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Hybridized propagating spin waves in a CoFeB/IrMn bilayer
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In this work, we report the propagating spin waves hybridized between first-order and quasiuniform modes
in a Co20 Fe60 B20 thin film capped by Ir25 Mn75. The anticrossing gaps are observed at room temperature both
in the reflection and transmission spectra, where the coupling strength can be tuned by varying the value of the
in-plane wave vector at which the dispersion curves cross. The key mechanism behind this feature is theoretically
ascribed to the dipole-dipole interaction by a model which accounts for many features of our experimental results.
The strong coupling with a cooperativity up to 2.0 is achieved with taking the dissipation rates of two coupled
branches into account. A reference CoFeB sample without IrMn reveals that the interfacial pinning effect also
plays a role in the magnon-magnon hybridization. Tunable hybridization of magnons may foster the field of
magnonics in information processing.
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I. INTRODUCTION

Control over the coherent coupling between quasiparti-
cles is a key issue in realizing information manipulation in
quantum technology [1–5]. Magnons, the quasiparticle of spin
waves, are the low-energy collective excitations of magnetic
moments with long-range order [6–15]. The coupling be-
tween electrodynamics and magnons has attracted extensive
attention [16–18], and lots of hybridized magnon modes have
been experimentally observed, such as magnon polaritons
[19–28], magnon polarons [29–34], magnon-superconductor
qubits [4,35,36], and magnon excitons [37]. In addition, the
hybridization between multiple magnon modes in antiferro-
magnets and ferrimagnets provides a platform for a coherent
control and engineer spin dynamics, of which the coupling
strength can be tuned via interlayer dipolar or interfacial
exchange interactions in heterostructure systems [38–45].
However, detailed experimental investigations for coherent
control of the coupling strength of hybridized propagating
spin waves are still rare within single layer material. In
addition, the coupling between standing spin waves and mag-
netostatic spin waves (MSSW) is widely available in different
magnetic systems. When perpendicular standing spin waves
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(PSSW) are hybridized with propagating MSSW mode, the
PSSW can propagate in the film plane [46–49] and heterosym-
metric spin waves (PSSW mode with in-plane wave vector)
are coherently generated, as shown recently by time-resolved
x-ray microscopy [47].

In this paper, we report the tunable magnon-magnon cou-
pling between heterosymmetric (first-order mode, n = 1) and
in-plane propagating dipole-exchange spin waves (quasiuni-
form mode, n = 0) in an Ir25 Mn75 / Co20 Fe60 B20 bilayer at
room temperature. From the ferromagnetic resonance (FMR)
spectra, the frequencies of FMR and PSSW modes are sep-
arated from one another. However, the nanostripline (NSL)
antennas can excite in-plane spin waves with a broad wave
vector distribution. The dispersion of the exchange-dominated
first-order mode is relatively flat compared with that of the
quasiuniform mode, and therefore they can cross with each
other. The wave vector of the crossing point is included in
the broad wave vector distribution of the NSL antennas. As
a consequence, an anticrossing gap is observed both in the
reflection and transmission spectra corresponding to the hy-
bridized propagating spin waves. In addition, by applying
different field strengths and directions with respect to antenna,
the coupling strength g can be tuned and presents a linear
relationship with respect to the crossing wave vector values
kc. Theory shows that this coupling feature is due to the off-
diagonal parts of the dipolar interaction tensor. In addition,
with the help of phenomenological loss theory [7], the effec-
tive dissipation rates of two coupled branches are calculated
based on the intrinsic linewidths estimated from FMR spectra,
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FIG. 1. (a) Illustrative diagram of the device structure. The mea-
sured sample is composed of a CoFeB layer with thickness t of
80 nm and an IrMn layer with SiO2 capping on the top to prevent
oxidation. (b) The scanning electron microscope (SEM) image of the
NSL antennas, where the scale bar is 1 μm and the angle between
the external magnetic field and wave vector direction is defined as θ .
(c),(d) Angle-dependent reflection (dBmag) and transmission (Imag)
spectra measured by NSL antennas, where the red and white dashed
lines are the theoretical fittings of the first-order and quasiuniform
modes by Eqs. (2) and (4), respectively. The white arrows point to
the observed anticrossing gaps at 90 ± 54◦. (e) Theoretically calcu-
lated dispersions of first-order and quasiuniform modes at different
angle θ . The blue dashed line implies the crossing wave vector
between first-order and quasiuniform modes at 36◦. (f) The zoom-in
transmission spectra at the anticrossing gap, where the blue dashed
line is the theoretical fitting of the quasiuniform mode with wave
vector of 2.5 rad/μm and the red dashed line is for the first-order
mode. The two solid curves indicate the hybridized propagating
modes.

which is further used to calculate accurately the cooperativity
of the magnon-magnon coupling. The coupling can reach the
strong coupling regime under large fields with a cooperativity
up to 2.0 at 200 mT. Comparative measurements show that the
existence of the IrMn layer can promote the coupling between
first-order and quasiuniform modes owing to the interfacial
pinning effect [48,50–52].

