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We theoretically investigate a J1-J3 classical Heisenberg model on the breathing pyrochlore lattice, where the
nearest-neighbor (NN) exchange interactions for small and large tetrahedra, J1 and J ′

1, take different values due
to the breathing bond alternation and J3 is the third NN antiferromagnetic interaction along the bond direction. It
is found by means of Monte Carlo simulations that for large J3, a hedgehog lattice, a three-dimensional periodic
array of magnetic monopoles and antimonopoles, emerges in the form of a quadruple-Q state characterized by
the ordering vector of Q = (± 1

2 , ± 1
2 , ± 1

2 ), being irrespective of the signs of J1 and/or J ′
1 as long as J1 �= J ′

1. It
is also found that in an applied magnetic field, there appear six quadruple-Q states depending on the values of
J1 and J ′

1, among which three phases including the in-field hedgehog-lattice state exhibit nonzero total chirality
χT associated with the anomalous Hall effect of chirality origin. In the remaining two chiral phases, which are
realized in the presence of ferromagnetic J1 and/or J ′

1, the spin structure is not topologically nontrivial, in spite
of the fact that χT �= 0. The role of the topological objects of the monopoles in χT is also discussed.

DOI: 10.1103/PhysRevB.106.064412

I. INTRODUCTION

During the last decades, a magnetic skyrmion and its
two-dimensional periodic array, a skyrmion lattice, have ex-
tensively been studied in noncentrosymmetric magnets with
the Dzaloshinskii-Moriya (DM) interaction [1–18] and re-
cently, DM-free centrosymmetric magnets as well [19–35].
Compared to the two-dimensional skyrmion, less is known
about an associated three-dimensional topological spin tex-
ture, a magnetic hedgehog, and its periodic array, a hedgehog
lattice [36–42]. In this paper, we theoretically investigate the
stability of the hedgehog lattice recently shown to emerge
in breathing pyrochlore antiferromagnets [42] against the in-
clusion of ferromagnetic exchange interactions, and discuss
a magnetic-field-induced total chirality associated with the
anomalous Hall effect of chirality origin.

The magnetic hedgehog is a spin texture characterized by
an integer topological charge which corresponds to, in units of
4π , the total solid angle subtended by all the spins involved.
As the hedgehog has a singular point at its texture center,
it is sometimes called the magnetic monopole. The hedge-
hog lattice is an alternating periodic array of the hedgehogs
(monopoles) and antihedgehogs (antimonopoles) each having
positive or negative nonzero topological charge, so that the
net topological charge summed over the whole system is zero.
Noting that the solid angle �i jk for three spins Si, S j , and Sk is
related with the scalar spin chirality χi jk = Si · (S j × Sk ) via
�i jk = 2 tan−1 [ χi jk

1+Si ·S j+Si ·Sk+S j ·Sk
] [43], the hedgehog lattice

can be understood as a long-range order (LRO) of the scalar
chirality χi jk . Such a complicated noncoplanar spin structure
is usually described by more than one ordering-wave vectors,
i.e., it is a multiple-Q state.

A prominent aspect of the hedgehog lattice is the magnetic-
field-induced anomalous Hall effect of chirality origin, the
so-called topological Hall effect [37,39–42,44–46]. In con-
trast to the topological Hall signal for the skyrmion lattice
showing a distinct nonzero value, the corresponding signal
for the hedgehog lattice is zero at zero field and gradually
increases with increasing field. The former signal is directly
connected to the total skyrmion numbers, whereas the latter
is not directly associated with the monopole/antimonopole
numbers themselves, but rather with the total chirality or
the total number of skyrmions generated in an intermedi-
ate spatial region between the monopoles and antimonopoles
[37,40,42,44].

The hedgehog lattice having such a field-induced total
chirality is known to be stabilized in the presence of the
DM interaction [36–38,40]. In the noncentrosymmetric mag-
nets having the DM interaction MnSi1−xGex with 0.25 < x,
the occurrence of the hedgehog lattice has been evidenced
by the topological Hall effect together with the observation
of multiple-Q Bragg reflections [39,45,47–51]. Recently, the
hedgehog lattice is found also in the DM-free centrosymmet-
ric magnet SrFeO3 [41,46], but the ordering mechanism is still
unclear and no other candidate compounds have been reported
so far. In view of such a situation, we have searched for a
new mechanism other than the DM interaction. Previously,
we theoretically demonstrated that the hedgehog lattice is
realized in breathing-pyrochlore antiferromagnets in the ab-
sence of the DM interaction [42]. In this work, we extend
our previous theoretical work, examining the stability of the
hedgehog lattice in a wider parameter space.

The breathing pyrochlore lattice is a three-dimensional
network consisting of an alternation array of corner-sharing
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FIG. 1. Monte Carlo snapshots of quadruple-Q ( 1
2 , 1

2 , 1
2 )

hedgehog-lattice spin textures on the breathing pyrochlore lattice,
where the spin configurations are obtained at H = 0 and T/|J1| =
0.01 for |J ′

1/J1| = 0.6 and J3/|J1| = 0.7 with (a) FM J1 and FM J ′
1

and (b) AFM J1 and FM J ′
1. Red, green, blue, and yellow arrows

represent spins on the corners 1, 2, 3, and 4 of the small tetrahedra
shown in the inset, respectively. The lower and upper tetrahedra
outlined black dots correspond to the hedgehog (monopole) and the
antihedgehog (antimonopole), respectively.

small and large tetrahedra [52–58]. The characteristic feature
of this breathing lattice is that the nearest neighbor (NN)
exchange interactions on small and large tetrahedra J1 and J ′

1
take different values due to the bond-length difference. In our
previous work, we showed that a quadruple-Q state charac-
terized by the four ordering vectors of Q1 = ( 1

2 , 1
2 , 1

2 ), Q2 =
(− 1

2 , 1
2 , 1

2 ), Q3 = ( 1
2 ,− 1

2 , 1
2 ), and Q4 = ( 1

2 , 1
2 ,− 1

2 ) in units
of 2π

a in the basis of the cubic unit cell with side length
a, which is realized for a large third NN antiferromagnetic
(AFM) interaction along the bond direction J3 [59,60], be-
comes the hedgehog-lattice state in the breathing case of
J ′

1/J1 < 1, while in the uniform case of J ′
1/J1 = 1, it is a

collinear state favored by thermal fluctuations, where both J1

and J ′
1 are assumed to be AFM [42]. On the other hand, among

so-far reported breathing-pyrochlore magnets, chromium sul-
fides possess ferromagnetic (FM) J1 and/or J ′

1 [61–63]: FM
J1 and FM J ′

1 for Li(Ga,In)Cr4S8, and AFM J1 and FM J ′
1 for

CuInCr4S8. Then, the naive question is whether the hedgehog
lattice is robust against the inclusion of FM J1 and/or J ′

1. In
addition, effects of a magnetic field in such a situation would
also be an interesting issue.

In this work, we show by means of Monte Carlo (MC)
simulations that the quadruple-Q ( 1

2 , 1
2 , 1

2 ) hedgehog-lattice
state is stable even in the presence of FM J1 and/or J ′

1. As
one can see from the MC snapshots shown in Fig. 1, the
monopoles and antimonopoles are formed on large (small)
tetrahedra for FM (AFM) J1. In a magnetic field, there
appear six quadruple-Q ( 1

2 , 1
2 , 1

2 ) states: canted collinear,
canted coplanar, hedgehog-lattice, chiral I, chiral I’, and chiral

II phases (see Fig. 2) among which the hedgehog-lattice,
chiral I, and chiral II phases exhibit nonzero total chirality
χT corresponding to the emergent fictitious magnetic field.
Interestingly, in contrast to the hedgehog-lattice, the chiral I
and II phases do not possess topological spin textures in spite
of the fact that χT �= 0, which is reflected in the difference in
the manner how χT is induced by the field.

The outline of this paper is as follows. In Sec. II, we
introduce the model and relevant physical quantities. This is
followed by Sec. III in which the stability of the hedgehog
lattice at zero field is discussed based on MC and mean-field
results. Concerning the effects of an applied magnetic field,
we first give a brief summary of in-field phases in Sec. IV,
and then, discuss the detailed spin and chirality structures in
the in-field phases in Secs. V and VI, respectively. We end the
paper with summary and discussion in Sec. VII. Supplemen-
tary information of the chirality in a magnetic field is provided
in Appendices A–C.

II. MODEL AND RELEVANT PHYSICAL QUANTITIES

In this work, we consider the J1-J3 classical Heisenberg
model on the breathing pyrochlore lattice which is given by

H = J1

∑
〈i, j〉S

Si · S j + J ′
1

∑
〈i, j〉L

Si · S j

+ J3

∑
〈〈i, j〉〉

Si · S j + H
∑

i

Sz
i , (1)

where 〈〉S(L) and 〈〈i, j〉〉 denote the summations over site pairs
on the small (large) tetrahedra and the third NN pairs along the
bond direction, respectively, and H is a magnetic field applied
in the z direction in the spin space. In the model, the breathing
bond alternation of the lattice is characterized by J ′

1/J1, and
the third NN AFM interaction along the bond direction J3 is
essential for the occurrence of a quadruple-Q ( 1

2 , 1
2 , 1

2 ) state
characterized by Q1, Q2, Q3, and Q4. Since at least in the
case of AFM J1 > 0 and J ′

1 > 0, the additional second NN
interaction J2 is irrelevant to the occurrence of the hedgehog
lattice [42], it is not incorporated in the spin Hamiltonian (1).

