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Transition magnon modes in thin ferromagnetic nanogratings
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This work presents micromagnetic simulations in ferromagnetic nanogratings for the full range of directions
of an applied in-plane external magnetic field. We focus on the modification of the magnon mode characteristics
when the magnetic field orientation is gradually changed between the classical Damon-Eshbach and backward-
volume geometries. We found that in a specific range of field directions, the magnon mode parameters differ
significantly from the parameters in the classical cases; namely, the modes are characterized by complex spatial
distributions and have low group velocities. The center of this range corresponds to the direction of the external
magnetic field, which gives the maximal nonuniform distribution of the static magnetization in the nanogratings.
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I. INTRODUCTION

Magnonics is a rapidly developing direction of modern
magnetism that uses spin waves (or magnons) for data trans-
fer and processing [1–3]. Structures with spatially periodic
magnetic properties, referred to as magnonic crystals [4–14],
and periodically patterned ferromagnetic films, referred to as
surface-modulated magnonic crystals [15–26], play a cen-
tral role in this field. The simplest pattern is a periodic set
of grooves and wires that form a (nano)grating (NG) struc-
ture which, despite its simple design, has already shown
prospective potential for multiple applications, e.g., magnonic
transistors [27], switches [28–30], filters [15,31], grating cou-
plers [32], magnetic field generators [33], and detectors [34].

An essential feature of NG structures is the rich spectrum
of magnon eigenmodes, which can be tuned by an external
magnetic field Hext. It consists of modes with the wave vector
along the reciprocal wave vector of the NG (perpendicular
to the grooves) with energy dispersions and spatial distri-
butions significantly different from the case of a plain film
(see, e.g., [13,25]). The dispersions determine the magnon
modes’ group velocities as well as the magnon band gaps’
spectral positions and widths. The spatial profiles of the
magnon modes define their excitation selectivity and the inter-
action with other periodic excitations, such as electromagnetic
[5,7–9,20,21,24,25] or elastic [35–37] waves. The excitation
and interaction efficiencies depend on the spatial matching
of the magnon modes and other wave excitations and can be
entirely suppressed in the case of poor matching.

An essential fundamental phenomenon in magnonics is
nonreciprocity, i.e., the difference in localization [38] and/or
amplitude [39,40] and/or frequency [13,14,22,26,41] of the
spin waves with opposite directions of their wave vectors. In
NG structures, magnons can possess asymmetric dispersions
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with indirect band gaps in the Brillouin zone [13,22]. In this
case, spin waves with Bloch wave vectors at the center of the
Brillouin zone are propagating waves. Thus, nonreciprocity
provides the ability to excite propagating spin waves employ-
ing spatially homogeneous excitations.

The main experimental tools for studying magnons in NG
structures are Brillouin light scattering [2,5,7–9,42] and fer-
romagnetic resonance (FMR) [19–21,24,25,43] spectroscopy.
Traditionally, only two directions of Hext have been studied:
perpendicular [the Damon-Eshbach (DE) geometry] and par-
allel [the backward-volume (BV) geometry] to the magnon
wave vector. However, to the best of our knowledge, so far
no information about the main magnon characteristics in NG
structures for intermediate directions of Hext is available.

While magnons in plain ferromagnetic films are well stud-
ied for any magnetic field direction [38,44], the introduction
of grooves not only fixes the magnon wave vector direction
but also leads to the generation of both static and dynamic
demagnetizing fields, which strongly influence the magnon
characteristics. For instance, magnon spatial profiles and dis-
persions at 45◦, i.e., in between the DE and BV geometries,
are a priori not known; that is, the question is whether this
case is DE-like or BV-like. In addition, it is unclear how the
transition between the DE and BV geometries is arranged; that
is, is the change in the mode characteristics smooth across the
wide range, or does it occur sharply for a specific magnetic
field direction? Moreover, time-resolved experiments on the
excitation of a metallic ferromagnet by femtosecond laser
pulses and detection of the coherent magnon response using
the transient magneto-optical Kerr effect [33,45–49] are typi-
cally performed at intermediate directions of Hext, where the
excitation efficiency is maximal [48,49]. Thus, an analysis of
the magnons at intermediate directions of Hext that provides
answers to the above questions is required.