II. SAMPLE AND EXPERIMENT

The CoFeB/IrMn heterostructures are grown on SiOx sub-
strate by a magnetron sputtering system (ULVAC) at room
temperature, where the thickness t of CoFeB [Fig. 1(a)] is
fixed at 80 nm. During the growth process, the chamber
base pressure is lower than 3 × 10−6 Pa, and an in-plane
external magnetic field of 180 Oe is applied to induce the

exchange bias (pinning) between the CoFeB/IrMn interface.
Subsequently, 10-nm-thick SiO2 is deposited on the whole
sample to prevent the oxidation. We first use optical lithog-
raphy to pattern the photoresist on the sample into several
parallelogram-shaped spin wave waveguides of which the
edge is 45◦ to avoid spin-wave reflections, and then the ion
beam etching is used to remove the materials without pro-
tecting the resist. With the help of electron beam lithography
(EBL), two identical NSL antennas, which are made of Ti
(10 nm)/Au (100 nm) by e-beam evaporation and lift-off
process, are fabricated on top of spin-wave waveguides with
different separated distances s.

As for the spin-wave measurements, we utilize the
all-electric spin-wave spectroscopy (AESWS) with angle-
resolved function, using a vector network analyzer (VNA)
(Rohde and Schwarz ZVA 40) with frequency range up to
40 GHz. Two microwave cables are used to connect between
the two ports from VNA and two microwave probes, which
will further physically contact with the electrodes of NSL
antennas and inject the rf current into them. Correspond-
ingly, a dynamic electromagnetic field is generated to excite
spin waves underneath the antenna and detect spin waves
via the inverse physical process. The applied power for all
experiments presented in this work is −10 dBm and the IF
bandwidth is 1 kHz. As shown in Fig. 1(a), two NSL an-
tennas on the top of CoFeB with 80 nm thickness pinned
by IrMn will not only excite the quasiuniform mode with
the in-plane wave vector but also the first-order mode. The
antennas are separated by a distance s of 2 μm and the width
of each antenna is 200 nm [see the SEM image in Fig. 1(b)].
The wave vector k‖ distribution of the 200-nm-wide NSL
antenna is calculated by the fast Fourier transformation (FFT),
which shows a broadband distribution starting from uniform
precession (see Appendix A). We use a vibrating sample
magnetometer (VSM) measurement to characterize the mag-
netic hysteresis loop along its pinning direction (easy axis)
with in-plane magnetic fields, from which we can observe
a clear squared hysteresis loop with about 1 mT exchange
bias induced by the IrMn layer (see Appendix A). All the
experiments are performed at room temperature. In addition,
before all the spin-wave propagation measurements in this
work, a large external magnetic field with strength of 300 mT
is applied to saturate the whole sample. A reference spectrum
is recorded at this large field which will be subtracted from the
spectra recorded at other working fields to correct the back-
ground.

III. RESULTS AND DISCUSSION

Before performing the propagating spin-wave measure-
ments, we first use the flipchip measurement, where a
submillimeter size coplanar waveguide (CPW) antenna is used
to excite and detect the resonance of the whole chip to char-
acterize the field- and angle-dependent FMR features of the
sample. Two salient modes are observed: one is the FMR of
CoFeB with stronger intensity but lower frequency and the
other one is the PSSW mode with lower intensity but higher
frequency (see Appendix B). Based on the field-dependent
FMR spectra, we estimate the damping parameter of the film
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by using the following equation [53]:

δ f = |γ |
2π

μ0�H + 2√
3
α f , (1)

where |γ | = 2π × 28 GHz/T is the gyromagnetic ratio, �H
is the film inhomogeneity line broadening, and α is the damp-
ing parameter of the film. The damping α of 2.9 × 10−3 and
μ0�H of 8.2 mT are given by the linear fitting of the δ f as
a function of f (see Appendix B), which is comparable to the
results of previous works [53]. The existence of the IrMn layer
with large spin Hall angle will enhance the measured damping

because it is also a path for energy dissipation via the spin
pumping effect [54].

In order to extract the magnetic information of the sample
from the field- and angle-dependent FMR spectra, we use the
dispersion equation of dipole-exchange spin waves derived
by Kalinikos and Slavin to fit these modes and extract help-
ful magnetic parameters [55–60]. In addition, the resonance
frequencies of these two modes both present a sinusoidal
dependence on the angle θ , where the maximum frequencies
appear at ±90◦ (easy axis). Therefore, a uniaxial magnetic
anisotropy field is also considered. The dispersion for the
quasiuniform mode is given by

fn=0 = |γ |μ0

2π

[(
Hext + Hanisin2φ + 2A

μ0Ms
k2
‖

)
×

(
Hext + Hanisin2φ + 2A

μ0Ms
k2
‖ + FMs

)] 1
2

, (2)

F = 1 −
(

1 − 1 − e−k‖t

k‖t

)
cos2θ +

(
Ms

Hext + Hanisin2φ + 2A
μ0Ms

k2
‖

)(
1 − e−2k‖t

4

)
sin2θ, (3)

and for first-order mode it is given by [47,55,56]

fn=1 = |γ |μ0

2π

({
Hext + Hanisin2φ + 2A

μ0Ms

[
k2
‖ +

(
nπ

t

)2]}
×

{
Hext + Hanisin2φ + 2A

μ0Ms

[
k2
‖ +

(
nπ

t

)2]
+ Ms

}) 1
2

, (4)

where t = 80 nm is the thickness of the CoFeB layer, n is the
ordinal indices, θ is the angle between the external magnetic
field and wave vector direction, and φ is the angle between
field and easy axis, which is perpendicular to the wave vector
k‖ directions in the experiments (in this case, θ = φ). Equa-
tions (2) and (4) can nicely reproduce the field and angle
dependent of the FMR spectra with fixing wave vector value
k‖ as 0 rad/μm and n as 1 (see Appendix B). Through our
analysis of the experimental results, we obtain that the satu-
ration magnetization of 80-nm-thick CoFeB μ0Ms is 2.14 T,
the μ0Hani is 4 mT, and the exchange stiffness constant A is
28 × 10−12 J/m. It is worth noting that k‖ in Eqs. (2) and (4)
denotes the in-plane wave vector and the uniaxial anisotropy
is parallel to the exchange bias direction, which is induced
by the applied bias field during sample growth process and
perpendicular to the wave vector direction (see Appendixes A
and B).