In order to examine the stability of the hedgehog lattice
against the sign changes in J1 and J ′

1, we use the same J3 value
of J3/|J1| = 0.7 as in the AFM J1 and J ′

1 case discussed in the
previous paper, and change the signs of J1 and J ′

1 for the three
fixed values of |J ′

1/J1| = 1, 0.6, and 0.2. Note that J ′
1/J1 = 1

corresponds to the uniform pyrochlore lattice, while J ′
1/J1 =

−1 does not; all parameter sets except J ′
1/J1 = 1 correspond

to the breathing pyrochlore lattice. It should also be noted that
for J ′

1/J1 = −1, the J1 > 0 and J ′
1 < 0 case is essentially the

same as the J1 < 0 and J ′
1 > 0 case where the roles of small

and large tetrahedra are merely interchanged.
To investigate the spin ordering, we first introduce the spin

structure factor FS (q) = FS‖(q) + FS⊥(q) defined by

FS‖(q) =
〈∣∣∣ 1

N

∑
i

Sz
i eiq·r0

i

∣∣∣2〉
,

FS⊥(q) =
〈 ∑

ν=x,y

∣∣∣ 1

N

∑
i

Sν
i eiq·r0

i

∣∣∣2〉
, (2)
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FIG. 2. Temperature and magnetic-field phase diagrams obtained in the cases of (a) AFM J1 > 0 and AFM J ′
1 > 0, (b) FM J1 < 0 and

FM J ′
1 < 0, (c) AFM J1 > 0 and FM J ′

1 < 0, and (d) FM J1 < 0 and AFM J ′
1 > 0 for |J ′

1/J1| = 1 (top), 0.6 (middle), and 0.2 (bottom), where
the J3 value is fixed to be J3/|J1| = 0.7. The middle and bottom panels of (a) are taken from Ref. [42]. For |J ′

1/J1| = 1, the AFM J1 > 0
and FM J ′

1 < 0 case is essentially the same as the FM J1 < 0 and AFM J ′
1 > 0 case where the roles of small and large tetrahedra are merely

interchanged, so that the top panels of (c) and (d) are exactly the same except the temperature range. In the in-field hedgehog-lattice (yellow),
chiral I (red), and chiral II (green) phases, the field-induced total chirality vector χT corresponding to the emergent fictitious field is nonzero,
whereas in the canted collinear (pink), canted coplanar (light blue), and chiral I’ (orange) phases, χT is zero. Although the canted coplanar
phases can be categorized into two, i.e., the low-field and high-field ones, their ordering properties are essentially the same (for details, see
Secs. IV and V).

where N is a total number of spins which is related to the
linear system size L via N = 16L3 as the cubic unit cell
contains 16 sites, and 〈O〉 denotes the thermal average of a
physical quantity O. Noting that the magnetic field H is ap-
plied in the Sz direction, we have introduced FS‖(q) for the Sz

component and FS⊥(q) for the SxSy-plane component. Since
the breathing bond alternation has already been incorporated
in the spin Hamiltonian (1) in the form of the nonequivalent
J1 and J ′

1, we have taken r0
i in Eq. (2) as a site position of

the uniform pyrochlore lattice ignoring the bond-length alter-
nation for simplicity. As the chirality sector is also important,
we introduce the chirality structure factor defined by

FC (q) =
〈∣∣∣ 1

N/2

∑
l

χ (Rl ) eiq·Rl

∣∣∣2〉
, (3)

where the summation is taken over all the small and
large tetrahedra. The scalar chirality of the lth tetrahedron
with its center-of-mass position Rl is defined by χ (Rl ) =∑

i, j,k∈l th tetra χi jk and the order of i, j, and k is defined in
the anticlockwise direction with respect to the normal vector
of the triangle formed by the three sites i, j, and k, n̂i jk ,
pointing outward from Rl . In the same manner, we define the

solid angle subtended by the four spins on the tetrahedron as
�(Rl ) = ∑

i, j,k∈l th tetra �i jk .
In addition to the spin and chirality structure factors, the

spin collinearity P and the SxSy-plane nematicity P⊥2 also
provide useful informations of the spin structures. They are
given by

P = 3

2

〈 1

N2

∑
i, j

(Si · S j )
2 − 1

3

〉
,

P⊥2 = 3

4

〈( 1

N

∑
i

Qx2−y2

i

)2
+

( 1

N

∑
i

Qxy
i

)2〉
,

Qx2−y2

i = (
Sx

i

)2 − (
Sy

i

)2
, Qxy

i = 2Sx
i Sy

i . (4)

The nematic order parameter P⊥,2 measures the twofold
breaking of rotational symmetry in the SxSy plane perpen-
dicular to the magnetic field, so that it takes a nonzero value
when there exists a characteristic axis within the SxSy spin
plane [64,65].

In general, when localized spins Si are weakly coupled to
conduction electrons in a metallic system, an anomalous Hall
effect is caused by the total chirality vector χT summed over
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the whole system which is given by

χT =
〈 ∑

〈i, j,k〉S,L

χi jk n̂i jk

〉
. (5)

Here, the chirality-driven anomalous Hall conductivity σ T
μν is

related to χT via σ T
μν ∝ εμνρχ

T
ρ [66], so that the total chi-

rality vector χT corresponds to the emergent fictitious field.
Although according to Ref. [66], χT should be calculated by
taking further NN sites into account, we have restricted only to
the NN triads because the dominant contribution comes from
such short-distance triads. As one can see from Eq. (5), the
anomalous Hall effect of chirality origin in three dimensions is
not directly connected to the scalar spin chirality χi jk itself but
rather the spin chirality multiplied by a geometrical factor n̂i jk ,
which is in sharp contrast to two-dimensional systems where
n̂i jk is always perpendicular to the two-dimensional lattice
plane and thereby, χT is also perpendicular to the lattice plane
with its strength being directly related to the spin chirality. We
also note that FC (q) in Eq. (3) does not involve the geometrical
factor n̂i jk and thus, is not directly associated with χT.

To calculate the physical quantities introduced above, we
perform MC simulations, where 2 × 105 sweeps are carried
out under the periodic boundary condition and the first half
is discarded for thermalization. Our 1 MC sweep consists of
1 heatbath sweep and successive 10 overrelaxation sweeps,
and observations are done at every MC sweep. The statistical
average is taken over four independent runs starting from
different random initial configurations. By carefully analyzing
the above quantities and fundamental ones such as the spe-
cific heat C = 1

T 2N (〈H2〉 − 〈H〉2) and the magnetization m =
〈| 1

N

∑
i Si|〉, we identify low-temperature ordered phases.

In obtaining the temperature and magnetic field phase dia-
grams shown in Fig. 2, we also use the mixed phase method
[65,67] to determine the low-temperature phase boundaries
between the chiral I phase and the lower-field hedgehog-
lattice and the higher-field coplanar phases, since a first-order
character of the transition and the associated hysteresis is
relatively strong in this regime. In the quite low-temperature
regime for J ′

1/J1 = −1 where even the mixed phase method
does not work, we determine the phase boundary by compar-
ing the energies of the competing phases. We also note that in
calculating the monopole density, we evaluate the solid angle
for each tetrahedron �(Rl ) by performing the short-time av-
erage over 200 MC steps to reduce the thermal noise, where
we first evaluate �(Rl ) by using spin configurations averaged
over 10 MC sweeps and then take an average over 20 samples
of the so-obtained solid angle to avoid counting monopoles
accidentally generated by thermal fluctuations.

III. STABILITY OF THE HEDGEHOG LATTICE AT H = 0

In the previous work, we showed that in the case of
AFM J1 and J ′

1, three types of quadruple-Q ( 1
2 , 1

2 , 1
2 ) states,

collinear, coplanar, and noncoplanar hedgehog-lattice states,
appear depending on the value of J ′

1/J1. In the uniform case
of J ′

1/J1 = 1, only the collinear phase is realized, whereas in
the breathing case of J ′

1/J1 < 1, the hedgehog-lattice phase is
realized at the lowest temperature and the coplanar phase can
appear at higher temperatures [42]. In this section, we will

FIG. 3. MC results obtained at H = 0 for J3/|J1| = 0.7. (a) and
(b) The temperature dependence of the specific heat C (the first
panel from the top), the spin collinearity P (the second one), and
the average spin and chirality Bragg intensities OS

( 1
2

1
2

1
2 )

and OC
( 1

2
1
2

1
2 )

(the third and fourth ones) for (a) |J ′
1/J1| = 0.6 and (b) |J ′

1/J1| = 0.2.
Grayish, reddish, bluish, and greenish colored symbols denote data
for AFM J1 and AFM J ′

1, AFM J1 and FM J ′
1, FM J1 and FM J ′

1,
and FM J1 and AFM J ′

1, respectively. The grayish data are taken
from Ref. [42]. (c) Spin and chirality structure factors FS (q) (left)
and FC (q) (right) in the (h, h, l ) plane obtained at T/|J1| = 0.11 for
FM J1, FM J ′

1, J ′
1/J1 = 0.2, and L = 12.

discuss the stability of the hedgehog lattice at H = 0 against
the sign changes in J1 and J ′

1. As we will see below, MC results
show that the hedgehog lattice can be realized even for FM J1

and/or J ′
1, which can readily be understood from a mean-field

result.

A. Monte Carlo result

Figure 3 shows MC results obtained in the breathing cases
of |J ′

1/J1| = 0.6 and 0.2 for the four different combinations,
AFM J1 and AFM J ′

1 (grayish colored symbols), AFM J1 and
FM J ′

1 (reddish ones), FM J1 and FM J ′
1 (bluish ones), and

FM J1 and AFM J ′
1 (greenish ones). Since in the uniform case

of J ′
1/J1 = 1 with FM J1 < 0 and J ′

1 < 0, merely the collinear
state appears as in the AFM uniform case of J1 = J ′

1 > 0, only
the breathing cases are shown in Fig. 3. As one can see from
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the top panels in Figs. 3(a) and 3(b), the transition temperature
indicated by the specific-heat sharp peak is higher in the AFM
J1 cases than in the FM J1 cases, and is slightly enhanced by
the mixing of AFM and FM interactions, i.e., J1 and J ′

1 of
opposite signs. One can see from the second panels from the
top in Figs. 3(a) and 3(b) that in all the cases, a noncollinear
state with P = 0 is realized in the lower-temperature ordered
phase. In the |J ′

1/J1| = 0.6 case with FM J1 < 0 and J ′
1 < 0

[see the bluish symbols in Fig. 3(a)], the collinear state with
P �= 0 appears just below the transition from the paramagnetic
phase, whereas in the |J ′

1/J1| = 0.6 case with AFM J1 > 0 and
J ′

1 > 0 [see the grayish symbols in Fig. 3(a)], a coplanar state
is realized in the intermediate temperature window between
the higher-temperature collinear and lower-temperature P = 0
states [42].

As exemplified by Fig. 3(c), the spin structure factors
FS (q) in all the low-temperatures phases exhibit multi-
ple Bragg peaks at Q1 = ( 1

2 , 1
2 , 1

2 ), Q2 = (− 1
2 , 1

2 , 1
2 ), Q3 =

( 1
2 ,− 1

2 , 1
2 ), and Q4 = ( 1

2 , 1
2 ,− 1

2 ), suggesting that they
are quadruple-Q ( 1

2 , 1
2 , 1

2 ) states. Actually, one can see from
the third panels from the top in Figs. 3(a) and 3(b) that
the normalized Bragg intensity averaged over the four order-
ing vectors OS

( 1
2

1
2

1
2 )

= 16
∑

h,k,l=±1/2 FS (h, k, l )/8 develops on

entering the low-temperature ordered phase from the high-
temperature paramagnetic phase. Furthermore, in the P = 0
state, the chirality structure factor FC (q) exhibits Bragg peaks
at (± 1

2 ,± 1
2 ,± 1

2 ) [see the right panel of Fig. 3(c)]. As one
can see from the bottom panels in Figs. 3(a) and 3(b), the
averaged Bragg intensity in the chirality sector OC

( 1
2

1
2

1
2 )

=
1
4

∑
h,k,l=±1/2 FC (h, k, l ) is nonzero only in the P = 0 state,

indicating that a chirality order with a noncoplanar spin
structure is realized in this phase. As will be explained be-
low, this noncoplanar structure turns out to be the hedgehog
lattice.

