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Second harmonic generation as a probe of parametric spin wave instability processes in thin
magnetic films
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We have explored the dynamic response of in-plane magnetized thin permalloy films excited by microwave
fields of high amplitudes (up to 3 Oe) at 1 GHz. The response was detected using a microstrip line by measuring
the second harmonic signal generated by the dynamic components of the uniform magnetization. The data
measured at ferromagnetic resonance showed the threshold effect of the Suhl parametric instability process.
With the increase of the microwave power above the threshold value, the dynamic response revealed an intricate
nonlinear behavior, including the emergence of an additional threshold. This second threshold can be explained
in terms of the “stage by stage” process of parametric spin wave excitation following the S theory of Zakharov,
L’vov, and Starobinets.
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I. INTRODUCTION

Depending on the amplitude of the microwave driving
field, the high-frequency behavior of a magnetic material
exhibits linear or nonlinear properties. At low microwave
power levels, the dynamics of the magnetization can be ap-
proximately described by the linearized equation of motion
[1]. In this regime, the components of the dynamic magne-
tization depend linearly on the microwave field amplitude.
However, since magnetization dynamics is inherently nonlin-
ear, at higher microwave powers and larger amplitudes of the
uniform magnetization precession, the linear relationship be-
tween the magnetization and the microwave field is disrupted,
and the magnetic system displays a rich set of nonlinear
effects [2,3].

A prominent example of such nonlinear phenomena that
occur in magnetic materials is the premature saturation effect
of the ferromagnetic resonance (FMR). This effect was first
observed more than half a century ago in ferrites [4] and
was explained by Suhl in terms of parametric resonance in
a continuous medium [5–7]. According to the Suhl theory,
when the microwave power is above a certain threshold level,
the uniform precession mode can parametrically excite a pair
of degenerate spin waves. During this instability process, the
parametric spin waves gain energy from the uniform mode,
which results in the decrease of the effective susceptibility
at high-power FMR. Later it was also shown that parametric
spin waves with half the frequency of the driving field could
be excited directly by the microwave field applied parallel
to the equilibrium magnetization direction [8]. Since then,
these nonlinear processes have been extensively studied in
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the context of understanding the fundamental physics and for
technological applications as well [1,2,9].

Traditionally, high-power microwave experiments were
carried out using ferrites, owing to their unique properties,
most importantly, extremely low magnetic damping. How-
ever, from the point of view of modern technical applications,
ferrites have several drawbacks. These include low satura-
tion magnetization limiting their operating frequency band,
relatively low Curie point, and compatibility issues with
conventional semiconductor technology. Therefore, in recent
years the focus of research has shifted toward thin metal-
lic magnetic films, particularly those made of permalloy
(Ni80Fe20). In contrast to ferrites, such films can be readily
integrated with complementary metal oxide semiconductor
(CMOS) processes, they have relatively high saturation mag-
netization and high-frequency susceptibility. In the last 15
years, there has been an upsurge of interest in parametric
processes in thin metallic films and nanostructures [10–16],
raised by the importance of these nonlinear effects in the
large-angle magnetization switching [17], which is relevant,
for example, in magnetic memory devices and spin-torque
nano-oscillators [18]. Moreover, a detailed understanding of
the parametric instability processes is an essential step on
the way to next-generation nonlinear microwave signal pro-
cessing devices based on thin magnetic films and thin-film
nanostructures [19,20].

In this paper, we report an investigation of the nonlinear
microwave behavior of thin permalloy films by measuring the
second harmonic generation. The sample was placed inside
the microstrip line, where the signal line served simultane-
ously as an emitter of a microwave driving field and as an
antenna that receives the second harmonic signal generated
by the film. At ferromagnetic resonance, the main source
of this signal is the longitudinal time-dependent component
of the uniform magnetization, which oscillates at twice the
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frequency of the driving field and emerges due to the highly
elliptic precession orbit [21]. Unlike the absorption technique
that is widely employed in high-power FMR experiments
(e.g., vector network analyzer FMR [13,14]), the method of
inductive detection of the second harmonic signal used in
this work allows for the direct quantitative measurements of
the uniform magnetization precession amplitude. These mea-
surements of the second harmonic generation versus input
power show a clear signature of the second-order parametric
processes. Surprisingly, in addition to the expected power
threshold at a relatively low microwave field, the measure-
ments also reveal the appearance of the second threshold at
a much higher microwave field. These findings are discussed
in the framework of the Suhl parametric instability theory and
the S theory [22], which takes into account the interactions of
parametric spin waves.