This paper presents a detailed theoretical analysis of
magnons in a ferromagnetic NG for arbitrary directions
of Hext. We focus on the main magnon characteristics,
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FIG. 1. Sketch of the nanograting, the coordinate system, and the
in-plane external magnetic field Hext .

including the spatial profiles, dispersions, and dependences of
the magnon frequencies on the direction and strength of Hext.
We find that by changing the direction of the magnetic field
continuously from DE geometry to BV geometry, the main
magnon characteristics remain DE-like until the field direction
enters a transition range, where the magnon characteristics
are neither DE-like nor BV-like. When exiting this transition
range, the magnon characteristics can be considered to be
BV-like. We show that both the static magnetization and the
demagnetizing field are critically important for the transition.
The position of the transition range is defined by the particular
direction of the external magnetic field, which corresponds to
the maximal nonuniform distribution of the static magnetiza-
tion in the NG. The width of the transition range is ∼25◦.
Therefore, by changing the magnetic field direction around
the transition range one can switch between three different
types of magnon modes and choose the magnon modes with
the desired characteristics.

For the calculations, we use the COMSOL MULTIPHYSICS

software [50]. Our choice is based on the ability to solve
and visualize the problem in both time and frequency do-
mains with integration of a specific external impact, such as
femtosecond laser excitation, monochromatic elastic waves,
or picosecond strain pulses, which are widely used in time-
resolved magnonic experiments (see, e.g., [33,45–49]).

This paper is organized as follows: the basic equations and
parameters are given in Sec. II. The steady-state situation is
considered in Sec III. The magnon characteristics are dis-
cussed in Secs. IV and V. The validity and applications are
discussed in Sec. VI. The conclusions are summarized in
Sec. VII.

II. BASIC EQUATIONS

The system under study is a NG structure that consists of
infinitely long parallel grooves of depth h, separated by wires
of width w. The NG is produced in a ferromagnetic film of
thickness l (see Fig. 1), located on a nonmagnetic substrate,
which is not shown for simplicity. The NG period is d , and
the width of the grooves is d − w. The external magnetic field
Hext is applied in the structural plane of the ferromagnet at an
angle ϕH between the grooves and Hext.

The magnetization M in the ferromagnetic NG structure is
described by the Landau-Lifshitz-Gilbert equation (see, e.g.,
[51–53]). It is convenient to introduce a normalized magneti-
zation m = M/Ms, where Ms is the saturation magnetization
and |m| = 1. Moreover, it is convenient to use units in which
the magnetic field, saturation magnetization, and the magnetic

induction are given in teslas to connect to the experiment.
Then, the Landau-Lifshitz-Gilbert equation has the form

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

, (1)

where γ , Heff , and α are the gyromagnetic ratio, effective
magnetic field, and Gilbert damping parameter, respectively.
For isotropic ferromagnetic materials, the effective magnetic
field is given by (see, e.g., [51])

Heff = Hext + Hd + D∇2m, (2)

where Hext and Hd are the external and demagnetizing mag-
netic fields, respectively. The last term in (2) describes the
exchange interaction with exchange stiffness constant D, and
∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z ).

We stress that both m and Hd are spatially inhomogeneous
and time-dependent quantities. The connection between them
is given by the magnetostatic Maxwell equations [51]:

∇ × Hd = 0, ∇ · (Hd + Msm) = 0. (3)

The described macroscopic quasistatic approach is valid if
the magnon wavelength is larger than the atom spacing and
the magnon phase velocities are smaller than the velocity of
light [51]. Equations (1)–(3) are the main set of nonlinear
differential equations for the NG structure. In addition, we
use the standard electrodynamic boundary conditions and free
boundary conditions for the magnetization, i.e., ∂m

∂n = 0, be-
cause this case describes experiments performed on similar
structures [25].

Equations (3) are mathematically equivalent to the well-
known Maxwell electrostatic equations. Therefore, the gen-
eral solutions of Eqs. (3) can be found using Green’s function
for the Laplacian ∇2 (see, e.g., [6]). As a result, the demagne-
tizing field can be written as

Hd(x, z, t ) = −Ms

2π
∇

∫ ∞

−∞
dx′

∫ l

0

mx(x − x′)+mz(z − z′)
(x − x′)2+(z − z′)2

dz′.

(4)
As one can see from Eq. (4), my does not contribute to the de-
magnetizing field even though, in general, my �= 0. Moreover,
the y coordinate is absent in the integrand, as well. This leads
us to the general conclusion that Hd,y is zero for any magneti-
zation direction in the NG. Moreover, the demagnetizing field
is zero if the magnetization is parallel to the grooves.

The search for the solutions of Eqs. (1)–(3) can be divided
into two stages: the steady-state distribution of the magneti-
zation and demagnetizing field and their linear dynamics. In
the steady state, the magnetization m0 is parallel to H0

eff to
minimize the free energy of the ferromagnet [51]. In the NG,
the spatial distribution of H0

eff is inhomogeneous, as is the
spatial distribution of the magnetization [see, e.g., Eqs. (3)].

