄)ω̄. (27)

In this equation, the variable w̄ is assigned in the semiaxis
w̄ � 0, whereas the values of ω̄ are limited and lie in the range
of 0 � ω̄ � 1.
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Accounting for expression (21) for ν and relation (26), the
quantity ν̄ = ν/�H involved in Eq. (27) can be represented as

ν̄ = ν̄0 + (ν̄1 − ν̄0)ω̄2, (28)

where ν̄0 = ν̄S + ν̄D + 1/ν̄S and ν̄1 = ν̄S + ν̄D +
(1 + �/�H )2/(ν̄S + ν̄D). According to (28), the quantity
ν̄ can be treated as a function of ω̄. With varying ω̄ from 0 to
1, the function ν̄(ω̄) changes from ν̄0 to ν̄1.

Substituting (28) into (27), we arrive at the following equa-
tion for finding ω̄ as a function of w̄:

w̄ = {1 + a[ν̄0 + (ν̄1 − ν̄0)ω̄2]}ω̄. (29)

It is easy to see that Eq. (29) gives an explicit form of the
function w̄(ω̄) that is inverse with respect to the sought-for
function ω̄(w̄). When ω̄ reaches the value ω̄ = 1, the variable
w̄ according to (29) takes the value w̄1 = 1 + aν̄1. Depending
on the ratio of the parameters ν̄0 and ν̄1, the function w̄(ω̄) can
behave along two fundamentally different scenarios.

Scenario I is implemented when the condition w̄′
ω̄(ω̄ =

1) > 0 is met. Here, w̄′
ω̄(ω̄) is the derivative of the function

w̄(ω̄) over the variable ω̄. Under this condition, the function
w̄(ω̄) is a monotonically increasing one for the entire range
0 � ω̄ � 1. Taking into account the explicit form of w̄(ω̄)
(29), the condition for the implementation of scenario I can
be written as

a(2ν̄0 − 3ν̄1) < 1. (30)

When condition (30) is satisfied, the desired function ω̄(w̄)
is a monotonically increasing function of w̄ defined in the
interval 0 � w̄ � w̄1. It possesses the values ω̄(0) = 0 and
ω̄(w̄1) = 1 at the boundaries of the interval. For w̄ > w̄1,
Eq. (29) has no solution in the range of admissible values of
the function ω̄(w̄).

Scenario II is brought about when the condition w̄′
ω̄(ω̄ =

1) < 0 holds. In this case, the function w̄(ω̄) changes non-
monotonically with growth of ω̄, reaching its maximum value
w̄2 at a certain value of ω̄ = ω̄2. The value ω̄2 can be deduced
from the equation w̄′

ω̄(ω̄2) = 0. The explicit form of w̄(ω̄)
(29) makes it possible for the solution of this equation to be
written explicitly:

ω̄2 =
[

1 + aν̄0

3a(ν̄0 − ν̄1)

]1/2

. (31)

Accordingly, for the value w̄2, we get

w̄2 = 2
3 (1 + aν̄0)ω̄2. (32)

It is worth emphasizing that the condition for the validity
of formulas (31) and (32) is the inequality

a(2ν̄0 − 3ν̄1) > 1. (33)

In accordance with the foregoing, when condition (33)
is satisfied, the function ω̄(w̄) is multivalued and has two
branches. The first branch ω̄(1)(w̄) exists in the region of
0 � w̄ � w̄2. When changing w̄ from 0 to w̄2, the func-
tion ω̄(1)(w̄) increases monotonically from ω̄(1)(0) = 0 to
ω̄(1)(w̄2) = ω̄2. The second branch ω̄(2)(w̄) is defined in
the region of w̄1 � w̄ � w̄2. With the growth of w̄ from
w̄1 to w̄2, the function ω̄(2)(w̄) monotonically decays from
ω̄(2)(w̄1) = 1 to ω̄(2)(w̄2) = ω̄2. In the region of w̄1 � w̄ �

FIG. 4. Parameter space plot showing the boundary between two
regions corresponding to scenarios I and II, for the case a >> 1.
Region I is in green, and region II is in yellow. The red curve
stands for the function ν̄