II. THIN-FILM SAMPLE, ITS CHARACTERIZATION, AND
SECOND HARMONIC MEASUREMENTS SETUP

The studied nanocrystalline thin magnetic film with a
thickness of 100 nm was produced by DC magnetron sput-
tering of a Ni80Fe20 target on a heated to 200 °C quartz
glass substrate, 3×5×0.5 mm3 in size. The base pressure was
2.2×10−6 Torr, and the argon pressure was 1.5×10−3 Torr.
Prior to the magnetic film deposition, a 200 nm thick SiO
layer was thermally deposited on the substrate to improve the
homogeneity of the magnetic film. During the sputtering, a
uniform in-plane static magnetic field of ∼200 Oe was applied
to the film along its long side to induce a uniaxial magnetic
anisotropy.

The magnetic properties of the produced sample were
determined using a scanning FMR spectrometer [23]. The
absorption spectra were measured from local areas on the
surface of the film (∼0.8 mm in diameter) at a fixed pump-
ing frequency of f = 2.5 GHz while sweeping the in-plane
magnetic field. From the angular dependences of the reso-
nance field, using a special fitting procedure based on a single
domain model of a magnetic film [24], we determined the ef-
fective saturation magnetization Meff , the uniaxial anisotropy
field Hu, and the easy axis direction θu. Also, from the
measured spectra, we obtained the FMR linewidth �H . The
parameters averaged over the film surface were the follow-
ing: Meff = 872 emu/cm3, Hu = 3 Oe, θu = − 0.5◦, �H =
18 Oe, and the corresponding Gilbert damping parameter α =
γ�H/(4π f ) is 0.01 (γ = 1.76×107 rad/sOe is the gyromag-
netic ratio). The distributions of these magnetic parameters
across the film surface are shown in the Supplemental Mate-
rial [25]. Note that the determined effective magnetization is
Meff = Ms–Hp/4π , where Ms is the saturation magnetization
and Hp is the field of the magnetic anisotropy perpendicular
to the film plane [24]. However, in nanocrystalline permalloy
films Hp � 4πMs, and it can be considered approximately
that Meff ≈ Ms.

Figure 1(a) shows schematically the experimental setup
used for the measurements of the second harmonic genera-
tion in a thin magnetic film as a function of the static and
microwave magnetic fields. The in-plane static magnetic field
was produced by Helmholtz coils which were placed on a
platform rotated by a stepper motor. A microstrip line was

FIG. 1. (a) The schematic representation of the experimental
setup used for the second harmonic measurements. (b) The sketch of
the sample under the signal line and the coordinate system, where M0

is the equilibrium magnetization, H0 is the external static magnetic
field, Hu is the uniaxial anisotropy field, and h is the microwave
driving field. eθ and eM are the unit vectors that define the coordinate
system related to the equilibrium magnetization M0.

used to transmit and receive a microwave signal to and from
the film. The signal line made of Cu had a thickness of
17 μm, length of 5 mm, and width w = 1 mm. The sample
was inserted between the signal line and a ground plane, with
the magnetic film facing the signal line. The microstrip line
was adjusted to have the characteristic impedance Z0 = 50�.
The input signal at a frequency of 1 GHz provided by a
microwave generator and amplified by a power amplifier was
sent through a filter with a bandpass at a frequency of 1 GHz
[26] so that any higher-harmonic components were eliminated
from the amplified signal before entering the film. A diplexer
[27] connected to the output of the transmission line split the
output signal into two channels, at 1 and 2 GHz. The signals
from each channel were received by the spectrum analyzers,
thus allowing us to simultaneously measure the power of
the second harmonic generated by the film at 2 GHz and the
power absorbed by the film at 1 GHz. The power losses were
measured for all cables and interconnections to determine
the true microwave power received and transmitted by the
microstrip line.