For the calculations, we chose polycrystalline permalloy
(Ni80Fe20) as the NG material. This isotropic ferromagnet
possesses very weak magnetostriction, which allows us to ex-
clude from consideration the lattice dynamics and to consider
only magnons. The magnetic parameters [25] for the calcu-
lations are the saturation magnetization, Ms = 0.9236 T, and
the exchange stiffness, D = 23.6 T nm2. The Gilbert damping
parameter α is fixed to zero for the eigenfrequency analysis. A
discussion of different materials and parameters can be found
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in Sec. VI. For the geometrical parameters, we will focus on
d ∼ 100 nm and l ∼ 10 nm, which gives us magnon modes
with frequencies of ∼10 GHz and a first-order magnon mode,
which is nonuniform in the z direction (or z-quantized) and
shifted to relatively high frequencies.

III. MAGNETIZATION’S STEADY-STATE DISTRIBUTION

The steady-state distribution of the magnetization corre-
sponds to the minimum of the free-energy density. In the case
of Hext = 0, the magnetization is parallel to the grooves of the
NG. In the case of Hext �= 0, the magnetization in the wires
tends to be parallel to the grooves, while the magnetization
in the film regions (under the patterned volume) tends to
be parallel to Hext. Thus, the total spatial distribution of the
steady-state magnetization is nonhomogeneous for all direc-
tions of Hext except for ϕH = 0◦.

Let us introduce the quantities ϕM(x, z) = arctan (m0
x/m0

y )
and θM(x, z) = arccos m0

z , which are the local azimuthal and
polar angles of the magnetization. The deviations of the
magnetization direction from the direction of Hext are given
by ϕH − ϕM and 90◦ − θM. The deviations are shown in
Fig. 2 for Hext = 200 mT and the following fixed geometrical
parameters: d = 300 nm, w = 140 nm, h = 13.2 nm, and
l = 36.8 nm, which are similar to those in recent experi-
ments [25]. At ϕH = 0, the magnetization is uniform; hence,
ϕH − ϕM = 0◦, and 90◦ − θM = 0◦. At ϕH �= 0 the azimuthal
deviation ϕH − ϕM reaches its maximum of about 19.8◦ at
ϕH = 65◦. The largest azimuthal deviations are localized at
the outer corners of the NG wire. At ϕH = 90◦, the y com-
ponent of the magnetization is zero. Thus, the azimuthal
deviation is zero. Interestingly, these azimuthal deviations can
have both signs. A positive sign means that the magnetization
tends to be parallel to the grooves. A small negative azimuthal
deviation (up to −3.5◦) arises in the region under the grooves,
where H0

d,x is positive (see [54] for details). The latter, referred
to as a magnetizing field (see, e.g., [25]), slightly rotates the
magnetization towards the x direction, i.e., perpendicular to
the grooves.

The polar deviation of the magnetization, 90◦ − θM, is
shown in Fig. 2(b). In this case, the distribution of the polar
deviation is an odd function. This is because the symmetry
of the polar and azimuthal deviations (or magnetization com-
ponents) with respect to the center of the NG wire region
corresponds to the symmetry of the H0

d components [54].
Note that the positive (negative) polar deviations correspond
to positive (negative) m0

z . It can be seen that such polar devi-
ations increase with increasing ϕH. The maximum deviation
is reached at ϕH = 90◦. Interestingly, the polar deviations are
localized in the inner corners of the NG, while the azimuthal
deviations are localized in the outer corners [see Fig 2(a)].
This is because the absolute value of the z component of the
demagnetizing field has its maxima at the sharp parts of the
NG corners (see [54] for details). For the outer corners, H0

d,z
is localized outside the nanograting structure; for the inner
corners, it is localized inside the structure and thereby rotates
the magnetization in the z direction.

As one can see from the analysis above, the magnetization
is not fully saturated (neither homogeneous nor parallel to
Hext) even at Hext = 200 mT, which is strong enough for

FIG. 2. Spatial distributions of (a) ϕH − ϕM and (b) 90◦ − θM for
different directions of Hext at Hext = 200 mT. The values of ϕH are
shown between (a) and (b). All numbers are given in degrees. (c) De-
pendences of the average deviation angle �ϕM on ϕH, which shows
how much the average azimuthal orientation of the magnetization
deviates from the Hext direction, as a function of the direction and
strength of Hext . The white lines represent the contours of constant
angles �ϕM = 2◦, 3◦, and 4◦. (d) Dependences of �ϕM on the
direction of Hext for different depths of the grooves at Hext = 200 mT.