With the uniform excitation of the whole chip, the observed
FMR and PSSW are separated well from each other (about
3 GHz). However, when we switch to using the NSL antenna,
the narrow width of the NSL implies a broadband wave vector
distribution, corresponding to a broad frequency range both
in reflection and transmission spectra. The broader frequency
range reaches its maximum at DE configuration and its mini-
mum at the backwards volume (BV) configuration. If the NSL
antenna provides broad enough wave vector distribution for
the quasiuniform mode, it reaches the first-order mode at a
certain angle θ range between the DE and BV configuration.
In addition, this antenna feature will also influence the PSSW
mode, while the dispersion of this mode is relatively flat
compared to the quasiuniform mode when the wave vector
value is within the dipolar regime due to the absence of the
dipolar term in Eq. (4). In previous works, it was shown that
the first-order mode can also propagate along the in-plane
direction without losing its fixed out-of-plane k⊥ (coherent

heterosymmetric spin waves) [46–49]. This has been exper-
imentally imaged by time-resolved x-ray microscopy [47].

Inspired by these, we perform the angle-resolved prop-
agating spin-wave spectroscopy (AR-PSWS) measurement,
fixing the external magnetic field at 100 mT. Figures 1(c)
and 1(d) show the angle-dependent spin-wave reflection and
transmission spectra of the NSL antenna device, in which the
white dashed curves are the fittings based on Eq. (2) with k‖
values of 0 and 2.5 rad/μm, and the red dashed curve is the
fitting of the first-order mode by using Eq. (4). The trans-
mission spectra S12 (S21) mean that spin waves are excited
by NSL antenna 2 (1) and detected by NSL antenna 1 (2),
respectively. As shown in Fig. 1(c), when the first-order and
quasiuniform modes are crossing with each other, there is an
obvious frequency range with almost zero intensity around the
first-order mode. In the other way, for the transmission spectra
[Fig. 1(d)], the first-order mode cuts across the transmission
signal of the quasiuniform mode and the quasiuniform mode
with k‖ of 2.5 rad/μm coherently couples with the first-order
mode and generated two salient anticrossing gaps pointed at
by the white arrows. To have a better presentation of the anti-
crossing gap, zoom-in spectra are shown in Fig. 1(f), where
the quasiuniform mode (blue dashed line) becomes titled
when crossing with the invisible first-order mode. Two curves
sketched with blue-to-red transition color indicate the upper
and bottom branches of the hybridized propagating modes
formed by magnon-magnon coupling between the first-order
and quasiuniform modes. To further understand the coupling
between these two modes, we calculated and plotted their
dispersions at different angles θ as shown in Fig. 1(e) based
on Eqs. (2) and (4). If one looks at the angular dependence,
a clear anticrossing gap between quasiuniform mode with
k‖ of 2.5 rad/μm and first-order mode is observed at 36◦
[Fig. 1(d)]. The dispersions at fixed angle θ provide another
perspective to understand this feature in wave vector space.
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FIG. 2. (a) Zoom-in angle-dependent transmission spectra,
where the red, blue, and green dashed lines are the theoretical fittings
of the first-order and quasiuniform modes with wave vector values
of 2.5 and 0.9 rad/μm by Eqs. (2) and (4), respectively. The white
and green arrows point to the observed anticrossing gaps at 36◦ and
64◦, respectively. (b) The extracted line plots at 36◦ and 64◦ with
anticrossing gaps 2g of 0.72 and 0.16 GHz, respectively, where the
gray points are the moved experimental results if there is no coupling
for better understanding. (c) The reflection spectra of the whole
chip measured by flipchip technique with in-plane magnetic field.
(d) The reflection spectrum line plot of FMR and PSSW extracted
from (c) when the external magnetic field is 100 mT. The blue and
red solid curve are the Lorentz fittings to extract the linewidths of
these two modes.

For example, if the angle θ is fixed at 36◦ [blue curve in
Fig. 1(e)], the dispersions of these two modes cross at kc = 2.5
rad/μm, which is consistent with the angle-dependence data.

Besides the discussed anticrossing gap at 36◦, a relative
weak gap at 64◦ can also be found [Fig. 2(a)]. With the help
of the two mode dispersions Eqs. (2) and (4), we find that the
coupled quasiuniform mode wave vector value is 0.9 rad/μm
at 64◦, which is further reproduced and confirmed in Fig. 2(a)
(green dashed curve). For further investigating the coupling
mechanism between these two modes, we extract the trans-
mission line plots at 36◦ and 64◦, from which the anticrossing
gaps of 0.76 and 0.16 GHz are observed for the coupling
between the first-order and quasiuniform modes with different
k‖ values of 2.5 and 0.9 rad/μm, respectively. If there were
no coupling, the transmission would be continuous as shown
by the light gray points in Fig. 2(b). The coupling strength
g is defined as half of the peak-to-peak frequency difference
in the anticrossing gap. In addition, we can also extract the
dissipation rates for these two modes from the previous FMR
measurements when the external magnetic field is 100 mT
[Fig. 2(c)]. In addition, in Fig. 2(d), the solid curves are the
Lorentz fittings of the FMR raw data at 100 mT. In terms
of the extracted half widths at half maximum of the line
broadenings, we obtained the κFMR

m = 0.26 GHz and κPSSW
m =

0.31 GHz, where the κ represents the dissipation rate. How-
ever, the obtained dissipation rate from the FMR mode (κFMR

m )

is not accurate because the coupled quasiuniform mode has
the wave vector of 2.5 rad/μm, and the effective damping
can be enhanced with the existence of nonzero wave vector
k‖. Therefore, based on the spin-wave phenomenological loss
theory, an effective damping αeff is estimated, which is derived
from the wave-vector-dependent relaxation time,