Figures 1(a) and 1(b) show MC spin snapshots obtained
in the noncoplanar phases for |J ′

1/J1| = 0.6 with FM J1 and
J ′

1, and AFM J1 and FM J ′
1, respectively. One can see from

Fig. 1(a) that all-in and all-out spin configurations are real-
ized on the large tetrahedra enclosed by black dots in the
upper and lower cubic unit cells, respectively. The total solid
angle subtended by the four spins on the all-out (all-in)
tetrahedron is 4π (−4π ), so that the all-out (all-in) tetrahe-
dron corresponds to the monopole (antimonopole). Since the
quadruple-Q ( 1

2 , 1
2 , 1

2 ) state is a 32-sublattice state consisting
of the alternating array of the two cubic unit cells, i.e., the
upper and lower cubic unit cells in Fig. 1, it is definitely
the hedgehog lattice consisting of the alternating array of
the monopoles and antimonopoles. As the magnetic unit cell
contains 16 tetrahedra, the monople (or equivalently, anti-
monopole) density n+(= n−) is 1

16 . To identify the monopole
tetrahedra, it is convenient to map spins onto a unit sphere.
Figure 4 shows the mapped whole-system spins belonging
to the lower-type cubic unit cell in Fig. 1. Note that spins
belonging to the upper-type cubic unit cell are obtained by
merely replacing Si with −Si. As readily seen from Fig. 4(a),
spins span the total solid angle of 4π on tetra III’, while not on
the remaining three. In the AFM J1 case shown in Figs. 1(b)
and 4(b), the monopoles and antimonoples are formed on the
small tetrahedra.

 y
 x

 z

tetra I’
tetra II’

tetra III’ tetra IV’

 y
 x

 z

tetra I
tetra II

tetra III tetra IV

tetra I’ tetra II’

tetra III’ tetra IV’

tetra I tetra II

tetra III tetra IV

|J’ /J  |= 0.6, 1 1 T/|J | = 0.011

J  < 0: FM,  J’ < 0: FM  1

J  /|J | = 0.7, 3 1

1 J  > 0: AFM,  J’ < 0: FM  1 1(a) (b)

S Sy

S z

x

(c) (d)

S Sy

S z

x S Sy

S z

x S Sy

S z

x

S Sy

S z

x S Sy

S z

x S Sy

S z

x S Sy

S z

x

 1

 2

 3
 4

 1
 2

 3  4

FIG. 4. MC snapshots of spins mapped onto a unit sphere. (a) and
(b) correspond to Figs. 1(a) and 1(b), respectively, where the whole
system spins belonging to the lower-type cubic unit cell in Fig. 1
are shown. In (a), tetra’s I’, II’, III’, and IV’ represent the four large
tetrahedra in the cubic unit cell shown in (c), whereas in (b), tetra’s I,
II, III, and IV represent the four small ones shown in (d). The color
notations are the same as those in Fig. 1: red, green, blue, and yellow
arrows represent spins on the four sublattices 1, 2, 3, and 4 shown
in (c) and (d). In (a) and (b), the tetrahedra enclosed by black dots
correspond to the magnetic hedgehog (monopole).

As is well known, the AFM NN interaction tends to orient
four spins on a tetrahedron S1, S2, S3, and S4 such that the
constraint S1 + S2 + S3 + S4 = 0 be satisfied. Since the all-in
and all-out configurations satisfy this constraint, the monopole
and antimonopole tend to stay at the tetrahedra with stronger
AFM J1 or J ′

1, or equivalently, weaker FM J1 or J ′
1. Thus, in

the FM and AFM J1 cases with |J1| > |J ′
1|, the monopoles are

formed on the large and small tetrahedra, respectively.
In Fig. 1, one notices that spins belonging to each of

the four sublattices corresponding to the four corners of
the tetrahedron constitute almost up-down-up-down chains
running along all the bond directions (see the same color
arrows in Fig. 1). Suppose that the spin polarization vector
of the up-down-up-down chains on sublattice μ be P̂μ. In
the hedgehog-lattice phase, P̂1, P̂2, P̂3, and P̂4 orient in the
different directions, resulting in the in- and out-type spin
configuration. It should be emphasized here that in the present
system, the isotropic Heisenberg spins spontaneously form the
spin-ice-type noncoplanar spin structure, which is in sharp
contrast to the spin-ice system where the spin orientation
is restricted to the in- and out-directions from the begin-
ning due to the local magnetic anisotropy. Actually, reflecting
the Heisenberg nature, the collinear and coplanar states are
also possible depending on the value of J ′

1/J1. All the three
states, hedgehog-lattice, coplanar, and collinear states, are
quadruple-Q states described as superpositions of the four
up-down-up-down chains. The difference among the three
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consists in the relative angles among P̂1, P̂2, P̂3, and P̂4. In
the next subsection, we will discuss how the breathing bond
alternation, i.e., the nonequivalence of J1 and J ′

1, favors the
noncoplanar superposition pattern, based on the mean-field
result.

B. Mean field analysis

For AFM J1 > 0 and J ′
1 > 0, we have already derived the

Ginzburg-Landau (GL) free energy for the ( 1
2

1
2

1
2 ) state in

Ref. [42]. Since the derivation with the use of the mean-field
approximation is valid irrespective of the signs of J1 and J ′

1,
the GL free energy for FM J1 and/or J ′

1 takes the same form
as that for AFM J1 and J ′

1. Thus, as discussed in Ref. [42], the
relative angles among P̂1, P̂2, P̂3, and P̂4 are determined by a
GL quartic term δ f4 given by

δ f4 = 9T
640 S

4
[A2{3 + (P̂1 · P̂2)2 + (P̂1 · P̂3)2

+ (P̂1 · P̂4)2 + (P̂2 · P̂3)2 + (P̂2 · P̂4)2 + (P̂3 · P̂4)2}
− 2A3{(P̂1 · P̂2)(P̂3 · P̂4) + (P̂1 · P̂3)(P̂2 · P̂4)

+ (P̂1 · P̂4)(P̂2 · P̂3)}]. (6)

Here, S corresponds to the thermal-averaged spin length and
the coefficients are given by A2 = 16ε2(1+ε2 )

(1+3ε2 )2 and A3 = 16ε3

(1+3ε2 )2

with

ε = J1 + J ′
1 + 4J3

3(J1 − J ′
1)

[√
1 + 3

( J1 − J ′
1

J1 + J ′
1 + 4J3

)2
− 1

]
. (7)

In the uniform case of J1 = J ′
1, the δ f4 term vanishes because

ε = 0 and thereby, A2 = A3 = 0, so that the relative angles
among P̂1, P̂2, P̂3, and P̂4 cannot be determined and all the
superposition patterns are energetically degenerate. Such a
degeneracy is lifted in the breathing case of J1 �= J ′

1 where
δ f4 is active because ε becomes nonzero. The minimization
condition for δ f4 yields P̂μ · P̂ν = −1/3 (μ �= ν), pointing to
the emergence of the noncoplanar hedgehog-lattice state. As
|ε| increases, the coefficients A2 and A3 take larger values and
correspondingly, the contribution from δ f4 becomes larger,
stabilizing the hedgehog-lattice state more firmly. Thus the
stability of the hedgehog-lattice phase is governed by the
dimensionless parameter ε, whereas the breathing bond alter-
nation itself is characterized by the ratio J ′

1/J1.
To see how J1 and J ′

1 are related with ε, it is convenient to
consider the limiting case of |J1 − J ′

1| 
 J1 + J ′
1 + 4J3, where

ε can be approximated as

ε � 1

2

J1 − J ′
1

J1 + J ′
1 + 4J3

. (8)

One can see from Eq. (8) that for a fixed value of |J ′
1/J1|,

|ε| takes a larger value when J1 and J ′
1 have opposite signs

because the absolute value of the numerator becomes larger. In
the AFM J1 case, the effect of the sign change in J ′

1 becomes
more remarkable: not only the numerator but also the denom-
inator tends to increase |ε|, resulting in a higher transition
temperature into the hedgehog-lattice phase, as observed in
the MC result shown in Figs. 3(a) and 3(b).

IV. BRIEF SUMMARY OF MAGNETIC-FIELD EFFECTS

In the previous section, we show that the hedgehog lattice
is stable even for FM J1 and/or J ′

1 at zero field. Below, we
will discuss in-field properties of the spin Hamiltonian (1),
putting particular emphasis on the stability of the hedgehog-
lattice phase against the magnetic field and the field-induced
total chirality χT. This section focuses on the basic properties
of various in-field phases. The detailed spin and chirality
structures in these phases will be discussed in the subsequent
sections.

Figure 2 shows the temperature and magnetic-field phase
diagrams obtained for the same parameter set as that for Fig. 3,
where the results for the breathing cases of AFM J1 and J ′

1
[the middle and bottom panels of Fig. 2(a)] are taken from
Ref. [42]. Note that the J ′

1/J1 = 1 cases [the top panels of
Figs. 2(a) and 2(b)] correspond to the uniform pyrochlore
lattice, whereas the |J ′

1/J1| = 1 cases with J1 and J ′
1 of op-

posite signs [the top panels of Figs. 2(c) and 2(d)] correspond
to the breathing pyrochlore lattice. The phase diagrams are
determined from the MC results, typical examples of which
are shown in Figs. 5 and 6, where the field and tempera-
ture dependences of various physical quantities are presented.
Figures 5 and 6 are associated with the bottom panel of
Fig. 2(b) and the middle panel of Fig. 2(c). In Fig. 2, filled
symbols denote transitions definitely identified by the phys-
ical quantities, whereas open symbols denote transition-like
anomalies observed in the magnetic susceptibility for the Sz

component.
In a magnetic field, there appear six phases: canted

collinear, canted coplanar, hedgehog lattice, chiral I, chiral I’,
and chiral II phases whose stability regions are represented
by pink, light blue, yellow, red, orange, and green in Figs. 2,
5, and 6. All the six phases are quadruple-Q ( 1

2 , 1
2 , 1

2 ) states
with SxSy spin components perpendicular to the field being
characterized by Q1, Q2, Q3, and Q4. Indeed, the averaged
intensity OS⊥

( 1
2

1
2

1
2 )

is nonzero in all the low-temperature ordered

phases (see the top panels in Figs. 5 and 6). In the in-field
hedgehog-lattice, chiral I, and chiral I’ phases, ( 1

2 , 1
2 , 1

2 )-type
Bragg peaks can also be found in the Sz sector and the chirality
sector as well. Their averaged intensities OS‖

( 1
2

1
2

1
2 )

and OC
( 1

2
1
2

1
2 )

are, respectively, shown in the first and second panels from the
top in Figs. 5 and 6. As will be discussed in Sec. V, the spin
state in the canted collinear phase is cubic-symmetric, and
the spin-state symmetry in the in-field hedgehog-lattice and
canted coplanar phases is reduced to tetragonal. In the chiral I
and chiral I’ phases, a similar tetragonal symmetry is further
reduced to orthorhombic, where the rotational symmetry in
the plane perpendicular to the tetragonal axis is broken. In the
chiral II phase, the spin state is also orthorhombic-symmetric,
but its orthorhombic nature is different from that in the chiral
I and chiral I’ phases. We note that the SxSy spin nematicity
P⊥2 detecting the existence of a characteristic axis in the
SxSy plane is nonvanishing in the canted collinear, chiral I
and chiral I’ phases (see the third panels from the top in
Figs. 5 and 6).