saturation of a plain permalloy film. Due to the demagnetizing
field, the magnetization in the NG saturates asymptotically
with the increase of the external magnetic field strength. For
example, at Hext = 10 T and ϕH = 90◦, the polar deviation,
90◦ − θM, changes from −1.5◦ to 1.5◦. However, the mag-
netization deviates considerably from the external magnetic
field direction only at the corners of the NG. Therefore, for
practical purposes, it is convenient to introduce the average
azimuthal angle of the magnetization, ϕM = ∫

ϕMdV , which
describes the average orientation of the magnetization. Here
dV is the unit volume element. In addition, let us intro-
duce the average deviation angle, �ϕM = ϕH − ϕM, which
describes how much the average azimuthal orientation of the
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magnetization deviates from the Hext direction. The mag-
netization can be considered saturated on average if
sin �ϕM � 1.

Figure 2(c) shows the dependences of �ϕM on different
magnetic field directions and strengths. The meaning of the
white contours in Fig. 2(c) is that for any magnetic field di-
rection and strength above a contour �ϕM = const, the values
of �ϕM < const. For instance, at Hext = 200 mT, �ϕM is less
than 3◦ in any magnetic field direction.

Figure 2(d) shows the dependences of �ϕM on the external
magnetic field direction for different depths of the grooves
h calculated at Hext = 200 mT. The maximum position
slightly shifts toward higher ϕH from 60◦ for the shallow NG
(h = 5 nm) to 69◦ for the deep NG (h = 30 nm). The rea-
son why �ϕM demonstrates a slow increase at ϕH � 50◦
and a rapid decrease at ϕH � 75◦ is due to the collective
dipole-dipole interaction. That is, the spatial region, where the
magnetization direction is close to the field direction, grows
with increasing Hext. At ϕH, which gives the maximum of
�ϕM, this region becomes large enough to change the direc-
tion of the magnetization in the wire region of the NG. Then,
the magnetization in this region attracts the magnetization at
the corners of the NG, leading to the rapid decrease of my. As
a result, �ϕM drops sharply to zero at ϕH = 90◦. Note that for
the NG with h = 30 nm, one must apply much larger magnetic
fields than Hext = 200 mT to saturate the magnetization for
any ϕH.

Keeping this physical picture in mind, we can turn to the
analysis of magnons in the NG.

IV. CLASSIFICATION OF THE MAGNON EIGENMODES

The magnetic dynamics of a ferromagnet consists of the
spatially inhomogeneous precession of the magnetization
around H0

eff . This time- and space-dependent precessional
motion can be considered a superposition of the magnon
eigenmodes of the NG. To describe it, we have linearized the
main set of equations by introducing a dynamic magnetization
δm, with δm � m0, and a dynamic demagnetizing field δHd,
with δHd � Ms. In order to calculate the dispersion curves
and spatial profiles of the magnon modes, we performed an
eigenfrequency analysis with Floquet-Bloch periodic bound-
ary conditions, i.e., ud = us exp (−ikxd ), where kx is the
Bloch wave number and ud and us are dependent variables
at the destination and source boundaries, respectively.

The solutions of the eigenfrequency problem give the spa-
tially inhomogeneous complex-valued Fourier components of
the dynamic magnetization and demagnetizing fields. For the
characterization of the magnon modes’ spatial profiles, let
us choose the z component of the dynamic magnetization
because it is nonzero for any in-plane Hext. Below, we fo-
cus on the spatial profiles, which correspond to the center
of the Brillouin zone, i.e., kx = 0. The real-valued solution
for δmz in the time domain can be expressed in the form
δmz = |δmz,ω|cos(ωt + φz ), where ω is the magnon angu-
lar frequency, δmz,ω is the Fourier component of δmz, and
φz = atan2(Im(δmz,ω ), Re(δmz,ω )) is the phase. The latter is
spatially inhomogeneous. Thus, the magnon modes’ spatial
profiles change during propagation [25]. Moreover, the dif-
ference between the supremum and infimum values of δmz,

Dm(t ) = sup(δmz ) − inf (δmz ), varies with time. However, we
found that at the time which corresponds to the maximum of
Dm(t ), each mode profile becomes purely symmetric or anti-
symmetric with respect to the center of the NG wire region.
This time can be found as t = (τs − φz,c)/ω, where τs = sπ
for symmetric modes (s is an integer number), τs = sπ/2 for
antisymmetric modes, and φz,c is the value of the phase at
the center of the unit cell of the NG (x = 0, z = l/2 in our
coordinate system). Thus, we use the symmetry at this time
for characterizing a magnon mode. This symmetry determines
the possibility of the mode being excited by a spatially homo-
geneous excitation (the laser pulse or the uniform ac magnetic
field in a FMR experiment).