However, if we want to directly compare the experimental
and theoretical results, we have to convert the input and output
powers to a field and a magnetization. The amplitude of the
driving microwave field h produced by the microstrip line
can be estimated as h = 4π10−3(P1/4Z0w

2)1/2 (expressed in
Oe), where P1 is the power of the input signal [28]. The sec-
ond harmonic signal comes from the second-order dynamic
magnetization component m2x (as will be discussed later)
that oscillates at twice the frequency of the input signal. The
magnetic flux from this component winds around the signal

064406-2



SECOND HARMONIC GENERATION AS A PROBE OF … PHYSICAL REVIEW B 106, 064406 (2022)

(deg) (deg)

FIG. 2. The dependencies of the FMR absorption (at 1 GHz)
(a,c) and second harmonic generation (at 2 GHz) (b,d) in a 100 nm
thick Ni80Fe20 film on the direction θH and strength H0 of the ap-
plied static magnetic field. (a,b) are experimental results and (c,d)
theoretical ones. The input signal power at a frequency of 1 GHz
was 10 mW (the microwave field amplitude h = 0.09 Oe). �P1 is the
power absorbed at 1 GHz, which is proportional to the imaginary
part of the magnetic permeability χ ′′, and m2x is the amplitude of
the second-order dynamic magnetization, which is the source of the
second harmonic signal at 2 GHz (see text for details).

line, and, through Faraday’s law, we can relate the amplitude
m2x to the detected power P2 of the second harmonic signal as
[28,29]

m2x = 2
√

2P2Z0

103dmω2μ0ltF
, (1)

where l and tF are the length and thickness of the magnetic
film, μ0 is the magnetic constant, ω2 is the circular frequency
of m2x oscillation, and dm is the coefficient that accounts for
losses of various types; for our case we estimated it to be 0.89.
Note that the value of m2x, according to Eq. (1), is expressed
in emu/cm3 (see [29]).

III. SECOND HARMONIC GENERATION AT LOW
MICROWAVE SIGNAL POWER

A. Experiment

We start our study by first considering the case of a low-
power input signal. Figures 2(a) and 2(b) show the result of
measuring simultaneously the power absorption and gener-
ated second harmonic amplitude as a function of the direction
θH and the strength H0 of the static magnetic field produced
by the Helmholtz coils. The input signal power at a frequency
of f1 = 1 GHz was P1 = 10 mW, corresponding to the mi-
crowave field amplitude h = 0.09 Oe. The map [Fig. 2(a)] of
the absorbed power �P1 at 1 GHz demonstrates the usual
FMR response of a magnetic film, where the peaks of �P1

form the well-known angular dependence of the resonance
field. As the angle of the static field θH increases from 0°

to 90°, the equilibrium magnetization M0 rotates toward the
microwave field h [Fig. 1(b)] resulting in the weakening of
the interaction between M0 and h, until at θH = 90◦ (when
M0‖h) there is no absorption at all.

Figure 2(b) presents the map of the second-order magne-
tization m2x, which was obtained from the measured output
power P2 at 2 GHz using Eq. (1). The mirror symmetry
observed along the θH axis is due to the uniaxial magnetic
anisotropy of the film [Fig. 1(b)]. At the same time, as one
can see, m2x has two local maxima along the field axis H0:
The first one is at the field H0 = 10.6 Oe and θH = 45◦, which
can be denoted as the low-field (LF) peak, and the second one
is at H0 = 46.5 Oe and θH = 43◦—the high-field (HF) peak.
The amplitude of the LF peak is an order of magnitude larger
than the amplitude of the HF peak.