(−)
D (ν̄S ) and the blue curve represents the

function ν̄
(+)
D (ν̄S ).

w̄2 both branches coexist, closing at w̄ = w̄2. At the junction
of two branches, we have ω̄ = ω̄2. If aν̄0 >> 1 and ν̄0 >> ν̄1,
then ω̄2 ≈ √

3/3. The angle θ2 = arcsin(
√

3/3) ≈ 35◦ corre-
sponds to that frequency of rotation of the spiral. For w̄ > w̄2,
Eq. (29) has no solutions in the region of acceptable values of
the function ω̄(w̄).

For exploring the implementation of scenario II, let us
represent the formal condition (33) in terms of the parameters
ν̄S and ν̄D instead of the parameters ν̄0 and ν̄1. The inequality
�/�H << 1 is assumed to be fulfilled for the helimagnets
described. This allows one to put the parameter ν̄1 in the
form ν̄1 = ν̄S + ν̄D + 1/(ν̄S + ν̄D). Then, it can be shown that
for the condition (33) to be satisfied, it is necessary that the
following set of inequalities hold:

ν̄S <
1√

3 + 1/2a
, (34)

ν̄
(−)
D < ν̄D < ν̄

(+)
D , (35)

where

ν̄
(±)
D = 1/ν̄S − 1/2a ±

√
(1/ν̄S − 1/2a)2 − 3 − ν̄S. (36)

According to (34), in order to implement scenario II, the
parameter ν̄S should be sufficiently small. For the values of
ν̄S << 1, the condition (35) at a � 1 takes a simple form:
ν̄S/2 < ν̄D < 2/ν̄S .

Figure 4 displays a diagram of regions for the parameters
ν̄S and ν̄D to implement conditions for scenarios I and II to be
fulfilled.

A separate discussion is required for the question of the
conditions for achieving the maximum possible rotation fre-
quency of the magnetic spiral of the helimagnet, ω = �.

When the condition (30) is satisfied, this can be realized
by gradually increasing the current passing through the he-
limagnet. The growth of the electron drift velocity and an
appropriate increase in w̄ from 0 to w̄1 are responsible for
a monotonous increase in the spiral rotation frequency ω from
0 to �. In other words, the fulfillment of the condition (30)
makes it possible to achieve the limiting rotation frequency
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� by gradually increasing the current flowing through the
helimagnet.

When the condition (33) is satisfied, a simple pattern of
the monotonic increase in ω̄, as w̄ rises, remains only in the
range of 0 � w̄ � w̄1, where the mode ω̄(1)(w̄) is excited.
Upon reaching w̄ the value w̄1, the frequency of this mode
amounts to the value ω̄(1)(w̄1) that is undoubtedly less than
unity. Upon exceeding w̄ the value w̄1, a situation takes place
when the magnetic spiral can simultaneously be in two states
with different rotational frequencies ω̄(1)(w̄) and ω̄(2)(w̄) at
the identical value of w̄. Such a situation can be observed
in the range w̄1 � w̄ � w̄2. This phenomenon can be called
current-induced spin rotation bistability of helimagnets.

The developed theory cannot predict which of these two
excited states of the helimagnet’s magnetic system rotating
under action of electric current will be realized in the ex-
periment. It can be assumed that current-density fluctuations
existing in a real helimagnet, spatial inhomogeneities param-
eters of electron momentum and spin relaxation, and other
random causes will lead to chaotic-in-time transitions be-
tween states with rotation frequencies ω̄(1)(w̄) and ω̄(2)(w̄).
Such a “chaotic” regime does not enable the helimagnet’s
magnetic system to rotate stably with the maximum possi-
ble frequency ω = �. The bistability described above can
also trigger hysteresis-type phenomena, as the magnitude of
the electric current flowing through the helimagnet changes
cyclically.