According to the Floquet-Bloch theorem, each eigenmode
contains an infinite number of wave vectors qx = kx + n 2π

d ,
where n is an integer number. To characterize the magnon
modes by the number n, we perform the spatial Fourier trans-
form

δmz,n =
∫

δmz(x, z) exp

(
in

2π

d
x

)
exp (iqzz)dV (5)

and find the set of n which dominate in each eigenmode. Here
qz is the z component of the wave vector. Further, we will
focus on the quasiuniform eigenmodes in the z direction and
set qz = 0.

The result of an eigenfrequency analysis is presented
in Fig. 3(a), which shows the angle dependence of the
magnon frequencies, ω/2π at Hext = 200 mT. Here we can
observe a complicated nonmonotonic behavior with magnon-
magnon interaction and corresponding avoided crossings of
the interacting modes at the intersections. Despite that, the
general tendency is typical for ferromagnets (see, for instance,
[48,49]): the magnon frequency decreases with changing the
direction of Hext from the easy axis (ϕH = 0◦) to the hard
axis (ϕH = 90◦). Interestingly, the frequency of the ground
magnon mode does not significantly depend on the direction
of Hext for ϕH � 50◦ and can be estimated with reasonable
accuracy using the Kittel formula [13].

Figure 3(b) shows the magnetic field dependence of the
magnon frequencies at ϕH = 65◦. The ground magnon branch
(black line) demonstrates a simple Kittel-like behavior. All
following branches first decrease and then increase in their
frequencies with increasing external magnetic field strength.
The turning point at Hext ≈ 15 mT corresponds to the field
strength overcoming the anisotropy field when the steady-
state magnetization turns toward Hext. This is illustrated in
the inset, which shows the magnetic field dependence of the
average azimuthal angle of the magnetization ϕM(Hext ) for the
chosen ϕH.

The spatial profiles of the magnon modes in the DE and
BV geometries can be found in [25,54]. For the DE geometry,
the magnon modes (quasiuniform in the z direction) can be
completely characterized by the single spatial harmonic along
the x axis, characterized by the number n. The ground qua-
siuniform magnon mode corresponds to n = 0, and the next
pair of antisymmetric and symmetric modes has n = 1 (see
the amplitudes of the spatial Fourier transform |δmz,n| in [54]),
etc. In the BV geometry, the localization of magnon modes is
fragmented into separate regions of wires and grooves. As a
result, each magnon mode consists of several dominant n [55].
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FIG. 3. (a) Magnetic field direction and (b) strength dependences of magnon frequencies. The arrow shows the direction of the number n
increase at ϕH � 50◦: the ground magnon branch with n = 0 and the next three pairs with n = 1, 2, and 3. The vertical dashed lines indicate
the transition range. The inset in (b) shows the magnetic field dependence of the average azimuthal angle of the magnetization ϕM. (c)–(e)
Evolutions of the main symmetric magnon modes under rotation of the magnetic field. The values of ϕH are given in degrees. All quantities
here correspond to the center of the Brillouin zone (kx = 0) and Hext = 200 mT.

For example, the ground symmetric edge mode possesses
three dominant n: n = 3, 2, 0 (hereafter, the sequence is given
in descending order of |δmz,n|; see [54]). The symmetric wire
mode can be characterized by n = 1, 0, 2, and the symmetric
groove mode can be characterized by n = 2, 0, 1.

Figures 3(c)–3(e) show the evolution of the spatial profiles
of the three lowest symmetric magnon modes under rotation
of the magnetic field. We can see that the ground quasiuniform
(Kittel) mode (n = 0) in the DE geometry evolves to the edge
mode in the BV geometry. The magnon modes with n = 1
and n = 2 evolve to wire and groove modes, respectively.
Note that we add the field direction ϕH = 59◦ to show the
smooth transition of the n = 2 mode to the groove mode.
We can see that for field directions up to ≈50◦, the magnon
modes can be considered DE-like because their spatial profiles
maintain their distributions and can be characterized by the
single number n. Similarly, starting from ϕH ≈ 75◦ and up
to 90◦, the magnon modes can be considered BV-like. For
the range 50◦–75◦, the magnon modes’ profiles considerably
differ from DE-like and BV-like modes. We call these modes
transition magnon modes. Note that the spatial modulation
in the wire region of the groove mode at ϕH = 75◦ is due to
coupling with the higher-order wire magnon mode (similar to
the fifth mode in Fig. S3(d) in [54]).