B. Second-order perturbation theory

This interesting behavior of the second-order magnetiza-
tion was theoretically analyzed in detail in our previous paper
[29], in the approximation of the low driving field ampli-
tude. Here we present a summary of the obtained results.
The Landau-Lifshitz-Gilbert (LLG) equation describes the
dynamics of the magnetization M in a ferromagnet [1]. This
differential equation is nonlinear, but in the case of small
magnetization precession angles, the approximate analytical
solution can be found using a perturbation approach. To obtain
the expressions for the uniform magnetization component os-
cillating at a double frequency of the driving field, we expand
the magnetization M to the second-order term and seek the
solution of the LLG equation in the form M = M0 + m1(t ) +
m2(t ), where m2 � m1 � M0. First, retaining only terms of
the first order of smallness, the solution for the first-order
dynamic component m1 that has a frequency of the driving
field is found, and then this solution is substituted in the initial
equation to find the second-order component m2, oscillating at
twice the frequency of the driving field [29].

The amplitude of the main component of the first-order
magnetization can be expressed as m1θ = |χ |hθ , where χ is
the magnetic susceptibility, and hθ is the transverse [with
respect to the equilibrium magnetization M0; see Fig. 1(b)]
component of the driving field. For a thin film with uniaxial
anisotropy, the susceptibility χ is given by

χ = 1

4π

ωMωy

ω2
0 − ω2 + iαω(ωy + ωθ )

, (2)

where ω = 2π f is the circular frequency of the driving field,
ωM = 4πγ Ms, and ω0 = 2π f0 = √

ωθωy is the FMR fre-
quency. The parameters ωy and ωθ are

ωy = γ [H0 cos(θH − θM ) + Hucos2θM + 4πMs],
ωθ = γ [H0 cos(θH − θM ) + Hu cos 2θM],

(3)

where θM is the angle of the orientation of the equilibrium
magnetization M0.

The second-order magnetization m2 consists of two main
contributing components, the transverse m2θ , and the longi-
tudinal m2M . The longitudinal component m2M is associated
with the ellipticity of the magnetization vector precession
in the (eθ , ey) plane and the conservation of the magne-
tization vector length. Its amplitude can be approximately
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expressed as

m2M = (1/4Ms)m2
1θ = (1/4Ms)|χ2|h2

θ . (4)

This component gives the largest contribution to m2 and
reaches a maximum at the same conditions as m1θ , that is, at
FMR. The m2M is responsible for the LF peak in the second
harmonic generation observed in the experiment.

The transverse second-order component m2θ emerges due
to the modulation of the magnetization precession by the
longitudinal component of the driving field hM . The amplitude
of m2θ can be written as

m2θ = |(1/D2)Cχ |hθ hM, (5)

where D2 = ω0–4ω2 + iα2ω(ωy + ωθ ), and C = γ (ωy +
iα2ω)/2. The important feature of m2θ is that it has two peaks.
The first one, associated with the χ term, is at FMR. The
second peak follows from the resonancelike behavior of the
denominator D2, which is minimum at half the frequency of
the FMR or, in the case of the fixed driving frequency, in
the corresponding higher magnetic field. This second peak
of m2θ explains the HF peak observed in the experiment.
Considering the geometry of the measurements, the resulting
second harmonic output signal is determined as

m2x = m2M sin θM + m2θ cos θM . (6)

Figures 2(c) and 2(d) display the theoretical results ob-
tained using expressions presented above for the parameters
of the experimental sample. Because the imaginary part of
susceptibility χ ′′ is proportional to the microwave power
absorbed by the film, in Fig. 2(c), we have plotted the de-
pendence of χ ′′cosθM on H0 and θH , calculated using Eq. (2)
for f = f1 = 1 GHz. As expected, there is good agreement
with the experimental dependency of �P1(H0, θH ) shown in
Fig. 2(a). For the same parameters, Fig. 2(d) shows the map
of the second-order magnetization m2x calculated with Eq. (6).
A good accordance between theory and experiment can be
observed here also, where not only the positions of the LF
and HF peaks but also their amplitudes and linewidths agree
well with the experiment [Fig. 2(b)]. We conclude that the
solution obtained in the frame of a perturbation approach for
the uniform magnetization precession describes accurately the
dynamic behavior of the first- and second-order magnetiza-
tions in the case of a low-amplitude microwave field.