τ (k‖) =
(

α|γ |μ0

{
Hext + Hanisin2φ + 2A

μ0Ms
k2
‖

+ Ms

2

[
1 −

(
1 − 1 − e−k‖t

k‖t

)
cos2θ

]})−1

= [2παeff fn=0(k‖)]−1, (5)

where the τ (k‖) is the spin-wave relaxation time at different
wave vector values k‖. After calculation based on Eq. (5), an
effective damping αeff when the wave vector is 2.5 rad/μm
is about 5.5 × 10−3. Then, we can obtain the dissipation rate
κn=0

m = 0.33 GHz of the quasiuniform mode with consider-
ing the effective damping at 2.5 rad/μm. In this case, we
achieve the strong coupling regime that g > κn=0

m > κn=1
m . The

magnon-magnon cooperativity C is about 1.3 in our case
based on the following equation [24]:

C = g2/κn=1
m × κn=0

m . (6)

The dispersions at different angles in Fig. 1 (e) illustrate
the crossing wave vector value kc between the first-order and
quasiuniform modes as a function of θ (see Appendix C).
kc reaches its minimum value at DE configuration because
the dipolar term in Eq. (2) enhances the group velocity of
spin waves, causing the rapid increase of the quasiuniform
mode frequency within the dipolar-dominant regime. With the
transition from DE to BV mode (angle θ goes away from 90◦),
the contribution of the dipolar term in Eq. (2) is suppressed.
The crossing wave vector kc is enhanced due to the smaller
derivative of the dispersion. In addition, the maximum k‖
value observed in experiments is 3.0 rad/μm based on the
theoretical calculation which reproduces the data in Fig. 1(d).
In the other words, when θ is smaller than 30◦ or larger than
150◦, although these two modes can couple with each other,
the required wave vector value k‖ cannot be achieved in the
experiments due to the limited efficiency with which we can
excite this k‖ value by using our NSL antenna. From the
line plots presenting in Fig. 2(b), we can also find that the
coupling strength is somewhat related to the value of kc (see
Appendix C).

Besides applying external fields with different angles, as
discussed so far, we can also tune the value of the cross-
ing wave vectors kc by changing the external field strengths
μ0Hext, owing to the interplay between the Zeeman energy
and dipolar energy in Eq. (2) as shown in Fig. 3(a). Therefore,
with the help of the field-dependent PSWS measurement, the
relationship between the anticrossing gaps 2g and kc observed
in the angle-dependent transmission spectra [Fig. 2(b)] can be
further verified. For better observation, we start from the angle
configuration with maximum strength of 2g (θ = 36◦) and
perform the field-dependent measurement by scanning the ex-
ternal magnetic field from 0 to 200 mT. In the field-dependent
transmission spectra (see Appendix D), the anticrossing gap
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crossing wave vector values, where the blue shadow is the strong
coupling regime and the red solid line is a linear fitting.

can be clearly observed as a cutoff around the frequency
of the first-order mode. With increase of the external field
strength, the Zeeman energy suppresses the influence of the
dipolar term on the dispersion and makes it flatter within
the dipolar-dominated regime and the crossing wave vector
kc is correspondingly enhanced as presented in Fig. 3(a). If
the previous assumption is true that the coupling strength
g is associate with the value of kc, the maximum g can be
obtained at 200 mT, the maximum field in our setup, and
would be even larger at greater field values. We extract the
anticrossing gap at each external field and plot them as the
black open points as a function of kc in Fig. 3(b), where a
linear relationship is observed (red line is the linear fitting).
This feature indicates again that, if the crossing wave vector
value kc between these two modes is larger, the coupling be-
tween them is stronger. In addition, one might be interested to
know at which field value the coupling strength is in the strong
coupling regime. Based on the field-dependent FMR spectra,
we extract the dissipation rates of the first-order mode and
calculate the dissipation rates of the quasiuniform mode with
the help of Eqs. (1) and (5) (see Appendix D). When the field
strength is above 100 mT, the coupling between first-order and
quasiuniform modes is within the strong coupling regime. The
largest cooperativity we can achieve is about 2.0 at 200 mT. It
would be larger if stronger magnetic fields could be applied.
If the field is smaller than 100 mT, the coupling is within
weak coupling or magnetically induced transparency (MIT)
regimes [24].