In the in-field hedgehog-lattice, chiral I, and chiral II
phases, the total chirality χT associated with the Hall effect
of chirality origin is nonzero, while in the canted collinear,
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FIG. 5. The field dependence of various physical quantities ob-
tained in the MC simulations at (a) T/|J1| = 0.11 for |J3/J1| =
0.7 and |J ′

1/J1| = 0.2 with FM J1 and J ′
1 and (b) T/J1 = 0.01 for

J3/J1 = 0.7 and |J1/J ′
1| = 0.6 with AFM J1 and FM J ′

1. (Top) Aver-
aged Bragg intensities for the SxSy and Sz components OS⊥

( 1
2

1
2

1
2 )

and

OS‖
( 1

2
1
2

1
2 )

. The second panel from the top: the averaged chirality Bragg

intensity OC
( 1

2
1
2

1
2 )

. The third panel from the top: the SxSy-plane spin

nematicity P⊥2. The fourth panel from the top: the total chirality
associated with the Hall effect of chirality origin |χT|. (Bottom)
Monopole (or equivalently, antimonopole) density n+(= n−) and the
magnetization m.

canted coplanar, and chiral I’ phases, χT is zero (see the fourth
panels from the top in Figs. 5 and 6). The density of the
monopole tetrahedra is nonzero only in the hedgehog-lattice
phase (see the bottom panels in Figs. 5 and 6), although
the chiral I and II phases possess the nonzero total chirality
χT �= 0.

Now, we discuss stability regions of the above in-field
phases. As one can see from Fig. 2, in the uniform case of J1 =
J ′

1, only the canted collinear phase appears. In the breathing
cases of J1 �= J ′

1, the hedgehog-lattice phase is realized in the
low-temperature and low-field region, and the relatively wide
region in the T -H phase diagram is occupied by the canted
coplanar phase. The coplanar spin structure in the higher-field
side is slightly different from that in the lower-field side,
although the spin structure factors for these two states do not
differ qualitatively. The boundary between these two coplanar
structures is indicated by open symbols in Fig. 2. In the
presence of FM J1 and/or J ′

1, an intermediate phase (chiral

FIG. 6. The temperature dependence of OS⊥
( 1

2
1
2

1
2 )

and OS‖
( 1

2
1
2

1
2 )

,

OC
( 1

2
1
2

1
2 )

, P⊥2, |χT|, and n+ = n− (from top to bottom) obtained in

the MC simulations at (a) H/|J1| = 0.5 and (b) H/|J1| = 1.25 for
J3/|J1| = 0.7 and |J ′

1/J1| = 0.2 with FM J1 and J ′
1. The color nota-

tions for the stability regions of the ordered phases are the same as
those in Figs. 2 and 5.

II phase) appears between the high-field and low-field copla-
nar states. Furthermore, when the structure-change boundary
becomes close to the upper critical field of the hedgehog-
lattice phase, additional phases, the lower-temperature chiral
I and higher-temperature chiral I’ phases, show up in the
vicinity of the upper boundary of the hedgehog-lattice phase.
Here, we emphasize again that the chiral I and II phases as
well as the in-field hedgehog-lattice phase exhibit nonzero
total chirality χT. Since χT and the magnetization m show
different field dependences (see the fourth and fifth panels
from the top in Figs. 5 and 6), the chirality-driven anomalous
Hall signal could be distinguished from the usual anomalous
Hall signal directly connected to the magnetization.

V. SPIN STRUCTURES IN IN-FIELD PHASES

In this section, we will discuss the magnetic structures of
the in-field phases all of which are quadruple-Q ( 1

2 , 1
2 , 1

2 )
states with respect to the SxSy spin component. It will be
shown that the Sz components in the hedgehog-lattice phase
also exhibit a quadruple-Q ( 1

2 , 1
2 , 1

2 ) structure, whereas those
in the chiral I and chiral I’ phases exhibit double-Q ( 1

2 , 1
2 , 1

2 )
structures. Such a quadruple-Q magnetic structure in the
hedgehog-lattice phase turns out to be tetragonal-symmetric.
As we will explain below, in the chiral I and chiral I’ phases,
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a similar tetragonal-symmetric structure emerges, but the ro-
tational symmetry in the plane perpendicular to the tetragonal
axis is broken due to the double-Q Sz ordering, resulting in
an orthorhombic-symmetric spin state. In the canted collinear,
canted coplanar, and chiral II phases, the spin states are
cubic-symmetric, tetragonal-symmetric, and orthorhombic-
symmetric, respectively.

In the subsequent sections, Figs. 7–10 are obtained for
|J ′

1/J1| = 0.2 with FM J1 and J ′
1, whereas Figs. 11 and 12

are obtained for |J ′
1/J1| = 0.6 with AFM J1 and FM J ′

1. Since
in all the ordered states, the spin structure factors for the
SxSy component FS⊥(q) in the (h, h, l ), (h, k, h), and (h, k, k)
planes exhibit almost the same Bragg-peak patterns, only the
(h, h, l ) plane is shown in each (a) of Figs. 7–12. MC spin
snapshots shown in Figs. 7–10 are obtained by taking a short-
time average over 10 MC steps to reduce the thermal noise.

A. In-field hedgehog-lattice phase

Figure 7 shows the spin structure of the in-field hedgehog
lattice in the FM J1 and J ′

1 case where the monopoles are
formed on the large tetrahedra. Although the result below
is essentially the same as that in the AFM J1 and J ′

1 case
where the monopoles are formed on the small tetrahedra [42],
here, we will discuss it for completeness. As one can see
from Figs. 7(a) and 7(b), the in-field hedgehog lattice is a
quadruple-Q ( 1

2 , 1
2 , 1

2 ) state with respect to both the SxSy and
Sz spin components and is also characterized by additional
(1,0,0) and (0,1,1)-type Bragg peaks in FS⊥(q). Although in
Fig. 7(b), (1,1,1)-type Bragg reflections can also be found,
they are trivial ones stemming mainly from the uniform mag-
netization. In Fig. 7(a), the (1,0,0)-type Bragg peaks appear at
(1,0,0) and (0,1,0), while not at (0,0,1), so that the spin state
is tetragonal-symmetric in the sense that among the cubic-
symmetric families of (1,0,0), (0,1,0), and (0,0,1), only one
direction (z direction in the case of Fig. 7) is special. Such a
situation is also the case for the (0,1,1)-type Bragg reflections.
Compared with the main peaks at (± 1

2 ,± 1
2 ,± 1

2 ), these (1,0,0)
and (0,1,1)-type Bragg peaks show very weak intensity [see
the color-bar ranges in Fig. 7(a)].

We will next discuss how the tetragonal symmetry looks
like in the real-space spin structure. Figure 7(c) shows
the associated spin snapshots mapped onto a unit sphere. One
can see that on each large tetrahedron, spins belonging to the
sublattices 1 and 2 (3 and 4) which, respectively, correspond
to red and green (blue and yellow) symbols in Fig. 7(c) are
paired up and their SxSy components are almost collinear. As
illustrated in Fig. 7(d), bonds connecting the paired sublattices
are stacking along z axis, so that the spin configuration on each
tetrahedron is tetragonal-symmetric with respect to z axis.
In the lower panels of Fig. 7(c), one notices that on tetra’s
I’ and II’ (III’ and IV’) enclosed by a purple (green) box,
the SxSy components of paired spins are ferromagnetically
(antiferromagnetically) aligned. As shown in Fig. 7(e), these
two types of tetrahedra are stacking along z-axis within the
cubic unit cell. Thus the spin state is tetragonal-symmetric at
the level of the cubic unit cell as well as each tetrahedron.
Although we have focused on the large tetrahedra, the small
tetrahedra also possess the same tetragonal-symmetric real-
space structure. As will be discussed below, the tetragonal

FIG. 7. Spin structure in the in-field hedgehog-lattice phase
obtained at T/|J1| = 0.11 and H/|J1| = 1.0 for |J ′

1/J1| = 0.2 and
J3/|J1| = 0.7 with FM J1 and J ′

1. (a) FS⊥(q) in the (h, h, l ), (h, k, 0),
(h, 0, l ), and (0, k, l ) planes (from left to right) obtained for L = 12
and (b) associated FS‖(q) in the (h, h, l ), (h, k, h), and (h, k, k) planes
(from left to right). In FS‖(q), the high-intensity trivial peak at q = 0
indicated by a cross, which corresponds to m2, has been removed.
(c) MC spin snapshots mapped onto a unit sphere (top) and their
projection onto the SxSy plane (bottom), where the notations of the
color and tetra’s are the same as those in Fig. 4(a) and a monopole
tetrahedron is enclosed by black dots. (d) Tetragonal-symmetric pair-
ing pattern in each tetrahedron, where wavy lines denote pair bonds.
(e) Tetragonal-symmetric distribution of the two different types of
tetrahedra [tetra’s enclosed by purple and green boxes in (c)] within
the cubic unit cell (for details, see the text).

symmetry of this kind can also be seen in the chiral I, chiral
I’, and canted coplanar phases, although in the chiral I and
chiral I’ phases, the spin-state symmetry is further reduced in
the plane perpendicular to the tetragonal axis.