IV. SECOND HARMONIC GENERATION AT HIGH
MICROWAVE SIGNAL POWERS

A. Experiment

For the same frequency of the input signal (1 GHz), we
have investigated the behavior of the second harmonic ampli-
tude as a function of the microwave field amplitude h. The
maximum power of the input signal was 10 W, which corre-
sponds to h = 2.8 Oe. Figure 3 shows the maps m2x(H0, θH ),
which are analogous to those in Fig. 2 but obtained at higher
signal powers. As one can see, the increase in the microwave
field amplitude leads to the change in the LF peak shape,
which becomes more “round,” and also to its shift to the
lower values of the field H0. The HF peak shape and position,
however, do not change much but the peak appears brighter,

(deg) (deg)

FIG. 3. The experimental dependencies of the second-order
magnetization m2x (at 2 GHz) on the strength H0 and direction θH

of the static field, obtained for four values of the microwave field h.
The frequency of the input signal was 1 GHz.

which reflects the fact that LF and HF peaks grow with h at
different rates.

Figure 4(a) shows the profiles of the dependence of the
second-order magnetization m2x on H0 measured at various
values of h, and Fig. 4(b) shows the entire map m2x(H0, h).
Note that in these plots, each m2x value was picked for an
optimal angle θH , at which for a given value of H0 and h
the amplitude m2x is maximum. An interesting feature that
can be observed here is that as the amplitude of m2x steadily
increases with h, the behaviors of the LF and HF peaks re-
garding their static field positions differ noticeably. While the
field position of the HF peak stays essentially the same for the
whole microwave field range (Fig. 4, triangle symbols), the
field H0 of the LF peak gradually decreases with h (Fig. 4,
square symbols).

FIG. 4. (a) Second-order magnetization m2x (at 2 GHz) profiles
measured as a function of the static field H0 for several values of
the microwave field amplitude h. (b) The map of the m2x (H0, h)
dependence. In both plots, each m2x value was picked for an optimal
angle θH , at which for a given value of H0 and h the amplitude m2x

is maximum. The square and triangle symbols indicate the low-field
(LF) and high-field (HF) peaks, respectively. The frequency of the
input signal was 1 GHz.
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FIG. 5. Second-order magnetization (at 2 GHz) for the low-field
(LF) peak m2xLF (a) and the high-field (HF) peak m2xHF (b) versus
microwave driving field amplitude h. The inset in (a) shows the mag-
nified part of the m2xLF(h) dependence for the range of h = 0–0.5 Oe.
The frequency of the input signal was 1 GHz.

Figure 5 shows the experimental dependencies of the
second-order magnetization for LF peak m2xLF [Fig. 5(a)] and
HF peak m2xHF [Fig. 5(b)] on the driving field amplitude h,
obtained for the optimal parameters (H0, θH ) of the static field.
As Fig. 5(b) indicates, the HF peak grows quadratically with
h in the whole considered range. In contrast, the LF peak
depends quadratically on h only at the very beginning of the
dependence m2xLF(h) [see inset in Fig. 5(a)]. Above a certain
threshold amplitude of the microwave field hc1 ≈ 0.3 Oe,
the m2xLF(h) dependence starts to deviate from the quadratic
one—now m2xLF increases with h more slowly. Moreover, one
can clearly see in Fig. 5(a) that there is a second threshold
field hc2 ≈ 1.2 Oe, above which the growth of m2xLF with h
becomes even slower.

This behavior of the LF peak contradicts the predictions of
a low-power uniform magnetization precession (UP) theory
considered above, according to which both LF and HF peaks
should be quadratic in h. This can be seen in Figs. 5(a) and
5(b), where dashed lines show the dependencies calculated
using Eq. (6). While for the HF peak [Fig. 5(b)] the uniform
precession theory demonstrates excellent agreement with the

experiment, the theoretical LF peak increases with h overly
optimistically [Fig. 5(a)]. What we observe here for the LF
peak is the manifestation of the spin wave instability pro-
cesses. The question of why this is not the case for the HF
peak will be discussed later in this paper. As mentioned in
the Introduction, the theory of high-power FMR was first
developed by Suhl in the 1950s [5–7]. In the following, we
briefly underline its main conclusions, which will help in
understanding our experimental results.