Figures 3(c)–3(e) clearly show that the intermediate direc-
tions of Hext can be used for adjusting the spatial overlap
of the selected magnon mode with another periodic excita-
tion, such as an elastic wave, to maximize the magnetoelastic
coupling strength [35–37,56,57]. In the latter case, the mag-
netoelastic interaction can occur between symmetric magnon
and symmetric phonon modes, as well as between symmetric
magnon modes and antisymmetric phonon modes [37] or in
other combinations [35,36].

Notably, the transition range is defined by the steady-state
magnetization distribution in the NG. From the analysis in the
previous section and, in particular, from Fig. 2, we can see that
the transition range is located around the maximum of �ϕM.

We stress that the low-order magnon modes are influenced
by the static demagnetizing fields more strongly than the
high-order modes because the wavelengths of the high-order
modes are smaller than the NG period. Figure 4 shows how
the transition range depends on the external magnetic field
strength: the maximum of �ϕM shifts towards its asymptotic
limit of 45◦ with increasing Hext. In particular, for ϕH = 60◦,
the ground symmetric magnon mode is still the quasiuniform
mode at Hext = 100 mT but already becomes the edge mode at
Hext = 500 mT. The position of the transition range depends
on the interplay of the external magnetic field and the de-
magnetizing field. The transition range width decreases with
the increasing field strength. For commonly used magnetic
fields (∼100 mT), the modes are DE-like at ϕH � 45◦. The
existence of the transition magnon modes in the transition

FIG. 4. Magnetic field direction dependence of �ϕM, showing
the transition from DE-like modes to BV-like modes for three differ-
ent values of Hext .
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FIG. 5. Spatial distributions of transition magnon modes for two
depths of the grooves: h = 13.2 nm and h = 25 nm. The colors of
sequence numbers correspond to the line colors in Figs. 3(a) and 3(b),
and the color scale is the same as in Figs. 3(c)–3(e).

range of the magnetic field directions and their relation to
the static NG magnetization is one of the main results of this
paper.

Spatial profiles of transition magnon modes are shown in
Fig. 5 for ϕH = 65◦ and two different depths of the grooves.
A distinctive feature of these modes is that they are well
distributed in separate parts of the NG. For example, the
ground transition mode, which transforms from the uniform
to the edge mode, is localized in the wire region. However, in
contrast to the edge mode, it has a quasiuniform distribution
there [see Fig 3(c)]. This mode is also different from the wire
mode because it has a significantly different spatial spectrum,
given by n = 0, 1, 3, while for the wire mode n = 1, 0, 2 (see
Fig. S4 in [54]). All four lowest magnon modes are localized
in the wire region, and their sequence number indicates the
number of peaks in the wire region. Then the symmetric and
antisymmetric transition modes localized in the grooves come
next but have a broader spatial distribution than the groove
mode in the BV geometry. The following modes of higher
orders, as well as the high-order modes in the DE and BV
geometries, are weakly influenced by the demagnetizing field
because their wavelengths are smaller than the NG period. The
spatial profiles of transition magnon modes weakly depend on
the depth of the grooves.

V. MAGNON DISPERSION AND NONRECIPROCITY

The dispersion is another crucial characteristic of magnons
that causes the wave vector dependences of the magnon
modes’ frequencies and their group velocities, as well as the
spectral positions and widths of the magnon band gaps. It
can be directly measured by Brillouin light scattering tech-
niques [2,7–9,42] and determines the transient signals in the
magneto-optical pump-probe experiments with microscopic
resolution.

Figures 6(a)–6(h) show the evolution of the magnon dis-
persions under rotation of the magnetic field from ϕH = 0◦
to ϕH = 90◦ at Hext = 200 mT. The nonreciprocity and in-
direct band gaps can be observed for all directions of Hext

except ϕH = 90◦. With increasing ϕH, the magnon dispersion
branches shift to lower frequencies, and several low-lying
branches become flat. Due to the vanishingly small dynamic
demagnetizing field of the ground DE-like branch, it can be

qualitatively described by the thin-film dispersion [58,59]:

ω2 = γ

[
Hext + Ms

(
1 − 1 − e−qxl

qxl

)
cos2ϕH + Dq2

x

]

×γ

[
Hext + Ms

(
1 − e−qxl

qxl

)
+ Dq2

x

]
(6)

in the range of magnetic field directions before the transition
range, i.e., at ϕH � 50◦. This dispersion is shown by dotted
lines in Figs. 6(a)–6(e) in the first Brillouin zone. At ϕH = 0◦,
the seven lowest branches originate from Eq. (6) due to the
folding of the dispersion curves. Then comes the z-quantized
branch, branch 8, which starts its own series of high-frequency
folded dispersion curves. The agreement between the numeri-
cal solutions and Eq. (6) becomes unfulfilled in the transition
range and the range of BV-like modes for the chosen set of
parameters because of relatively strong demagnetizing fields.
Therefore, better agreement can be reached if qxl � 1 and
h/l � 1. Note that in the geometry close to BV the disper-
sions of several of the lowest branches are flat [24] already at
h = 5 nm (all other parameters are fixed as in Sec. II).