Now we discuss the key mechanism behind the observed
linear relationship between the values of kc and coupling
strength. We show that it is the magnetic dipole-dipole in-
teraction [42,55,56]. In these references, it was found that
the hybridization between first-order and quasiuniform modes
is induced by the off-diagonal contributions of dipolar ori-
gin (i.e., the dimensionless factors Pxy(yx)

nn′ for out-of-plane
magnetized and Qxy(yx)

nn′ for in-plane magnetized with n = n′,
where n = 0 or 1 correspond to the quasiuniform and first-
order modes; these parameters are defined in Ref. [56] and
shown below). With following the theoretical formulation in
Ref. [56], we recalculate the coupling between n = 0 (quasiu-
niform) and n = 1 (first-order) modes. If we assume the wave
function of the nth mode of spin waves as mn = (m(n)

x , m(n)
y )T,

the system dynamic equations can be written as

D̂nn · mn +
∑
n′ �=n

R̂nn′ · mn′ = 0. (7)

In this case, the operators D̂nn and R̂nn are matrices, which
can be written as

D̂nn =
(

Nn + sin2 β + APnn, −i( ω
ωM

− CQnn)
i( ω

ωM
+ CQnn), Nn + DPnn

)
, (8)

R̂nn′ =
(

APnn′ + iBQnn′ , iCQxy
nn′

iCQyx
nn′ , DPnn′

)
, (9)

where ωM = |γ |μ0Ms, Nn is defined as follows,

Nn = Hext

Ms
+ 2A

μ0M2
s

[
k2
‖ +

(
nπ

t

)2]
, (10)

and the geometrical factors of the system are defined as fol-
lows: ⎧⎪⎪⎨

⎪⎪⎩
A = cos2 θ − sin2 β(1 + cos2 θ ),
B = −2 cos θ sin 2β,

C = −2 sin β sin θ,

D = sin2 θ,

(11)

where the angle β represents the angle between the external
magnetic field direction and film out-of-plane direction; there-
fore, β = 0 represents the field applied along the out-of-plane
direction and β = π/2 represents in-plane direction, which
fits our experiment configuration. Therefore, considering our
measurement configuration, the parameters can be written as
A = −1, B = 0, C = −2 sinθ , and D = sin2θ .

For diagonal factors, it could be easily calculated that
Qnn ≡ 0, and

Pnn =
{ k‖t

2 , n = 0,( k‖t
nπ

)2
, n �= 0.

(12)

Now, we consider the off-diagonal factors, Qnn′ and Pnn′ ,
of our system. We could calculate the exact quantity of these
factors using the same definition within Ref. [56], then utilize
the long-wave approximation (k‖t 	 1) to simplify. We have
already identified that the first-order mode is represented as
the n = 1 mode and the quasiuniform is represented as the
n = 0 mode. At this stage, we could focus specifically on
those modes’ off-diagonal factors according to Eqs. (A12) and
(A13) in Ref. [56],

P01 = P10 = 0. (13)

For the off-diagonal part Qnn′ , we claim that Qxy
01 = Qyx

10 = 0,
whose calculation is displayed in Appendix E:

Qxy
10 = −Qyx

01 = k2
‖

√
2

[
k2
‖ + ( π

t )

]2 ·
[

2

k‖t
− 1

2
· 2

k‖t
(1 − e−k‖t )

]

∼=
√

2

π2
· k‖t . (14)

It is worth noting that P00 = k‖t
2 , while for all other con-

ditions under long-wave limit we have Pnn ∼ O(k2
‖ ) → 0. At
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this stage, we rewrite the dynamic equation operators, D̂nn and
R̂nn′ , as

D̂00 =
(

N0 + 1 − P00, −i ω
ωM

i ω
ωM

, N0 + sin2 θ · P00

)
, (15)

D̂11 =
(

N1 + 1, −i ω
ωM

i ω
ωM

, N1

)
, (16)

R̂01 = R̂†
10 =

(
0, −i · 2 sin θ · Qyx

01
0, 0

)
. (17)

Then we can utilize the perturbation theory to approxi-
mately derive the dispersion formula near the anticrossing
point within a small range. First, without hybridization effects
(assuming that R̂01 = 0), we could calculate the basic state of
our system according to Eqs. (44) and (52) in Ref. [56],

(
ω

(0)
0

ωM

)2

= (N0 + 1 − P00) · (N0 + sin2 θ · P00), (18)

(
ω

(0)
1

ωM

)2

= (N1 + 1) · N1. (19)

Here we write the nth-state perturbation-approximation
frequency as ω

(n)
0(1). At the crossing point, we have ω

(0)
0 =

ω
(0)
1 . Then, considering the first-state perturbation approxima-

tion, we have the secular equation according to Eq. (48) in
Ref. [56],

det

(
D̂00 R̂01

R̂10 D̂11

)
= 0, (20)

which could derive the approximate dispersion of the dipolar-
dominant hybridization mode. Solving that equation, we
derive that

(
ω2

± − ω
(0)2

0

) · (
ω2

± − ω
(0)2

1

) = 4ω4
M sin2 θ · (

Qyx
01

)2·
(N0 + 1 − P00) · N1 = [�(ω2

±)/2]2. (21)

Due to the Taylor expansion of the frequency,

�ω± = 1

2ω
(0)
0

�(ω2
±). (22)

Under the long-wave limit, based on Eqs. (18) and (19),
one can find that N0 is approximately equal to N1 (see
Appendix E). Therefore, Eq. (22) can be approximately sim-
plified as

�ω± = 2ωM · sin θ · Qyx
01 = 2

√
2

π2
ωM · sin θ · k‖t . (23)

Based on these calculations, the hybridization gap is found
to be proportional to Q01 ∝ kc under long-wave approxima-
tion, which is consistent with our observation as shown in
Fig. 3(b). The red solid line is the linear fitting of the ex-
perimental data extracted from field-dependent transmission
spectra. The observed difference between the experimental
results and the linear fitting in Fig. 3(b) might be due to the
fact that the spin waves in our system are deviating slightly
from the deep long-wave limit regime (k‖t ≈ 0.2). There-
fore, the higher-order terms and the direct effect of dipolar
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FIG. 4. (a) Zoom-in angle-dependent transmission spectra at
100 mT on a pure CoFeB film 80 nm thick. (b) Line plot extracted
from Fig. 4(a) (imaginary part of S12) at θ of 36◦ to figure out the
contribution of IrMn layer.

coupling begin to contribute into the relationship between
2g and kc, where another term proportional to (kct )2 comes
up. Therefore, based on these, the theoretical analysis nicely
accounts for the observed features in our experiments, whose
key mechanism is dipole-dipole interaction.