B. Suhl spin wave instability processes

The problem of high-power FMR in ferrites was theo-
retically analyzed by Suhl by first expanding the magneti-
zation vector into a spatial Fourier series, which represents
spin waves having amplitudes of mk . This expansion was
then substituted in the LLG equation, where the first-order (in
mk) terms were retained, as well as higher-order terms that
contained the products of mk and the uniform magnetization
precession first-order amplitude m1. The solution showed an
interesting result: There are pairs of spin waves with equal
and opposite wave vectors k and −k that are coupled to-
gether by the uniform precession mode. By analogy with a
harmonic oscillator, the uniform precession can be considered
as a time-dependent parameter that couples two oscillators.
This can result in energy transfer through the time-dependent
parameter to the oscillators (known as a parametric instability
process), which is most efficient when

nω = ωk + ω−k = 2ωk, (7)

where ω is the frequency of the driving field, ωk = ω−k are
the frequencies of a coupled pair of spin waves, and n is the
order of the parametric instability process.

The Suhl spin wave instability theory leads to the following
expression for the amplitude mk [10],

mk (t ) = mk0 exp

([
−ηk +

√∣∣G(n)
k

∣∣2 − (ωk − nω/2)2

]
t

)
,

(8)

where mk0 is an initial (thermal level) amplitude, and ηk is the
spin wave relaxation rate. The complex coupling coefficient
G(n)

k , for n = 2, which is relevant for our case of second-order
instability process (as will be dicussed later), is expressed as
[11] G(2)

k = Wk[(γ h)2/8ω]. The coefficient Wk characterizes
the coupling between the uniform precession mode and a pair
of spin waves. It depends on the magnetic parameters of the
sample, H0, and spin wave parameters: the angle of the in-
plane propagation direction θk (with respect to M0) and wave
number k.

In essence, Eq. (8) shows that the mk behavior is governed
by the energy balance: When energy pumped from the uni-
form precession mode to the spin waves during the oscillation
period surpasses their energy loss, the mk amplitudes will
grow exponentially in time. This reflects the threshold nature
of the parametric instability process, which will onset only
when the amplitude of the driving field exceeds a certain
threshold value. At this point, the uniform magnetization pre-
cession starts losing its energy by transferring it to the spin
waves (the driving power being unchanged), resulting in the
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FIG. 6. The ratio of the second-order magnetizations (at 2 GHz)
of the low-field (LF) and high-field (HF) peaks versus driving mi-
crowave field amplitude h. The frequency of the input signal was
1 GHz.

decrease of the amplitude m1 and, considering Eqs. (4) and
(5), in the decrease of the second harmonic generation as well.
This explains the deviation of the experimental dependence
m2xLF(h) from the quadratic law above the driving field ampli-
tude hc1 ≈ 0.3 Oe. Here, energy is going to the parametrically
excited spin waves leading to the increase of the effective
damping for the uniform precession mode.

The threshold character of the LF peak behavior is more
clearly seen in Fig. 6, where the second-order magnetiza-
tions ratio m2xLF(h)/m2xHF(h) is displayed. In fact, this graph
shows the deviation of the LF peak dependence on h from the
quadratic law but, being represented in this form, it allows
for the direct comparison between theory and experiment.
One can see that below the threshold hc1, the ratio has an
almost constant value of about 10, in close agreement with
the uniform precession theory. However, when h exceeds hc1,
the ratio rapidly but nonmonotonically falls off to the value of
3.1 at a maximum driving field of h = 2.8 Oe.