B. Chiral I and chiral I’ phases

In this section, we will first discuss the chiral I phase, and
then, explain the difference between the chiral I and chiral
I’ phases whose spin structures look quite similar. Figure 8
shows the spin structure in the chiral I phase. In FS‖(q) shown
in Fig. 8(b), one can see Bragg peaks at ±Q1 = ±( 1

2 , 1
2 , 1

2 )
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FIG. 8. Spin structure in the chiral I phase obtained at T/|J1| =
0.11 and H/|J1| = 1.25 for |J ′

1/J1| = 0.2 and J3/|J1| = 0.7 with FM
J1 and J ′

1. (a) FS⊥(q) in the (h, h, l ), (h, k, 0), (h, 0, l ), and (0, k, l )
planes (from left to right) obtained for L = 12 and (b) associated
FS‖(q) in the (h, h, l ), (h, k, h), and (h, k, k) planes (from left to
right), where in (b), the high-intensity trivial peak at q = 0 indicated
by a cross has been removed. (c) MC snapshots of spins mapped onto
a unit sphere (top) and their projection onto the SxSy plane (bottom),
where the notations are the same as those in Fig. 7(c).

and ±Q4 = ±( 1
2 , 1

2 , −1
2 ) but not at the remaining two Q2 and

Q3, so that the Sz component forms a double-Q ( 1
2 , 1

2 , 1
2 )

structure, whereas the SxSy component forms a quadruple-
Q structure [see the left panel of Fig. 8(a)]. In FS⊥(q), in
addition to the quadruple-Q ( 1

2 , 1
2 , 1

2 ) Bragg peaks, weak-
intensity (1,0,0)- and (0,1,1)-type peaks appear, as in the case
of the in-field hedgehog lattice [note that the (1,1,0) peak is
hardly visible in the (h, h, l ) plane shown in the left panel
of Fig. 8(a), because its intensity is considerably weak as
indicated by the right color-bar range in Fig. 8(a)]. Since
these (1,0,0)- and (0,1,1)-type Bragg peaks are absent only
at one of the cubic-symmetric (1,0,0) and (0,1,1) families (see
the right three panels in Fig. 8), at first sight, the spin state
looks tetragonal-symmetric with z-axis being characteristic.
Compared with FS⊥(q) in the in-field hedgehog-lattice phase
(see Fig. 7), however, FS⊥(q) in the chiral I phase addition-
ally shows Bragg peaks at ±(1, 1, 0) but not at ±(1,−1, 0).
Such a nonequivalence between (1,1,0) and (1,−1, 0) has
been confirmed in FS‖(q) as well. This ordering vector
(1,1,0) distinguished from (1,−1, 0) is associated with the
double-Q ordering vectors Q1 and Q4 via the relation Q1 +
Q4 = (1, 1, 0). We have confirmed this association for dif-
ferent MC snapshots. Since (1,1,0) and (1,−1, 0) are not
equivalent any more, the rotational symmetry in the plane

FIG. 9. Spin structure in the chiral I’ phase obtained at T/|J1| =
0.2 and H/|J1| = 1.25 for |J ′

1/J1| = 0.2 and J3/|J1| = 0.7 with FM
J1 and J ′

1. (a) FS⊥(q) in the (h, h, l ), (h, k, 0), (h, 0, l ), and (0, k, l )
planes (from left to right) obtained for L = 12 and (b) associated
FS‖(q) in the (h, h, l ), (h, k, h), and (h, k, k) planes (from left to
right). (c) MC spin snapshots mapped onto a unit sphere (top) and
their projection onto the SxSy plane (bottom), where the notations
are the same as those in Figs. 7(c) and 8(c).

perpendicular to the symmetry axis (z axis) is broken, which
is reflected in nonvanishing P⊥2 (see the third panels from the
top in Figs. 5 and 6). As these orthogonal two directions are
not equivalent, the spin state turns out to be orthorhombic-
symmetric.

As one can see from MC snapshots shown in Fig. 8(c), the
real-space spin structure is quite similar to that of the in-field
hedgehog lattice. On each tetrahedron, the four sublattices are
paired up into two such that spins belonging to each pair tend
to orient along almost the same axis within the SxSy plane,
and on tetra’s I’ and II’ (III’ and IV’), the SxSy components of
paired-sublattice spins are ferromagnetically (antiferromag-
netically) aligned. Furthermore, in the three-dimensional spin
space, four spins on each tetrahedron are pointing in differ-
ent directions. Thus the real-space structure possesses almost
the same kind of tetragonal symmetry as that in Figs. 7(d)
and 7(e). Although the further symmetry reduction discussed
above can hardly be seen in the real-space spin structure, it is
reflected in the chirality sector more clearly.

In the chirality sector [see Fig. 18(b) in Appendix A], the
structure factor FC (q) in the chiral I phase exhibits Bragg
peaks at ±Q1, ±Q2, ±Q3, and ±Q4, but in contrast to the
hedgehog-lattice phase where their intensities are basically
the same [see Fig. 18(a) in Appendix A], the Q1 and Q4

intensities are relatively weaker than the Q2 and Q3 ones,
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FIG. 10. Spin structure in the canted collinear phase obtained at
T/|J1| = 0.11 and H/|J1| = 4.8 for |J ′

1/J1| = 0.2 and J3/|J1| = 0.7
with FM J1 and J ′

1. (a) FS⊥(q) in the (h, h, l ) plane obtained for L =
12 and (b) associated FS‖(q) in the (h, k, 0) plane. (c) MC snapshots
of spins mapped onto a unit sphere (top) and their projection onto
the SxSy plane (bottom), where the notations are the same as those in
Figs. 7(c), 8(c), and 9(c).

reflecting the double-Q nature of the Sz spin component. As
will be discussed in Sec VI, the direction of the total chirality
vector χT is determined by the double-Q ordering vectors, i.e.,
the rotational symmetry breaking in the plane perpendicular to
the main symmetry axis.

Now that the spin structure in the chiral I phase is under-
stood, we will next discuss the chiral I’ phase which is clearly
distinguished from the chiral I phase by the absence of the
total chirality χT (compare the red and orange regions in the
forth panels from the top in Figs. 5 and 6). By comparing
Figs. 9(a) and 9(b) with Figs. 8(a) and 8(b), one notices that
the spin structure factors in the chiral I and chiral I’ phases are
qualitatively the same including the double-Q nature for the Sz

component, suggestive of the spin-state symmetry of the same
kind. Actually, the real-space structures in the chiral I and
chiral I’ phases shown in Figs. 8(c) and 9(c) look qualitatively
the same. There is, however, a minor but significant difference
in the spin configurations on the tetrahedra having sublat-
tice pairs with ferromagnetically aligned SxSy components. In
the upper panels of Fig. 9(c), spins belonging to sublattices 3
and 4 [blue and yellow symbols in Fig. 9(c)] are oriented in the
same direction on tetra’s I’ and II’. This is in sharp contrast to
the chiral I and in-field hedgehog-lattice phases where the four
sublattice spins are pointing in different directions on each
tetrahedron.

Although the difference between the chiral I and chiral I’
phases are hardly visible in the spin structure factors shown
in Figs. 8(a), 8(b), 9(a), and 9(b), it can clearly be seen in
the chirality structure factor [see the left panels of Figs. 18(b)
and 18(c)]: in the chiral I’ phase, the ( 1

2 , 1
2 , 1

2 ) and ( 1
2 , 1

2 , −1
2 )

FIG. 11. Spin structure in the canted coplanar phase obtained at
T/J1 = 0.01 for |J ′

1/J1| = 0.6 and J3/J1 = 0.7 with AFM J1 and FM
J ′

1. (a) FS⊥(q) in the (h, h, l ) plane obtained at H/J1 = 3.5 for L = 12
and (b) associated FS‖(q) in the (h, k, 0), (h, 0, l ), and (0, k, l ) planes
(from left to right). (c) and (d) MC snapshots of spins mapped onto
a unit sphere (upper panels) and their projection onto the SxSy plane
(lower panels) obtained at H/J1 = 3.5 and 5.6, respectively, where
the notations of the color and tetra’s are the same as those in Fig. 4
(b). (e) Tetragonal-symmetric pairing pattern in each tetrahedron,
where wavy lines denote pair bonds. (f) Tetragonal-symmetric dis-
tribution of the two different types of tetrahedra [purple and green
tetra’s in (c) and (d)] within the cubic unit cell (for details, see
the text).

peaks disappear in FC (q), and the ( 1
2 , 1

2 , 1
2 ) double-Q nature

is more remarkable.

C. Canted collinear phase

In the canted collinear phase, quadruple-Q ( 1
2 , 1

2 , 1
2 ) Bragg

peaks appear only in FS⊥(q), and the structure of the Sz

component is characterized by the cubic-symmetric (1,0,0)-
and (0,1,1)-type ordering vectors [see Figs. 10(a) and 10(b)].
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FIG. 12. Spin structure in the chiral II phase obtained at T/J1 =
0.01 and H/J1 = 4.9 for |J ′

1/J1| = 0.6 and J3/J1 = 0.7 with AFM
J1 and FM J ′

1. (a) FS⊥(q) in the (h, h, l ) plane obtained for L = 12
and (b) associated FS‖(q) in the (h, k, 0), (h, 0, l ), and (0, k, l ) planes
(from left to right), where in (b), the high-intensity trivial peak at q =
0 indicated by a cross, which corresponds to m2, has been removed.
(c) MC snapshots of spins mapped onto a unit sphere (upper panels)
and their projection onto the SxSy spin plane (lower panels), where
the notations are the same as those in Figs. 11(c) and 11(d).

Thus the spin state is cubic-symmetric. Actually, as one can
see from Fig. 10(c), all the four-sublattice spins are collinearly
aligned in the SxSy plane, and the sublattice pairing charac-
teristic of the tetragonal-symmetric spin configuration does
not occur. Four spins on each of large tetrahedra shown in
Fig. 10(c) take a 3:1 configuration within the SxSy-plane
collinear manifold, whereas those on each small tetrahedron
take a 2:2 or 4:0 configuration (not shown here), reflecting the
zero-field collinear spin structure (see Fig. 8(a) in Ref. [42]).
This phase is characterized by the SxSy-plane nematicity P⊥2

[see the third panel from the top in Fig. 5(a)].

D. Canted coplanar phase

Figure 11 shows the spin structure of the canted coplanar
phase, where ( 1

2 , 1
2 , 1

2 ) Bragg peaks appear only in FS⊥(q) like
in the case of the canted collinear phase. As one can see from
Fig. 11(b), the canted coplanar state is tetragonal-symmetric
because among cubic-symmetric families of (1,0,0) and
(0,1,1), only (0,0,1) and (1,±1, 0) are picked up in FS‖(q)
with z axis being characteristic. We note that in the canted
coplanar phase, the tetragonal symmetry is reflected in the Sz

component, whereas in the in-field hedgehog-lattice phase, it
is reflected in the SxSy component. Within the canted coplanar
phase, the spin structure factor looks qualitatively the same
irrespective of the field strength, and thereby, the tetragonal
symmetry remains unchanged. Nevertheless, the real-space
spin structure in the high-field regime is slightly different from
that in the low-field regime.