Whether the condition (30) is fulfilled or not, for the range
w̄ << 1, using Eq. (29), we come up with its unique solution
in the form

ω̄ = 1

1 + a(ν̄S + ν̄D + 1/ν̄S )
w̄. (37)

According to (37), the change in ω̄ with growth of w̄ is
determined by three independent parameters a, ν̄S , and ν̄D.
Let the values of the parameters a and ν̄D be assigned. Then,
we can treat Eq. (37) as an equation of a one-parameter
family of functions ω̄ = ω̄(w̄, ν̄S ). A unified characteristic
of the entire one-parameter family of the functions ω̄(w̄, ν̄S )
is the discriminant curve ω̄d (w̄). In turn, the latter is a re-
sult of jointly solving the equations ω̄ − ω̄(w̄, ν̄S ) = 0 and
∂ω̄(w̄, ν̄S )/∂ν̄S = 0. The second equation has the solution
ν̄S = 1, and, consequently, the discriminant of Eq. (37) is
written as

ω̄d = 1

1 + a(2 + ν̄D)
w̄. (38)

It is easy to see that the discriminant (38) yields the highest
possible value of the function (37) for an arbitrary value of
the parameter ν̄S . In other words, the rotation frequency of the
magnetic spiral of the helimagnet with arbitrary values of the
parameters ν̄S , ν̄D, and a cannot exceed the value derived from
formula (38).

To estimate the rotation frequency of a spin spiral in real
helimagnets, as well as to verify approximations made on
the pages of this paper, we need detailed information on
the numerical values of all the parameters involved in the
theory.

VI. NUMERICAL CALCULATIONS AND ESTIMATES

The theory we have built is directly and fully applicable
to conductive helimagnets whose magnetic order obeys the
Dzyaloshinskii-Moriya interaction. In the scientific literature
for designating such helimagnets, the term “chiral helimag-
nets” and the appropriate abbreviation CHM are used [22].
As examples of such CHMs, we consider helimagnets FeGe,
MnSi, and CrNb3S6. Characteristics of the Dzyaloshinskii-
Moriya interaction determine the magnitude of parameters q0

and BF for CHM. Apart from CHM, there are magnets in
which helimagnetism arises due to the exchange interaction,
if exchange interaction between the nearest neighbors is pos-
itive while the exchange interaction between the next-nearest
neighbors is negative. Among them are rare-earth metals Dy,
Tb, Ho, Er, and Tm. Here, we consider Dy as an example.
To describe helimagnets mentioned above, we resort to the
findings secured for CHM provided that the characteristics q0

and BF as phenomenological parameters will be taken from
experiment.

To numerically estimate the desired parameters, we ex-
ploit experimentally observed characteristics of FeGe, MnSi,
CrNb3S6, and Dy helimagnets, contained in Table I. Refer-
ences to the sources of the given data are enclosed by square
brackets.

The second column of the table includes data on the con-
centration N of conduction electrons in a helimagnetic crystal.
The third column holds the values of the specific electrical
resistivity ρ for the helimagnets. The fourth column contains
data on the unit-cell volume V of the helimagnetic crystals.
The fifth column lists the experimental values of the wave
number q0 of the magnetic spiral of the helimagnets. The sixth
column shows the values of the magnetic field strength HF

directed along the axis of the magnetic spiral, upon reaching
which the helimagnets pass into a ferromagnetic state. In the
seventh column, one can find the values of the helimagnets’
magnetization MF at the point of the above transition. The
eighth column gives the values of the Gilbert damping con-
stant α.

The values of the characteristics of each helimagnet being
temperature dependent, the values of ρ, q0, MF , and HF for
all the helimagnets at hand correspond to those near the lowest
temperature at which helimagnetism exists in them. In partic-
ular, the values of these quantities in the FeGe helimagnet are
given for a temperature of 5 K, in MnSi—for a temperature of
4.2 K, in CrNb3S6—for a temperature of 2 K, and in Dy—for
a temperature of 93.3 K.

We were unable to find any publication mentioning direct
measurements of HF for dysprosium. Therefore, the value
of HF for Dy specified in Table I is a result of the linear
extrapolation of the data on the isothermal magnetization of
Dy into the regions of strong magnetic fields [41].