At last, a reference sample (pure CoFeB with the same
thickness but without IrMn layer) is grown by using the same
growth condition to qualitatively illustrate the contribution
from the IrMn layer in the observed hybridized propagating
spin waves. Figure 4(a) shows the zoom-in anticrossing gap
spectra under the same configuration of Fig. 1(f), where the
two modes still couple and generate an anticrossing gap at
36◦. The line plot at 36◦ is extracted and shown in Fig. 4(b).
Compared to Fig. 2(b), the extracted anticrossing gap 2g with-
out 10-nm-thick IrMn is about three-quarters of the one with
IrMn. Therefore, we suppose that the CoFeB/IrMn interface
helps the formation of the first-order (PSSW) mode, which
needs strong pinning at the surface, and therefore enhances
the coupling strength via interfacial exchange-bias effect [48,
50–52]. Further detailed IrMn thickness dependence experi-
ments would be interesting but beyond the scope of this study.

IV. CONCLUSION

In conclusion, we excited and detected hybridized prop-
agating spin waves in an 80-nm-thick CoFeB layer capped
by 10-nm-thick IrMn at room temperature. By ultilizing the
AR-PSWS and NSL antennas with a broadband distribution
of k‖ values, angle-dependent spin-wave transmission and
reflection spectra are measured, from which we are able to
clearly observe the anticrossing gaps between the quasiu-
niform and first-order spin-wave modes. Calculations based
on the dipole-exchange spin-wave dispersions by using the
magnetic parameters extracted from FMR measurements are
provided to figure out the coupling wave vector values. Inter-
estingly, the anticrossing gaps present different values when
changing the angles θ between the applied magnetic field and
the k‖ vector of the microwave as the wave vector at the cross-
ing of the dispersion curves for both modes is also changing.
In addition to varying magnetic field orientation, we find a
systematic way to change the crossing wave vector values by
applying different field strengths at a fixed angle (the stronger
the field, the larger the crossing wave vector values). After ex-
tracting anticrossing gaps with respect to crossing wave vector
values, a linear relationship between gap and k‖ values is
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FIG. 5. (a) Wave vector distribution of the NSL antenna shown
in Fig. 1(b) in the main text calculated by FFT from spatial space.
(b) The magnetic hysteresis loop measured by VSM with apply-
ing an in-plane magnetic field along the exchange-bias (pinning)
direction.

experimentally observed and explained by using the theoreti-
cal method of Ref. [56], where the key mechanism of the cou-
pling between these two modes is an off-diagonal contribution
of the dipolar origin. Finally, when the same measurements
are conducted using a CoFeB layer without IrMn capping, the
coupling strength is weaker compared to the sample capped
by IrMn. Our results provide experimental insight for hy-
bridized magnonics on a magnetic system widely used in
spintronics.
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APPENDIX A: IN-PLANE MAGNETIC HYSTERESIS LOOP
AND WAVE VECTOR DISTRIBUTION OF THE NSL

ANTENNA

The wave vector distribution of the 200-nm-wide NSL
antenna is calculated by the fast Fourier transformation (FFT),
which shows a broadband distribution starting from uniform
precession [Fig. 5(a)]. The broadband wave vector can eas-
ily cover the observed crossing wave vector values between
first-order and quasiuniform modes at different angles θ and
field strengths. We use the vibrating sample magnetometer
(VSM) measurement to characterize the magnetic hysteresis
loop along its pinning direction (easy axis) with in-plane mag-
netic fields. From Fig. 5(b), we can observe a clear squared
hysteresis loop with about 1 mT exchange bias induced by the
IrMn layer.

APPENDIX B: FIELD- AND ANGLE-DEPENDENT FMR
SPIN-WAVE SPECTRA AND DAMPING ESTIMATION

Before performing the propagating spin-wave measure-
ments, we first use the flipchip measurement, where the
submillimeter size coplanar waveguide (CPW) antenna is used
to excite and detect the resonance of the whole chip, to
characterize the FMR feature of the sample. With applying
an in-plane external magnetic field along the antenna strips

direction, which is parallel to the pinning direction (easy axis)
of the CoFeB/IrMn but perpendicular to the wave vector
direction of the large CPW [Damon-Eshbach (DE) configu-
ration], a field-dependent spectra is obtained by scanning the
field value from −200 to 200 mT with a step of 2 mT as
presented in Fig. 6(a). There are two salient modes existing
in Fig. 6(a). One is the FMR of CoFeB with stronger intensity
but lower frequency and the other one is the PSSW mode with
lower intensity but higher frequency. As shown in Fig. 6(c),
we zoom in Fig. 6(a) around 0 mT, where an asymmetry
frequency dependent with respect to the field around 0 field
is observed (white arrows). In addition, when the field is
0 mT, the FMR and PSSW modes can still be observed in
the spectra, indicating that the IrMn layer can bias the CoFeB
layer and influence the symmetry of the signal when the ex-
ternal magnetic field strength is relatively small, because the
exchange bias field is only about 1 mT. Based on the FMR
spectra of CoFeB, the linewidths δ f at different excitation
frequencies are extracted by fitting with a Lorentz function
[Fig. 6(d)]. We estimate the damping parameter of the film by
using the following Eq. (1) in the main text. The damping α

of 2.94 × 10−3 and μ0�H of 8.2 mT are given by the linear
fitting in Fig. 6(d).