A fundamental characteristic of the dispersion curves is the
nonreciprocity, i.e., ω(kx ) �= ω(−kx ). The nonreciprocity in
the NG arises from the symmetry of the structure and the dy-
namical demagnetizing fields. In the DE geometry, both δmx

and δmz contribute equally to δHd [see Eq. (4)]. As a result, at
a random time, δHd is neither symmetric nor antisymmetric,
which causes the propagating behavior of the modes. In the
BV geometry, δHd is defined by δmz. As a result, the parity
of the modes is conserved at any time, and the dispersion is
reciprocal.

One may note that the slopes of the dispersion curves
depend on ϕH nonmonotonically. To show this explicitly, we
calculated the group velocities vg = dω

dkx
at the center of the

Brillouin zone and at two fixed values of the Bloch wave
vector kxd/π = ±0.2. The dependences of vg(ϕH) for the
seven lowest magnon modes are shown in Fig. 7. First, let us
consider the case kx = 0. The group velocity of the ground
quasiuniform magnon mode 1 is close to zero [Fig. 7(a)].
This is due to the vanishingly small dynamic demagnetizing
fields that the quasiuniform mode creates. Consequently, this
mode is reciprocal and has vanishingly small vg at kx = 0.
The next pairs, namely, modes 2 and 3, 4 and 5, and 6
and 7, possess similar dependences with opposite signs. For
ϕH = 90◦, the group velocities for all modes are zero. Note
that the highest magnon group velocity is observed not for
the DE geometry. Magnon mode 3, with n = 1, reaches vg ≈
−0.5 km/s around ϕH = 30◦. The group velocities of modes
2–7 rapidly decrease at angles ϕH � 50◦, which correspond
to the transition range. Thus, the group velocities of transition
modes are close to zero. The lower magnon modes are more
strongly influenced by the static demagnetizing fields than
the higher-order modes, as the wavelength of these modes is
smaller than the NG period. Therefore, the group velocities of
high-order modes are nonzero up to ϕH = 90◦.

At kx �= 0, the fastest magnon mode is the ground one
in the DE geometry with |vg| ≈ 2 km/s. Mode pairs 2 and
3, 4 and 5, and 6 and 7 possess similar dependences with
opposite signs as in the case with kx = 0. The velocities of
transition modes are close to zero due to the flattening of the
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FIG. 6. (a)–(h) Magnon dispersion evolution under rotation of Hext from ϕH = 0◦ (DE) to ϕH = 90◦ (BV) at Hext = 200 mT. The values of
ϕH are shown in the top right corners. Note that the vertical scales are different in (a)–(h). The pink dotted lines represent the corresponding
thin-film dispersions [see Eq. (6)].

dispersions. Interestingly, the indirect band gap between the
modes 6 and 7 at ϕH ≈ 10◦ causes the strong dependence of
the group velocity on the magnon propagation direction: the
group velocity of mode 7 changes from 0 to 0.5 km/s for
negative and positive propagation directions, respectively.

VI. VALIDITY AND APPLICATIONS

Finally, let us discuss the validity and generality of the
obtained numerical results. The validity of our approach was
successfully proven by solving standard micromagnetic prob-
lems [54,60]. Our results are valid for relatively thin NGs, i.e.,
if the z-quantized magnon branch is well above the ground
magnon branch. We found numerically that both the magnon
dispersions and spatial profiles remain qualitatively similar
for surface-modulated magnonic crystals with parameters that
satisfy the criterion led/l2 > c0, where le = √