Figures 11(c) and 11(d) show the MC spin snapshots ob-
tained in the low-field and high-field regions of the canted
coplanar phase, respectively. The common feature of the two

is that the four sublattice 1, 2, 3, and 4 are paired up into two
on each tetrahedron as indicated in Fig. 11(e) and that the
four tetrahedra I, II, III, and IV are classified into two each
of which is enclosed by a purple or green box in Figs. 11(c)
and 11(d). As shown in Fig. 11(f), both the paired sublattices
and the two classes of tetrahedra are stacking along z axis.
The difference between the low-field and high-field structures
is that in the high-field region, spins belonging to one paired
sublattices on each tetrahedron are pointing in the same direc-
tion, while not in the low-field region. Nevertheless, we cannot
find a qualitative difference between the two in the physical
quantities, so that we call these two structures with the single
term of “canted coplanar.”

E. Chiral II phase

The spin structure in the chiral II phase possesses the
features of the neighboring low-field and high-field coplanar
phases. As shown in Figs. 12(a) and 12(b), the Bragg peak
patterns are basically the same as those in the canted coplanar
phase shown in Figs. 11(a) and 11(b) except the additional
weak peaks at ±(0, 1, 0) in FS‖(q). Since the intensities of the
main (0,0,1) and additional (0,1,0) peaks are clearly different
and the (1,0,0) component is absent, the spin state could be
categorized as orthorhombic. Actually, in the real-space spin
structure shown in Fig. 12(c), one cannot see clear sublat-
tice pairings characteristic of the tetragonal-symmetric spin
structures. On the other hand, Fig. 12(c) could be viewed as
an intermediate state between Figs. 11(c) and 11(d): starting
from the high-field coplanar structure in Fig. 11(d), the paired
sublattices with the same spin orientation are split into two
to reconstruct the spin configuration such that the low-field
structure exemplified by Fig. 11(c) is obtained. In such a split
state, i.e., the chiral II phase, the spin directions for the four
sublattices are different on each tetrahedron, as in the in-field
hedgehog-lattice and chiral I phases. Interestingly, the total
chirality χT is nonzero only in these phases where the four
spins on each of all the tetrahedra are pointing in the different
directions in the three-dimensional spin space.

In the chiral II phase, the local chirality summed over
the four triangles on a tetrahedron χ (Rl ) = ∑

i, j,k∈l th tetra χi jk

vanishes, so that Bragg peaks are trivially absent in the asso-
ciated chirality structure factor FC (q). Nevertheless, with the
nonzero χT, we call this state “chiral.”

VI. FIELD-INDUCED TOTAL CHIRALITY

Now that the spin structures in all the in-field phases
are clarified, here, we will discuss the origin of the field-
induced total chirality χT associated with the chirality-driven
anomalous Hall effect. Since as one can see from Eq. (5),
the chirality “vector” χT is obtained by summing up the
contributions from all the tetrahedra, we shall start from
the fundamental properties of the chirality vector for a sin-
gle tetrahedron χT,tetra = 〈∑i, j,k∈tetra χi jk n̂i jk 〉 with χi jk =
Si · (S j × Sk ).

A. Chirality for a tetrahedron

For the large tetrahedron shown in Fig. 13(a), the
surface normals n̂i jk are given by n̂134 = (1, 1, 1)/

√
3,
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FIG. 13. Chirality for a tetrahedron. (a) A tetrahedron having a
tetragonal-symmetric sublattice pairing, and (b)–(d) its projections
onto the two-dimensional planes perpendicular to x, y, and z axes,
respectively, where a red circular arrow denotes the direction in
which the spin chirality χi jk is defined and other notations are the
same as those in Fig. 7(d).

n̂142 = (1,−1,−1)/
√

3, n̂243 = (−1,−1, 1)/
√

3, and n̂123 =
(−1, 1,−1)/

√
3, so that the chirality vector for the large

tetrahedron is given by

χT,tetra = 1√
3

⎛
⎝χ134 + χ142 − χ243 − χ123

χ134 − χ142 − χ243 + χ123

χ134 − χ142 + χ243 − χ123

⎞
⎠. (9)

Noting that χi jk = −χik j , one finds that the x component of
χT,tetra is none other than the total chirality summed over
the four yz-plane triangles yielded when the tetrahedron is
projected onto the yz plane [see Fig. 13(b)]. Such a situation is
also the case for the xz and xy projections [see Figs. 13(c) and
13(d)], suggesting that the spin configuration on the projected
layer of one-tetrahedron width is essential for the chirality
vector corresponding to the emergent fictitious field. Below
in this section, we will discuss how the spin configuration
on a tetrahedron is reflected in the chirality in the projected
two-dimensional planes.

In the canted collinear phase shown in Fig. 10(c), all the
spins are in the same spin plane, so that the local scalar
chirality χi jk trivially vanishes and thereby, χT,tetra = 0. Thus
the question is how the tetragonal-symmetric spin config-
uration on a tetrahedron, which can commonly be seen in
most of the in-field phases, is reflected in the chirality in
the projected two-dimensional planes. As one can see from
Figs. 13(a)–13(d), the sublattice pairs stacking along the
tetragonal-symmetric z-axis [see the wavy lines in Fig. 13(a)]
are arranged in parallel in the projected planes perpendicular
to x and y axes [see Figs. 13(b) and 13(c)], whereas arranged
diagonally in the plane perpendicular to the tetragonal sym-
metry axis, i.e., z axis [see Fig. 13(d)]. Such a difference in
the arrangement pattern turns out to be important for whether
χT,tetra eventually vanishes or not.

In an applied magnetic field, a spin can be expressed
with the use of the uniform magnetization m as Si = (m +
δSz

i )ẑ + δS⊥
i . In the case of the in-field hedgehog lattice

shown in Fig. 7(c), SxSy components of paired spins are
almost collinear, so that for simplicity, here, we assume
that δS⊥

i
′s and δSz

i
′s for the paired sublattices are paral-

lel and antiparallel (antiparallel and parallel), respectively,
on tetra’s I’ and II’ (III’ and IV’). In the low-field copla-
nar case shown in Fig. 11(c), such a situation is also the
case for δS⊥

i , whereas δSz
i
′s are uniform. By using such

constraints on δSi, we can perform reference calculations

FIG. 14. Chirality distributions in the projected two-dimensional
planes in the in-field hedgehog-lattice phase obtained at T/|J1| =
0.11 and H/|J1| = 1.0 for |J ′

1/J1| = 0.2 and J3/|J1| = 0.7 with FM
J1 and J ′

1. [(a) and (b)] Layer-resolved distributions of the chirality
calculated from the MC snapshot in Fig. 7, where short-time average
over 200 MC steps has been made to reduce the thermal noise. In
(a) [(b)], χT,tetra

x
′s (χT,tetra

z
′s) on the yz- (xy-)plane layers defined in a

right panel are shown, where the inset shows a zoomed view of the
projected cubic unit cell. In the zoomed view, a wavy line connects
paired sublattices, and a tetrahedra outlined by a thick orange box
(tetra IV’) corresponds to the monopole tetrahedron. Nonzero con-
tributions to the total chirality come from the layers enclosed by a
red box, which in the present case, correspond to the xy-plane layers
perpendicular to the tetragonal symmetry axis shown in (b).

of the chirality on a projected tetrahedron for three types
of arrangement patterns of the paired sublattices shown in
Figs. 13(b)–13(d).

It turns out that in the in-field hedgehog-lattice phase, the
tetrahedron chirality is zero or an odd function of δSμ

i for
the parallel arrangements in Figs. 13(b) and 13(c), whereas it
involves an even function of δSμ

i for the diagonal arrangement
in Fig. 13(d) [see Eqs. (B3) and (B4) in Appendix B]. As will
be demonstrated in the next section, when summed over the
whole two-dimensional plane, the chirality is nonvanishing
only for the diagonal pairing, i.e., in the tetragonal-symmetric
direction, while it is zero from the beginning or completely
canceled out for the parallel pairing, i.e., in the remaining two
directions. In the low-field coplanar phase, due to the uniform
δSz

i , χT,tetra is zero for the parallel pairings and becomes an
odd function of δSμ

i for the diagonal pairing, whereas in the
high-field coplanar phase, it is an odd function for the paral-
lel pairings and zero for the diagonal pairing [see Eq. (B5)
in Appendix B]. In both cases, the nonzero local tetrahe-
dron chirality is completely canceled out by a contribution
from a counter tetrahedron, reflecting the fact that it is an
odd function. In the chiral I, chiral I’, and chiral II phases,
whether the cancellation occurs or not is not so trivial. In
the next subsection, we will discuss the distribution of the
chirality over the whole projected two-dimensional plane in
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FIG. 15. Chirality distributions in the projected two-dimensional
planes in the chiral I phase obtained at T/|J1| = 0.11 and H/|J1| =
1.25 for |J ′

1/J1| = 0.2 and J3/|J1| = 0.7 with FM J1 and J ′
1. [(a) and

(b)] Layer-resolved distributions of the chirality calculated from the
MC snapshot in Fig. 7, where short-time average over 200 MC steps
has been made to reduce the thermal noise. In (a) [(b)], χT,tetra

x
′s

(χT,tetra
z

′s) on the yz- (xy-)plane layers defined in a right panel are
shown, and other notations are the same as those in Fig. 14.

the chiral phases including the in-field hedgehog lattice. For
completeness, the chirality distribution in the canted coplanar
phase is also shown in Appendix C.

B. Real-space chirality distributions in the chiral phases

Figure 14 shows the real-space chirality distributions in the
projected two-dimensional planes in the in-field hedgehog-
lattice phase with the tetragonal-symmetric spin structure
with respect to z axis. Since the quadruple-Q ( 1

2 , 1
2 , 1

2 ) state
consists of the alternating array of two types of cubic unit
cells, the layers shown in each of Figs. 14(a) and 14(b)
are stacking alternately. One can see from Fig. 14(a) that
on the layers perpendicular to x axis (nonsymmetric axis)
where the paired sublattices are arranged in parallel, the local
chiralities χT,tetra

x
′s for most of the tetrahedra vanish due to

the reason explained in the previous section. Although an
exceptional tetrahedron, e.g., tetra I’ in the zoomed view in
Fig. 14(a), has a nonzero χT,tetra

x , it is completely canceled
out by the contribution from the counter tetrahedron in the
neighboring cubic unit cell, so that the net chirality vanishes
on any yz-plane layer. Such a situation is also the case on
the layers perpendicular to y-axis, and thus, the total chirality
χT,tetra

y also vanishes.
By contrast, on the layers perpendicular to z axis

(tetragonal symmetry axis) where the paired spins are ar-
ranged diagonally, not only the local chirality χT,tetra

z but also
the net chirality becomes nonzero. Thus, in the tetragonal-
symmetric in-field hedgehog lattice phase, the total chirality
χT is induced along the tetragonal symmetry axis. On the layer
with the monopoles [layer 1xy in Fig. 14(b)], the monopole

FIG. 16. Chirality distributions in the projected two-dimensional
planes in the chiral I phase obtained at T/|J1| = 0.2 and H/|J1| =
1.25 for |J ′

1/J1| = 0.2 and J3/|J1| = 0.7 with FM J1 and J ′
1. [(a) and

(b)] Layer-resolved distributions of the chirality calculated from the
MC snapshot in Fig. 7, where short-time average over 200 MC steps
has been made to reduce the thermal noise. In (a) [(b)], χT,tetra

x
′s

(χT,tetra
z

′s) on the yz- (xy-)plane layers defined in a right panel are
shown, and other notations are the same as those in Fig. 14.

and antimonopole tetrahedra yield χT,tetra
z

′s of the same sign,
and their contributions are canceled out by those of the op-
posite sign from other neighboring tetrahedra. Although the
cancellation is incomplete resulting in a nonzero small total
chirality, a dominant contribution comes from the layers with-
out the monopoles. As one can see from layer 2xy in Fig. 14(b),
χT,tetra

z
′s on the layer without monopoles take nonzero values

of the same sign, leading to a large total chirality. The exis-
tence of such a uniform chirality layer is characteristic of the
hedgehog-lattice phase with topological objects of monopoles
and antimonopoles.