From Eq. (8), it is possible to calculate the threshold
field hc1. This value is obtained as the minimum threshold
among all available spin wave modes (ωk, θk ) for considered
conditions. For a thin magnetic film, it was shown that the
minimum is achieved when ω = ωk and θk = 0◦ [11]. Thus,
the expression for hc1 has a form [12]

hc1 = �H

√
�Hk

Wk4πMs
, (9)

where �Hk = 2ηk/γ . For a thin permalloy film, �Hk is usu-
ally ≈ 0.5�H [11], and the Wk coefficient (at 1 GHz) is about
0.12 [12]. For the parameters �H and Ms of our sample,
Eq. (9) yields a threshold field of 0.38 Oe, which is close to
the experimental value hc1 ≈ 0.3 Oe of the LF peak. At this
threshold value of the microwave field (0.3 Oe), the amplitude
of the first-order component m1θ [obtained from the m2xLF

using Eq. (4)] is 59 emu/cm3, and the corresponding uniform
magnetization precession angle θMc ≈ arcsin(m1θ /Ms) is 3.9°.
We note that this value of the precession angle at the thresh-

old agrees well with the experimental data obtained by other
authors for thin permalloy films [11,15].

According to the Suhl parametric instability theory, when
the microwave field exceeds the threshold hc1, the growth of
the uniform precession angle with h ceases—there is a lockup
of the precession cone angle at its threshold value θMc. The
lockup occurs due to a back reaction effect. Above the thresh-
old, the parametrically excited spin waves are pumping energy
out of the uniform precession mode. Because in the Suhl
theory, the exponential growth of mk amplitudes is not limited,
the energy transfer will continue until the uniform precession
angle drops below the threshold. Then the parametric process
stops, and the uniform magnetization precession can grow
again. This can be imagined as a transient process that, due
to the damping in the system, is stabilized to a steady state
with the precession angle just below the threshold level. From
this follows that the effective “nonlinear” microwave suscep-
tibility χn should rapidly decrease with h at FMR. Taking
into account two-magnon scattering effects that occur at FMR,
Suhl obtained the following expression for the imaginary part
of the resonance susceptibility χn [7],

χ ′′
n

χ ′′ = An + 1

An + [1 − (χ ′′
n/χ

′′)4(h/hc1)4]
−1/2 , (10)

where χ ′′ is an imaginary part of the linear susceptibility
at FMR, defined by Eq. (2), and An is a parameter that is
inversely proportional to the relative contribution of scattering
effects to the total FMR linewidth.

Based on Eqs. (10) and (4), we have calculated the LF
peak second-order magnetization m2xLF as a function of the
microwave field h and the ratio m2xLF/m2xHF for the best-fit
value of An = 10. The results are presented in Figs. 5(a) and
6 by the green lines. As one can see, the Suhl theory agrees
with the experimental results only near the threshold. Above
it, the calculated m2xLF is almost constant, which results in
a sharp decrease in the m2xLF/m2xHF ratio. This contradicts
remarkably the experimental behavior of m2xLF, which, albeit
slower, keeps growing steadily with h above the threshold.
Note also that in the experiment, there is no visible lockup at
all. This discrepancy indicates that for an adequate description
of the high-power FMR experiments well above the threshold
in permalloy films, it is necessary to consider other mecha-
nisms that limit the growth of parametric spin waves.

C. Phase limiting mechanism

Zakharov, L’vov, and Starobinets, in the framework of
their S theory, showed [22,30] that there is an additional,
dephasing, effect that limits the exponential growth of para-
metric spin wave amplitudes. In the solution of the equation
of motion, the authors considered high-order terms contain-
ing mkmk1 products, which describe the interactions between
pairs of parametric spin waves. The analysis revealed that
because of these four-wave interactions, as the mk ampli-
tudes increase, the phase between the uniform magnetization
precession mode and a pair of spin waves deviates from its
optimal value. This results in a decrease of the energy flow
from the uniform precession mode and saturation (in time de-
pendence) of the mk amplitudes at some finite level. Because
of this nonlinear limiting mechanism, the uniform precession
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amplitude can still grow with h above the threshold. Based on
the S theory, L’vov derived an equation that describes the be-
havior of the reduced amplitude of the uniform magnetization
precession at FMR [22], where the phase limiting mechanism
was taken into account. Considering Eq. (4), for the second-
order magnetization component m2xLF this equation can be
written as

r
m2xLF

mc
2xLF

+
√(

m2xLF

mc
2xLF

)2

− 1 = r
h

hc

√
m2xLF

mc
2xLF

, (11)

where mc
2xLF and hc are the threshold values of the second-

order magnetization and the microwave field, respectively.
The coefficient r is proportional to Wkk1/Wk , where Wkk1 is
a coupling coefficient for parametric spin waves. That is, in
Eq. (11), r characterizes the relative impact of spin wave
interactions on the uniform magnetization precession dynam-
ics. For example, when there are no spin-wave–spin-wave
interactions, r = 0, and m2xLF = mc