D/Ms is the
exchange length and c0 ≈ 1. For the parameters used in the
paper, led/l2 ≈ 1.1, which is close to the lower limit of led/l2.
The exchange length is the same order for most common fer-
romagnetic metals. For example, for CoFeB, le ≈ 4.7 nm (see,
e.g., [61]); for permalloy, le ≈ 5.1 nm; for nickel, le ≈ 7.7 nm
(see, e.g., [62]); and for cobalt, le ≈ 8.1 nm (see, e.g., [63]).
For materials such as CoFe, le ≈ 3.2 (see, e.g., [64]), and for
FeGa, le ≈ 4.1 nm (see, e.g., [65]); the above criterion is vio-

lated for l > 30 nm. For the mentioned dielectric ferromagnet
yttrium iron garnet (YIG), the exchange length is larger than
in metals: le ≈ 17.6 nm (see [66]). Note that in addition to the
mentioned criterion, the magnon characteristics can be con-
siderably different for the extremal geometrical parameters.
For instance, the edge mode does not exist if h/l → 0, and
the groove mode, obviously, does not exist in full magnonic
crystals (h ≈ l). In the case led/l2 < 1, the transition region
exists as far as demagnetizing fields exist. It is located also
between ϕH = 45◦ and 90◦. However, with increasing film
thickness, the slope of the ground Kittel-like magnon branch
increases, and the z-quantized branch downshifts. Therefore,
eventually, these branches intersect, and the corresponding
magnon mode characteristics become considerably modified
due to strong magnon-magnon coupling, which causes a band
structure renormalization. A detailed description of this case
is beyond the scope of this paper.

The presence of the transition magnon modes with com-
plex characteristics is important for experimental studies and
technological applications based on the excitation and detec-
tion of coherent magnons by ultrashort laser pulses. Such
investigations are typically implemented for intermediate di-
rections of the external magnetic field. The choice of the
experimental geometry is determined by the mechanism of ex-
citation: ultrafast thermal- and/or strain- (excited by thermal
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FIG. 7. Group velocities of the seven lowest magnon modes for
(a) kx = 0, (b) kxd/π = −0.2, and (c) kxd/π = 0.2. The vertical
dashed lines indicate the transition range.

stress) induced modulations of the magnetic anisotropy, which
are the most effective in the intermediate directions of Hext.
The coherent magnon response in NG is a superposition of the
excited magnon modes. The excitation efficiency of a certain
mode is determined by its spatial overlap with the optically in-
duced impact [35,46,48]. Controlling the spatial profiles of the
magnon modes by the direction and/or strength of the external
magnetic field allows the tuning of the spatial distribution and
frequency spectrum of the coherent magnon response. This

approach can be especially effective in a NG with enhanced
magnetoelastic interaction, in which the excitation of coherent
magnons is mediated by optically excited phonon eigenmodes
of the NG [33,37]. The interaction of specific phonon and
magnon eigenmodes can be fully suppressed in the case of
poor spatial matching or enhanced up to the formation of
a hybridized state in the case of perfectly matched modes
[37,57]. This tunability is important for hybrid magnonics
[67,68] with potential quantum applications.

Optical excitation of the propagating spin waves is another
possible experimental route [49,69,70] which can utilize the
tunability of transition magnon modes. Nonreciprocity of the
magnon modes makes possible the excitation of propagating
spin waves even in the case of uniform optical excitation.
However, the magnon group velocities in intermediate direc-
tions are pretty low for the considered geometrical/material
parameters. The typical value of Gilbert damping for permal-
loy is α = 0.01, which corresponds to a magnon lifetime of
∼1 ns. In this case, the propagation length of a magnon mode
with vg = 0.5 km/s is ∼500 nm, which is comparable with
the NG period. To increase the propagation distance, one can
use materials with weak damping, e.g., YIG or Co0.25Fe0.75,
with comparable Gilbert damping ∼10−4 [18,71]. The group
velocities also increase with increasing ferromagnet film
thickness [72]. For example, our calculations give vg >

15 km/s for the ground magnon mode near the center of the
Brillouin zone in the case of l = 200 nm (all other parameters
are the same as in Sec. II).

VII. CONCLUSION

To conclude, we have investigated the magnon modes
of ferromagnetic nanogratings in intermediate in-plane di-
rections of the external magnetic field. We used COMSOL

MULTIPHYSICS to calculate the magnon dispersions, spatial
profiles, and their dependences on the direction and strength
of the external magnetic field. We have found a transi-
tion range of magnetic fields with a width of ∼25◦ where
the magnon characteristics are very different from the char-
acteristics in the widely investigated Damon-Eshbach and
backward-volume geometries. The range width and its posi-
tion depend on the interplay of the external magnetic field
and the static demagnetizing field. The modes in the transition
range are slowly propagating waves that are well separated in
certain parts of the NG because of their unique combinations
of spatial Fourier harmonics. We have shown that by changing
the magnetic field direction around the transition range, one
can switch between three different types of magnon modes
and choose magnon modes with desirable characteristics.
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