In the chiral I phase having the orthorhombic-symmetric
spin structure with the anisotropy originating from the double-
Q Sz ordering in the plane perpendicular to the main
symmetry axis, the total chirality χT is also nonzero (see the
red regions in Figs. 5 and 6). Figure 15 shows the layer-
resolved chirality distribution in the chiral I phase, where each
of all the layers has both positive and negative χT,tetra

α
′s. On

the layers perpendicular to the main symmetry axis (z axis),
the positive and negative chiralities are completely canceled
out [see Fig. 15(b)], whereas on the layers perpendicular to its
orthogonal direction (x axis), the cancellation is incomplete
due to the population imbalance between the positive and
negative chiralities, resulting in a nonzero total chirality χT

x
which takes a negative value in the case of Fig. 15(a). The
situation on the layers perpendicular to y axis is the same
as that for x axis, so that the chirality vector χT is induced
along the [110] direction perpendicular to the main symme-
try axis. The in-plane direction of [110] is determined by
the double-Q ordering vectors of Q1 and Q4 satisfying the
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FIG. 17. Chirality distributions in the projected two-dimensional
planes in the chiral II phase obtained at T/J1 = 0.01 and H/J1 = 4.9
for |J ′

1/J1| = 0.6 and J3/J1 = 0.7 with AFM J1 and FM J ′
1. [(a) and

(b)] Layer-resolved distributions of the chirality calculated from the
MC snapshot in Fig. 7, where short-time average over 200 MC steps
has been made to reduce the thermal noise. In (a)–(c), χT,tetra

x
′s,

χT,tetra
y

′s, and χT,tetra
z

′s on the yz-, zx-, and xy-plane layers defined
in right panels are shown, respectively. Nonzero contributions to the
total chirality come from the layers enclosed by a red box, which in
the present case, correspond to the yz-plane layers shown in (a).

relation Q1 + Q4 = (1, 1, 0). In a different case where Q2 and
Q4 are picked up instead of Q1 and Q4, the total chiralities on
the layers perpendicular to x and y axes take opposite signs,
i.e., χT

x = −χT
y , so that χT is induced along the [110] direction

which corresponds to Q2 − Q3 = (−1, 1, 0).
Compared with the in-field hedgehog-lattice phase pos-

sessing the tetragonal-symmetric spin structure, the direction
of the emergent chirality vector χT corresponding to the fic-
titious magnetic field is different. Furthermore, a uniform
chirality layer such as layer 2xy in Fig. 14(b) does not appear
in the chiral I phase.

In the case of the chiral I’ phase shown in Fig. 16, there
exist positive and negative tetrahedron chiralities on most of
the layers. In contrast to the chiral I phase, their populations
are the same on each layer and their contributions are com-
pletely canceled out, as is also confirmed from the reference
calculation [see Eqs. (B3) and (B5) in Appendix B]. Thus the
total chirality does not emerge in the chiral I’ phase.

In the chiral II phase possessing the nonzero total chiral-
ity [see the green region in Fig. 5(b)], the situation is not
so simple. Since the spin structure in the chiral II phase is

orthorhombic, the chirality distributions on the layers per-
pendicular to the x, y, and z axes are not equivalent, which
can clearly be seen from Fig. 17. On the layer perpendicular
to z axis shown in Fig. 17(c), the local chirality is zero, as
in the case of the high-field coplanar phase [see the lower
panels in Fig. 20(c) in Appendix C]. Concerning the layers
perpendicular to the x and y axes, although the populations
of the positive and negative local chiralities are the same,
a complete cancellation occurs only for the y direction. On
the layers perpendicular to x axis shown in Fig. 17(a), the
absolute values of positive and negative chiralities are slightly
different, which results in a nonzero net contribution on each
layer. The direction of χT is associated with the ordering vec-
tor at which the (1,0,0)-type Bragg peaks are absent [compare
Figs. 12(b) and 17].

VII. SUMMARY AND DISCUSSION

In this work, we have theoretically investigated the J1-J3

classical Heisenberg model on the breathing pyrochlore lattice
without the DM interaction, putting emphasis on the stabil-
ity of the hedgehog-lattice topological spin texture and the
field-induced chirality χT associated with the chirality-driven
anomalous Hall effect. In the model, the breathing lattice
structure is characterized by the two different NN interactions
J1 and J ′

1 which are defined on small and large tetrahedra,
respectively. It is found by means of MC simulations that
the hedgehog lattice characterized by the quadruple ( 1

2 , 1
2 , 1

2 )
magnetic Bragg reflections is stable irrespective of the signs
of J1 and J ′

1 as long as J1 �= J ′
1 and the third antiferromagnetic

interaction along the bond direction J3 is sufficiently strong.
It is also found that in a magnetic field, there exist three chiral
phases with nonzero field-induced chirality χT �= 0. They are
the in-field hedgehog-lattice, chiral I, and chiral II phases in
Fig. 2, among which only the hedgehog lattice possesses the
topological objects of the monopoles and antimonopoles. The
direction of χT is determined by the symmetry of the spin
structure. In particular, in the in-field hedgehog lattice with
the tetragonal-symmetric spin structure, χT is induced along
the tetragonal symmetry axis.

We note that χT becomes nonzero only in the applied
magnetic field, which is in sharp contrast to the associated
two-dimensional analog, a miniature skyrmion crystal (SkX)
in a J1-J3 antiferromagnet on the breathing kagome lattice,
where χT is nonzero even in the absence of the applied field
and thus, a zero-field topological Hall effect is possible [68].
Such a difference can be understood from the following fact.
In the zero-field hedgehog lattice shown in Fig. 1, neighbor-
ing breathing-kagome-lattice layers stacking along the (111)
direction have opposite-sign uniform chiralities (compare spin
configurations on equilateral triangles in neighboring kagome
layers) and thus, the net chirality vanishes, whereas in the
zero-field miniature SkX, such a cancellation does not occur
due to the single-layer nature of the lattice. In a magnetic
field, on the other hand, both the three-dimensional and two-
dimensional spin textures commonly possess nonzero total
chirality.

It is useful to compare the present frustration-induced
hedgehog lattice to the DM-induced hedgehog lattice in which
the fictitious field corresponding to χT is also induced by
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the external magnetic field. In the DM case, the fictitious
field emerges only along the applied field direction due to the
field-induced position shifts of monopoles and antimonopoles
[37], whereas in the present system, their positions are un-
changed and χT emerges in any of the possible three directions
x, y, and z, i.e., along the tetragonal symmetry axis of the
spin structure. Furthermore, the sign of χT can be positive
or negative reflecting the fact that the spin Hamiltonian (1)
does not involve the DM interaction and thus, the right-handed
and left-handed chiralities are degenerate as in other frustrated
systems [19,31,32,68]. Nevertheless, the DM-induced and
present frustration-induced hedgehog lattices share a common
feature in the origin of the field-induced total chirality. In the
present system, the dominant contribution to χT comes from
the uniform chirality layers sandwiched by the monopoles
and antimonopoles, and in the DM system, it comes from
skyrmion layers with a uniform chirality sandwiched by the
position-shifted monopoles and antimonopoles [39]. Such a
uniform chirality layer does not appear in the chiral I and
chiral II phases both of which do have nonzero χT but
do not have topological structures. This suggests that
the field-induced uniform chirality layer might be in-
herent to the topological objects of the monopoles and
antimonopoles.

In experiments, the ( 1
2 , 1

2 , 1
2 ) spin correlation has not been

observed in so-far reported breathing pyrochlore magnets
such as the chromium oxides Li(Ga, In)Cr4O8 [52–57,69–73]
and sulfides Li(Ga, In)Cr4S8 [61,62,74–76] and the quantum
magnet Ba3Yb2Zn5O11 [58,77–80]. In the uniform pyrochlore
antiferromagnets GeB2O4 (B=Ni, Co, Fe, Cu) [81–91], on
the other hand, the ( 1

2 , 1
2 , 1

2 ) magnetic LRO has been reported,
although the experimentally proposed spin structure seems
to be different from the ones in the present theoretical
model. If one can modify exchange interactions in the above
possible parent compounds, the ( 1

2 , 1
2 , 1

2 ) hedgehog lattice
might be realized. Considering that the pyrochlore lattice has
kagome-lattice layers as a building block, the kagome-lattice
antiferromagnet BaCu3V2O8(OD)2 [92] might provide a
useful information to realize a relatively strong J3, since in
this compound, J3 is sufficiently strong and the coplanar
ordered state could be well described by the two-dimensional
version of the present model [68].

Although in the above listed magnets are insulators, when
the system can be tuned to be metallic, the chirality-driven
anomalous Hall effect, which gradually increases with in-
creasing field, should be observed. In a metallic system,
the isotropic exchange spin interactions in Eq. (1) can
be mediated by conduction electrons in the form of the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, so that
a conventional Kondo lattice model without spin-orbit inter-
actions could be a minimum microscopic model. Then, the
spin chirality is reflected in electron transport via the Kondo
coupling [66]. Since our result presented here is relatively
robust against the second NN interaction J2 (at least for AFM
J1 and J ′

1 [42]), the RKKY interaction which can effectively
be mapped onto Eq. (1) could be realized by controlling
the conduction electron density or the Fermi level. Even in
insulating systems, a thermal Hall effect might serve as a
probe to detect chiral orders as in a DM system [93], but we
will leave this issue for our future work.