To obtain more information on this sample, we fix the
external magnetic field at 100 mT and rotate the field direction
with respect to the wave vector direction of the excitation
antenna, where the angle between field and wave vector is
defined as θ . Two observed modes are reproduced in the
angle-dependent FMR spectra as shown in Fig. 6(b). The
resonance frequencies of these two modes both present a
sinusoidal dependence on the angle θ , where the maximum
frequencies are appearing at ±90◦, which is along the easy
axis of the CoFeB which is determined by the exchange
biasing obtained during sample preparation. In order to ex-
tract the sample magnetic information from the field- and
angle-dependent FMR spectra, we use the dispersion equa-
tion of dipole-exchange spin waves derived by Kalinikos and
Slavin to fit and extract information helpful with consider-
ing a uniaxial magnetic anisotropy field [Eqs. (2)–(4) in the
main text].

As presented in Figs. 6(e) and 6(f), Eqs. (2)–(4) in the
main text can nicely reproduce the field and angle dependent
of the first-order and quasiuniform mode with fixing wave
vector value k as 0 rad/μm and n as 1. Through our analy-
sis of the experimental results, we obtain that the saturation
magnetization of 80-nm-thick CoFeB μ0MS is 2.14 T, the
μ0Hani is 4 mT, and the exchange stiffness constant A is
28 × 10−12 J/m.

APPENDIX C: CALCULATED ANGLE-DEPENDENT
MODE FREQUENCIES AND CROSSING WAVE VECTOR

VALUE kc

It is worth noting that the first-order mode not only couples
with the 2.5 rad/μm quasiuniform mode at 36◦ but also the
other quasiuniform modes with different wave vector values
within the broadband provided by the NSL. If we under-
stand the modes’ dispersion from the angular space viewpoint,
the calculated frequencies of the quasiuniform modes with k
equaling 0.5, 1.0, 2.0, and 3.0 rad/μm as a function of the
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FIG. 6. (a) FMR reflection spectra measured by flipchip technique with in-plane magnetic field. (b) The angle-dependent FMR reflection
spectra measured by flipchip with fixing the in-plane magnetic field at 100 mT. (c) The zoom-in spectra of (a) to present the influence of
exchange bias on the CoFeB layer. (d) The extracted FMR linewidths δ f as a function of the different excitation frequencies. The red solid line
is the damping fitting based on Eq. (1) in the main text. (e),(f) Theoretically calculated field- and angle-dependent FMR and PSSW spectra
based on Eqs. (2) and (4) in the main text.

angle θ are plotted in Fig. 7(a), from which one can find that
the curves with 1.0, 2.0, and 3.0 rad/μm will also cross with
the first-order mode, just with different crossing angles.

Besides the angular space viewpoint, the dispersions at
fixed angle θ provide another angle of view to understand
this feature in wave vector space. For example, if the angle
θ is fixed at 36◦ [blue curve in Fig. 1(e) in the main text],
the dispersion of these two modes cross at kc = 2.5 rad/μm,
which is consistent with the angle-dependence data. Based
on these, we extract the wave vector values of the quasiuni-
form mode coupled with the first-order mode at each angle
θ , from the k space, namely, the crossing wave vector kc

between two modes as a function of θ . As shown by the
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FIG. 7. (a) Theoretical fittings of angle-dependent first-order and
quasiuniform modes with different wave vectors reproduce the ob-
served spectra profile shown in Figs. 1(c) and 1(d) in the main text.
(b) The crossing wave vector kc as a function of the angle between
field and wave vector θ . The red points are the anticrossing gaps
extracted from Fig. 1(d) at other angles. The inset shows the relative
weak anticrossing gap at 64◦ corresponding to the quasiuniform with
0.9 rad/μm.

black points in Fig. 7(b), kc is minimum at the DE mode
configuration because the dipolar term in Eqs. (2) and (3) in
the main text enhances the group velocity of spin waves, caus-
ing the rapid increase of the quasiuniform frequency within
the dipolar-dominant regime. With the transition from DE to
BV mode (angle θ goes away from 90◦), the contribution
of the dipolar term in Eqs. (2) and (3) in the main text is
suppressed. The crossing wave vector kc is enhanced due
to the smaller derivative of the dispersion. In addition, the
maximum k value observed in experiments is 3.0 rad/μm
based on the theoretical predication reproducing the data of
Fig. 7(a). In other words, when θ is smaller than 30◦ or larger
than 150◦, although these two modes can couple with each
other, the required wave vector value k cannot be achieved
in the experiments due to the limited efficient excitation in
the k broadband imposed by the NSL antenna. The shadow
in Fig. 7(b) indicates the observed wave vector range in the
experiment. If we look further into the transmission spec-
tra, there is also a minianticrossing happening at 64◦ as the
green arrow pointed in the inset of Fig. 7(b), where the green
dashed curve is the angle-dependent quasiuniform mode with
k of 0.9 rad/μm by the theoretical calculation. To extract the
coupling strength at 64◦, the transmission spectrum is plotted
in Fig. 2(b) in the main text, where the anticrossing stops
the signal to continue going up and generating a frequency
range 2g of about 0.16 GHz. By using the same data treat-
ment method, we summarize the gap strengths (twice of the
coupling strength g) as the red points plotted together with kc

from 36◦ to 64◦ in Fig. 7(b). Interestingly, the trend between
the coupling strength and angle θ seems to be the same as that
of the crossing wave vector kc, namely, the coupling strength
somehow is related to the value of kc.
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APPENDIX D: FIELD-DEPENDENT REFLECTION
AND TRANSMISSION SPIN-WAVE SPECTRA AT 36◦