Table I provides information on the value of the Gilbert
damping constant α only for FeGe, for which α = 0.01.
For the other helimagnets described, no direct data could be
found. For the Fe0.8Co0.2Si helimagnet, according to the data
of Ref. [42], the magnitude of α amounts to 0.4 ± 0.1. For
numerical estimates of α, we will use values from the interval
α � 1.
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TABLE I. Experimental data on the characteristics of FeGe, MnSi, CrNb3S6, and Dy metallic helimagnets.

Helimagnet N ρ V q0 HF MF α

(1/cm3) (μ� cm) (Å3) (cm–1) (Oe) (erg/G cm3)

FeGe 2.4 × 1022 14 103.8 9.1 × 105 5.0 × 103 282 1 × 10−2

[23] [24] [25] [26] [24] [24] [27]
MnSi 6.3 × 1022 2 94.8 3.4 × 106 6.2 × 103 157

[28] [29] [30] [31] [32] [32]
CrNb3S6 0.9 × 1021 60 398.3 1.3 × 106 2.0 × 104 147

[33] [34] [34] [35] [36] [36]
Dy 4.7 × 1022 38 72.9 1.7 × 107 2.8 × 105 2568

[37] [38] [39] [40] [41] [41]

The values of the electron concentration N given in Table I
make it possible to quantify the characteristics of the system
of conduction electrons. Let the electron gas be degenerate.
For estimates in order of magnitude, we assume that the elec-
tron dispersion law is isotropic and quadratic, the effective
mass of electrons is equal to the mass me of a free electron,
and the value of the g factor is equal to 2. This simplest
model suggests the Fermi energy of the gas of free electrons
is εF = h̄2(3π2N )2/3

/2me, the electron velocity on the Fermi
surface is vF = (2εF /me)1/2, and the Pauli spin susceptibility
is χ = 3Nμ2

B/2εF .
The calculated Fermi energy allows estimation of the di-

mensionless parameter � characterizing the degree of the
s-d exchange interaction. For this, � can be represented as
� = IV /4μ2

B, where I is the integral of the s-d exchange
interaction, averaged over the unit-cell volume V . One of the
authors of the s-d model offers a universal estimate for the
exchange integral I [43]. According to the data, the value of
I is determined by the Fermi energy magnitude εF and lies in
the interval (10−2–10−1)εF . To be definite, let us consider the
lower limit of this estimate, setting I = 0.01εF .

Exploiting the Drude formula for the conductivity of an
electron gas, we can estimate the relaxation time of the elec-
tron momentum, τ = me/ρe2N . Knowing τ , it is not hard
to evaluate the diffusion coefficient D = v2

F τ/3 and then the
spin-diffusion relaxation rate, νD = q2

0D.
To compute the theory parameters �H , �, and β we

use the formulas �H = γ�M, � = γ (BF + 4πM ), and β =
16π2γ M/c2q2

0ρ, in accordance with their definitions. The
magnetization M appearing in these formulas is related to
the experimentally determined quantity MF through M =
MF /(1 + χ�). The magnetic field BF is related to the experi-
mentally measured strength HF of the external magnetic field
as BF = HF + 4πMF .

The values calculated in such a way for the susceptibility
χ , the exchange interaction parameter �, the momentum re-
laxation time τ , the rate νD, the frequencies �H and �, as well
as for parameter β are summarized in Table II.

From Table II, it is seen that the quantity β ∼ 10−7–10−6

is extremely small and, therefore, the cost accounting for ra-
diation of electromagnetic waves by the helimagnets does not
dramatically change the pattern of the decay of the magnetic
spiral rotation.

The available literature lacks experimental data on the
values of the spin-lattice relaxation rate νS in helimagnets.

Therefore, in further consideration, the quantity νS remains
a free parameter of the theory.

For all the metallic helimagnets here considered (see
Table II), the relations χ << 1 and χ� << 1, applied above
for deriving the set of equations (14) and (15), are fulfilled.
The strong inequality �/�H << 1 we used for defining the
conditions (34) and (35) also holds.