FIG. 18. Chirality structure factors FC (q) in the (h, h, l ),
(h, k, h), and (h, k, k) planes (from left to right) obtained in the MC
simulations for J3/|J1| = 0.7. (a), (b), and (c) are associated with
Figs. 7–9, respectively.
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APPENDIX A: CHIRALITY STRUCTURE FACTOR

Figure 18 shows the chirality structure factors FC (q) in
the in-field hedgehog-lattice, chiral I, and chiral I’ phases. In
the hedgehog-lattice phase, the quadruple-Q ( 1

2 , 1
2 , 1

2 ) Bragg
peaks have almost the same intensity, whereas in the chiral
I phase, ( 1

2 , 1
2 , 1

2 ) and ( 1
2 , 1

2 ,− 1
2 ) intensities are relatively

weak. As readily seen from the left panels of Figs. 18(b)
and 18(c), these intensities eventually vanish in the chiral I’
phase, showing a double-Q structure in the chirality sector.
In the canted collinear, canted coplanar, and chiral II phases,
the local chirality χ (Rl ) = ∑

i, j,k∈l th tetra χi jk vanishes, so that
the associated FC (q) [see Eq. (3)] does not show any Bragg
peaks (not shown in Fig. 18). In Fig. 18, one notices that
a uniform q = 0 component is absent in FC (q). Although at
first sight, this may look inconsistent with the fact that in the
hedgehog-lattice and chiral I phases, the total chirality χT,
i.e., a uniform chirality component, is nonzero, FC (q) is not
directly associated with the vector quantity χT, as FC (q) does
not involve the geometrical factor n̂i jk appearing in χT [see
Eq. (5)].
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APPENDIX B: REFERENCE CALCULATION OF
CHIRALITY FOR A TETRAHEDRON

We examine the chirality vector χT,tetra for a tetragonal-
symmetric spin configuration on a tetrahedron projected onto
a two-dimensional plane. Suppose that spins on the four cor-
ners of a tetrahedron be S1, S2, S3, and S4. As a uniform
magnetization m is induced by a magnetic field, these spins
are expressed as

Si = (m + δSz
i )ẑ + δS⊥

i . (B1)

Then, the chirality for the projected tetrahedron shown in
Fig. 19(a) is calculated as

χi jk + χ jkl + χkli + χli j

= δSz
i ẑ · [(

δS⊥
j × δS⊥

k

) + (
δS⊥

k × δS⊥
l

)− (
δS⊥

l × δS⊥
j

)]
+ δSz

j ẑ · [(
δS⊥

k × δS⊥
l

) + (
δS⊥

l × δS⊥
i

) − (
δS⊥

i × δS⊥
k

)]
+ δSz

k ẑ · [(
δS⊥

l × δS⊥
i

) + (
δS⊥

i × δS⊥
j

) − (
δS⊥

j × δS⊥
l

)]
+ δSz

l ẑ · [(
δS⊥

i × δS⊥
j

) + (
δS⊥

j × δS⊥
k

)− (
δS⊥

k × δS⊥
i

)]
+ 2m ẑ · [(

δS⊥
i − δS⊥

k

) × (
δS⊥

j − δS⊥
l

)]
. (B2)

In the tetragonal-symmetric spin structures appearing in the
present model, the four sublattices are paired up into two
on each tetrahedron. As discussed in Sec. VI A, the paired
sublattices are arranged in parallel (diagonally) on the
tetrahedron projected onto a plane perpendicular (parallel) to
the tetragonal symmetry axis (see Fig. 13). We will discuss
how such a difference in the arrangement pattern is reflected
in χT,tetra for three typical tetrahedral spin configurations il-
lustrated in Figs. 19(b)–19(d). In Fig. 19(b), it is assumed for
simplicity that the SxSy components of paired-sublattice spins
δS⊥

i
′s are antiparallel, whereas the Sz components δSz

i
′s are

parallel. This type appears in the in-field hedgehog-lattice,
chiral I’, and low-field coplanar phases [see the tetrahedra
enclosed by a green box in Figs. 7(c), 9(c), and 11(c)].
Figure 19(c) illustrates the opposite case, i.e., δS⊥

i
′s for each

sublattice pair are parallel, whereas δSz
i
′s are antiparallel,

which is realized in the in-field hedgehog-lattice phase [see
the tetrahedra enclosed by a purple box in Fig. 7(c)]. The
last type shown in Fig. 19(d) appears in the chiral I’ and
high-field coplanar phases [see Figs. 9(c) and 11(d)], where
two spins in one pair are pointing in the same direction. For
the spin configuration in Fig. 19(b), one can easily calculate
the chirality vector by using Eq. (B2) as follows:

χT,tetra
(b) =

⎛
⎝ 0

0
4(2m + δSz

1 + δSz
3) ẑ · (δS⊥

1 × δS⊥
3 )

⎞
⎠, (B3)

where the relations δSz
1 = δSz

2, δS⊥
1 = −δS⊥

2 , δSz
3 = δSz

4, and
δS⊥

3 = −δS⊥
4 have been used and the trivial prefactor 1/

√
3

has been omitted for simplicity. χT,tetra
(b) is nonvanishing only

in the tetragonal-symmetric z direction. In other words, the
chirality on the projected two dimensional plane is nonzero
for the diagonal sublattice pairing, whereas zero for the par-
allel pairing. It should be noted that the nonzero component
χT,tetra

(b), z is an odd function with respect to δS⊥
3 , so that it can

be canceled out by a counter tetrahedron in which δS⊥
3 and

FIG. 19. Schematically drawn tetragonal-symmetric spin config-
urations on a tetrahedron projected onto a two-dimensional plane.
(a) Definition of four sites on the projected tetrahedron and [(b)–(d)]
three typical spin configurations in the projected planes parallel (left)
and perpendicular (right) to the tetragonal symmetry axis, where red,
green, blue, and yellow arrows represent SxSy components of spins
δS⊥

i (i=1-4) belonging to the sublattice 1, 2, 3, and 4, and other
notations are the same as those in Fig. 13. In (b) [(c)], the SxSy

components of paired spins δS⊥
i

′s are antiparallel (parallel), whereas
associated Sz ones δSz

i
′s are parallel (antiparallel). In (d), two spins

for one pair (sublattices 1 and 2) are pointing in the same direction.

δS⊥
4 are interchanged. Such a cancellation actually occurs in

the in-field hedgehog-lattice, chiral I’, and low-field coplanar
phases [see Figs. 14, 16, and 20(a)].

In the case of Fig. 19(c), the additional constraint δSz
1 =

δSz
3 for the in-field hedgehog lattice shown in Fig. 7(c) yields

χT,tetra
(c) =

⎛
⎝− f (o)(δSz

1) ẑ · ( ˆδS⊥
1 × ˆδS⊥

3 )
0

f (e)(δSz
1) ẑ · ( ˆδS⊥

1 × ˆδS⊥
3 )

⎞
⎠,

f (o)(x) = 2x
[
4m2 + (√

1 − (m + x)2 +
√

1 − (m − x)2
)2]

,

f (e)(x) = 2m
[
4x2 + (√

1 − (m + x)2 −
√

1 − (m − x)2
)2]

,

(B4)

where the fixed spin-length constraint |δS⊥
i |2 + (m + δSz

i )2 =
1 has been used together with the relations δSz

1 = −δSz
2,

δS⊥
1 = δS⊥

2 , δSz
3 = −δSz

4, and δS⊥
3 = δS⊥

4 . Although the x
component in Eq. (B4) is nonvanishing, it can be canceled
out by a counter contribution as f (o)(δSz

1) is an odd function
of δSz

1. In contrast, f (e)(δSz
1) involves an even function part,

so that χT,tetra
(c), z can survive even after the summation over the

projected two dimensional plane where the paired sublattices
are arranged diagonally.

The chirality vector for Fig. 19(d) is obtained in the same
manner as those for Eqs. (B3) and (B4) as

χT,tetra
(d) =

⎛
⎝2 S1 · (S3 × S4)

2 S1 · (S3 × S4)
0

⎞
⎠,

S1 · (S3 × S4) = (
m + δSz

1

)
ẑ · (

δS⊥
3 × δS⊥

4

)
+ (

m + δSz
4

)
ẑ · (

δS⊥
1 × δS⊥

3

)
− (

m + δSz
3

)
ẑ · (

δS⊥
1 × δS⊥

4

)
. (B5)
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FIG. 20. Chirality distributions in the projected two-dimensional planes in the canted coplanar phase obtained at T/J1 = 0.01 for |J ′
1/J1| =

0.6 and J3/J1 = 0.7 with AFM J1 and FM J ′
1. (a) and (c) Layer-resolved distributions of the chirality calculated from the MC snapshots at the

low field of H/J1 = 3.5 and the high field of H/J1 = 5.6 shown in Figs. 11(c) and 11(d), respectively, where the layers are defined in (b). In
(a) and (c), the upper (lower) panels show χT,tetra

x
′s (χT,tetra

z
′s) on the yz- (xy-)plane layers, where short-time average over 200 MC steps has

been made to reduce the thermal noise. Notations of the paired sublattices and tetra’s are the same as those in Figs. 11(e) and 11(f).

The tetrahedron chirality in the projected two-dimensional
plane vanishes along the tetragonal symmetry axis, whereas
it takes the same nonzero value in the remaining two nonsym-
metric directions. Although the x and y components of χT,tetra

(d)
are nonvanishing at the level of the single tetrahedron, these
contributions proportional to S1 · (S3 × S4) can be completely
canceled out in the following reason. When δSz

3 = δSz
4 like in

the case of the high-field coplanar phase, S1 · (S3 × S4) is an
odd function with respect to the interchange between δS⊥

3 and
δS⊥

4 , so that it may be canceled out by a neighboring counter
contribution. As will be demonstrated in Appendix C, this is
actually the case for the high-field coplanar phase.

APPENDIX C: REAL-SPACE CHIRALITY DISTRIBUTIONS
IN THE CANTED COPLANAR PHASE

Figure 20 shows the layer-resolved real-space chirality
distributions in the canted coplanar phase. For the low-field

coplanar structure shown in Fig. 11(c), the chirality vec-
tors χT,tetra ′s on tetra’s I and II are trivially absent and
the ones on tetra’s III and IV are nonvanishing only for
the tetragonal-symmetric axis, which can clearly be seen
in Fig. 20(a). The nonvanishing components χT,tetra

z
′s take

positive and negative signs on each layer, being completely
canceled by each other [see Eq. (B3)], so that the total chirality
vanishes.

For the high-field coplanar structure shown in Fig. 11(d),
Eq. (B5) suggests that the tetrahedron chirality χT,tetra are
nonvanishing only for the nonsymmetric directions (x and y
directions), which can be seen in Fig. 20(b). Since the nonva-
nishing contributions on neighboring tetrahedra take opposite
signs, they are completely canceled out, resulting in no net
chirality.
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