Besides the measurement configuration (the change of θ ),
the external field strength μ0Hext also influences the disper-
sion of the quasiuniform mode due to the interplay between
the Zeeman energy and dipolar energy in Eqs. (2) and (3) in
the main text. Therefore, with the help of the field-dependent
PSWS measurement, the relationship between the coupling
strength g and kc observed in the angle-dependent transmis-
sion spectra [Fig. 7(b)] can be further verified. For better
observation, we start from the angle configuration with maxi-
mum strength of g (θ = 36◦) and perform the field-dependent
measurement by scanning the external magnetic field from
0 to 200 mT. Figures 8(a) and 8(b) are the reflection and
transmission spectra measured by fixing the angle θ at 36◦,
where the white dashed curves are the quasiuniform FMR fit-
ting and the red dashed curve is the calculated field-dependent
first-order mode. In these two spectra, the anticrossing gap
can be obviously observed as a cut off around the frequency
of first-order mode. From the wave vector k space, with the
increase of the external field strength, the Zeeman energy sup-
presses the influence from the dipolar term on the dispersion
and makes it flatter within the dipolar-dominated regime, and
the crossing wave vector kc is correspondingly enhanced as
presented in Fig. 3(a) in the main text. The crossing point kc as
a function of field strength is extracted in Fig. 8(c), where the
kc increases with the larger field. If the previous assumption is
true that the coupling strength g is associated with the value of
kc, the maximum g can be obtained at 200 mT, and even larger
above 200 mT.

With this expectation, we extract the anticrossing gaps
at each external field and plot them as the black
open points as a function of kc in Fig. 3(b), where a linear

relationship is observed (blue line is the linear fitting). This
feature indicates again that, if the crossing wave vector value
kc between the dispersions of first-order and quasiuniform
modes is larger, the coupling between them is stronger. In
addition, one might be interested to know at which field value
the coupling strength is in the strong coupling regime. Based
on the field-dependent FMR spectra [Fig. 2(c) in the main
text], we extract the dissipation rates of the first-order mode
and calculate the dissipation rates of the quasiuniform mode
with the help of Eqs. (1) and (5) in the main text at each
magnetic field [Fig. 8(d)]. By using Eq. (6) in the main text,
the cooperativity C with considering the error bars of the
first-order mode κn=1

m is also estimated at different values
of kc, which presents the same trend (∝kc). When the field
strength is above 100 mT, the coupling between first-order and
quasiuniform modes is within the strong coupling regime, of
which the cooperativity will be further enhanced with larger
magnetic field strength.

APPENDIX E: DERIVATION OF THEORETICAL
PARAMETERS

Considering the boundary conditions, according to Eq. (12)
in Ref. [56] (all the definitions below are the same as those
in Ref. [56]), we could get the eigenvalues of the dynamic
equations obey that( ∂

∂ξ
− (−1)αdα cos 2β 0

0 ∂
∂ξ

− (−1)αdα cos β2

)

×
(

�x,n

�y,n

)
= 0, (E1)

where α = {1, 2} and n is in the range that n �= 0, and dα are
the pinning parameters on the upper and lower surfaces of the
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film. With specifically our system’s parameter, β = π/2, from
this equation we could derive that

∂

∂ξ
�y,1 = 0. (E2)

In addition, when n �= 0, there are only standing wave so-
lutions to the dynamic equations, which implies that �y = 0.
From Eq. (26) in Ref. [56], we could calculate the off-diagonal
parameter as

Qxy
01 = −Qyx

10 =
∫ t

2

− t
2

1

2t
· GQ�x,0�y,1dr = 0 (E3)

and then we could write down the equations of perturbation as

det

⎛
⎜⎝

D̂00
0 0

−i · 2 sin θ · Qyx
01 0

0 i · 2 sin θ · Qyx
01

0 0 D̂11

⎞
⎟⎠ = 0.

(E4)

In addition, within our essay, we could have the relation
between N0 and N1 as(

ω
(0)
0

ωM

)2

= (N0 + 1 − P00) · (N0 + sin2 θ · P00) (E5)

and (
ω

(0)
1

ωM

)2

= (N1 + 1) · N1. (E6)

Then, when ω
(0)
0 = ω

(0)
1 , the deviation between the upper

two equations indicates that

(N1 + 1) · N1 = (N0 + 1 − P00) · (N0 + sin2 θ · P00), (E7)

then

(N1 + 1) · N1 − (N0 + 1) · N0

= P00 · (N0 + sin2 θ · P00) − (N0 + 1) · sin2 θ · P00, (E8)

which could be further simplified as

N0 − N1 = sin2 θ − N0 cos2 θ

N0 + N1 + 1
· P00 ∼ kt . (E9)
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