Let us illustrate the use of obtained equations for numerical
calculation of ω̄(w̄) for FeGe helimagnet. In this case, the
values of the parameters a and ν̄D are a ≈ 1 and ν̄D ≈ 0.05,
respectively. Figure 5 shows the results of numerical solu-
tion of Eq. (29) for ω̄(w̄) at fixed values of the parameters
a = 1 and ν̄D = 0.05 and for three different values of ν̄S . For
scenario II to be realized, the condition (35) should take the
form ν̄S < 0.09. Curve II in Fig. 5 is plotted for the value
ν̄S = 0.05 within the specified range. At ν̄S > 0.09, scenario I
is implemented. Curve I in Fig. 5 is built at the value ν̄S = 1.
The dashed curve plotted at ν̄S = 0.09 is the boundary of the
regions of existence of scenarios I and II.

Let us estimate the magnitude of w̄1 to implement scenario
II. In our case, we have w̄1 = 1 + a[ν̄S + ν̄D + 1/(ν̄S + ν̄D)].
Obviously, w̄1 � 1 + 2a for any values of ν̄S and ν̄D. Con-

FIG. 5. Illustration of two scenarios of the behavior of the ro-
tation frequency of the spin spiral with changing the drift velocity
of electrons using FeGe as an example. Curve I: ν̄S = 1, represents
scenario I; curve II: ν̄S = 0.05, represents scenario II; dashed curve:
ν̄S = 0.09, corresponds to the boundary of the regions of existence
of scenarios I and II. For all three curves a = 1 and ν̄D = 0.05.
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TABLE II. Predicted values of the theory parameters for helimagnets FeGe, MnSi, CrNb3S6, Dy.

Helimagnet χ � τ νD �H � β

(s) (1/s) (1/s) (1/s)

FeGe 6.4 × 10−7 1.5 × 104 1.2 × 10−15 3.5 × 1012 7.2 × 1013 2.1 × 1011 7.4 × 10−6

MnSi 8.8 × 10−7 2.5 × 104 3.1 × 10−15 2.4 × 1014 6.9 × 1013 1.8 × 1011 2.0 × 10−6

CrNb3S6 2.1 × 10−7 6.3 × 103 7.3 × 10−15 4.9 × 1012 1.6 × 1013 4.1 × 1011 4.5 × 10−7

Dy 8.0 × 10−7 1.6 × 104 2.2 × 10−16 3.5 × 1014 7.2 × 1014 6.0 × 1012 7.1 × 10−8

sequently, in any case, for the condition w̄ = w̄1 to be
achieved, the drift velocity w should be larger than value
wc = �/q0, which corresponds to the electric current density
jc = N |e|�/q0. The calculated values of wc and jc are listed
in Table III.

The obtained values of wc and jc are very large for all
helimagnets under consideration. When currents with a den-
sity of (107–108) A/cm2 flow in any metal conductor, a very
significant Joule heat is produced, leading to the destruction
of the sample. Therefore, the experimental implementation
of scenario II in metallic helimagnets seems to be extremely
difficult.

For density currents j << jc and w̄ << 1, the highest
achievable value of the rotation frequency ωd of the spin spiral
can be determined by formula (38), as represented below:

ωd = 1

1 + (αeff /χ�)(2 + νD/�H )

q0

N |e| j. (39)

When the damping parameter αeff is small compared to the
product χ�, from (39) we can come to a simple estimate
ωd = (q0/N |e|) j. The results of calculating the frequency
ωd and angle θd = arcsin(ωd/�) for various values of the
damping parameter α are shown in Fig. 6. Figs. 6(a) and 6(c)
include the ωd ( j)- and θd ( j) dependencies for all the above
helimagnets; the damping parameter is equal to α = 0.01,
which corresponds to FeGe. Figures 6(b) and 6(d) involve
the same curves plotted for extremely small α 	 χ�, when
ωd ≈ (q0/N |e|) j.

Estimations conducted demonstrate that in metallic heli-
magnets, the rotation frequency of the spin spiral can reach
tens of gigahertz at a rotation-inducing current density of j �
107 A/cm2. The rotation frequency at a given current-density
value depends significantly on the parameter a = αeff/χ�:
the lower the damping parameter α, the greater the rota-
tion frequency. In the case of extremely small values of
the parameter α, the highest value of the rotation frequency
ωd is directly proportional to the wave number q0 of the
magnetic spiral. The conicity angle of the spiral does not
exceed 10 °.

From expression (25) it is easy to find the highest possible
value of the Umov-Poynting vector. It can be seen that this
value does not exceed the magnitude of Uc = 4πM2�3/c2q3

0.
The values of Uc calculated by this formula are presented in
the third column of Table III. For dysprosium, the value of Uc

in order of magnitude reaches 10−4 W/cm2.
It should be underscored that the results obtained for MnSi

and FeGe are applicable for a qualitative description of the
magnetic spiral rotation patterns in a large class of conductive
cubic inversion-center-free magnets—in transition-metal sili-
cides such as MnSi, Fe1−xCoxSi, Mn1−xFexSi, Mn1−xCoxSi
and in FeGe, MnGe, Mn1−xFexGe, Fe1−xCoxGe transition-
metal germanides.

VII. CONCLUSIONS

As a result of the investigation of the spin dynamics of
conductive chiral helimagnets, based on simultaneous solu-
tion of the Bloch-Torrey equation for the magnetization of
itinerant electrons, the Landau-Lifshitz-Gilbert equation for
the magnetization of localized electrons, and Maxwell’s equa-
tions for an electromagnetic field, we can note the following
peculiarities of spin-torque transfer from the spin system of
conduction electrons to that of localized electrons:

1. A constant flow of electrons (with a uniform time rate)
along the chiral helimagnet axis with a drift velocity w, due to
the STT effect, induces the rotation of the magnetic spiral of
the helimagnet with an angular frequency ω. The ω-frequency
sign that specifies the direction of rotation of the spiral with a
wave vector q is determined by the sign of the scalar product
(q · w). The magnitude of the frequency depends on the ratio
of the Gilbert damping parameter and a parameter characteriz-
ing the efficiency of the SST processes. The latter is governed
by the magnitude of the constant of the exchange interaction
between conduction and localized electrons. For helimagnets
with extremely low Gilbert damping, the frequency ω, with an
accuracy of a numerical factor of the order of unity, is equal
to (q · w). All the quantities used in our theoretical model are

TABLE III. Estimates for the quantities wc, jc, and Uc.

Helimagnet wc jc Uc

(cm/s) (A/cm2) (W/cm2)

FeGe 2.3 × 105 8.8 × 108 1.4 × 10−6

MnSi 5.3 × 104 8.6 × 108 4.7 × 10−9

CrNb3S6 3.1 × 105 4.5 × 107 1.0 × 10−6

Dy 3.5 × 105 2.6 × 109 3.9 × 10−4
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FIG. 6. The highest values of the rotation frequency ωd for the
spin spiral (a), (b) and conicity angle θd (c), (d) for metallic helimag-
nets FeGe, MnSi, CrNb3S6, Dy: (a), (c) α = 0.01; (b), (d) α << χ�.

expressed in terms of the quantum-exchange Hamiltonian that
produces helical magnetic ordering in conductive crystals.

2. The STT effect leads to the fact that the wavelength of
the helimagnet’s magnetic spiral rotating under the flowing
spin current is always slightly smaller than that of the station-
ary magnetic spiral. The spin current also influences conicity
of the magnetic helicoid. The angle θ characterizing the conic-
ity augments with increasing the frequency of rotation of the
magnetic spiral.

3. It is found that the Poynting vector that sets the direction
of propagation of the electromagnetic field energy generated
by an electric current flowing in a chiral helimagnet is directed
along the vector of the conduction electron flux, regardless of
the helimagnet chirality. In calculating the rotation frequency
of the magnetic spiral, accounting for the generation of an
electromagnetic field, is reduced to an effective increase in
the Gilbert damping parameter and an increase in the limiting
rotation frequency of the spiral.

The authors hope that the present study has a consider-
able potential for inspiring future in-depth research of chiral
conductive helimagnets that may eventually lead to the de-
velopment of functional components for spintronic devices:
spin generators converting direct electric current into high-
frequency electromagnetic field, and spin diodes performing
the inverse conversion.
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