2xLF, which corresponds to
the lockup of the Suhl instability theory. And conversely, at
large r 	 1, m2xLF ∼ h2 meaning that the spin wave coupling
is so high it completely prevents the energy transfer from
the uniform precession mode, and it behaves like there are
no parametric processes at all. This reflects the fact that the
uniform precession theory and the Suhl theory represent two
extreme cases, in one of which the magnetization dynamics is
not affected by the spin waves at all and in the other, all the
energy of uniform precession above the threshold goes to the
parametric spin waves. However, the experimental data show
some intermediate results, and according to the S theory, the r
coefficient value should be of the order of unity.

Using Eq. (11), we have calculated the theoretical depen-
dence of m2xLF(h) for the experimental values of the first
threshold, hc = hc1 = 0.3 Oe, mc

2xLF = 0.5 emu/cm3, and the
best-fit value of r = 0.45. As one can see in Figs. 5(a) and 6,
for the microwave field ranging between the first and second
thresholds, there is excellent agreement between the m2xLF(h)
dependence based on the S theory (solid red line) and the
experimental data. Note also that the value of the coefficient
r = 0.45 is quite close to the values obtained by other authors
in the same kind of analysis, 0.6 in Ref. [12] and 0.63 in
Ref. [15].

One of the consequences of the dephasing effect is that
another group of spin waves can be parametrically excited
in the sample. Recall that the threshold field was obtained
from Eq. (8) as a minimum among all available spin wave
modes. As was mentioned previously, above the threshold,
the amplitudes of the first pair of spin waves are limited, and
the uniform magnetization precession amplitude continues
to increase with h. At some point, the uniform precession
amplitude will be high enough to overcome the energy loss
of another spin wave mode with a higher threshold, which
results in its parametric excitation and a subsequent additional
increase of the effective damping for the uniform precession
mode. The spin-wave–spin-wave interaction plays an impor-
tant role in this process, as it prevents the earlier onset of
parametric spin waves with θk 
= 0◦. This “stage by stage”
excitation of parametric spin waves was first predicted in the

framework of the S theory and then experimentally confirmed
for ferrites in the case of parallel pumping [30,31]. Our ex-
perimental data can be understood in terms of the stage by
stage process too. The distinctive change in the m2xLF(h) de-
pendence at hc2 ≈ 1.2 Oe can be interpreted as the excitation
of the second pair of parametric spin waves at the second
threshold field hc2. This explains why the first curve based on
Eq. (11) and hc1 value fits the experimental data only between
hc1 and hc2: The spin waves excited at the second threshold
slow down further the growth of m2xLF.

Using Eq. (11), we have calculated the m2xLF(h) depen-
dence above the second threshold, shown by the solid black
lines in Figs. 5(a) and 6. Note, however, that because this
equation was derived specifically for the first threshold case,
it can be used only for a qualitative analysis of the m2xLF

response above hc2. We obtained the best fit to the experiment
for almost the same value of the coefficient r = 0.42, but
for the threshold field hc2 = 1 Oe (mc

2xLF = 3.8 emu/cm3),
which is a bit lower than that determined from the data (≈1.2
Oe). Nevertheless, the character of the calculated dependence
agrees well with the measurements, indicating that the same
type of processes governed by the phase limiting mechanism
occur above the second threshold.

We would like to emphasize the advantage of using, in our
measurements, the microwave driving field with a relatively
low frequency of f = 1 GHz. As follows from Eq. (9), the
threshold field hc1 is proportional to f . Although the max-
imum microwave field amplitude was a moderate 2.8 Oe,
in relative units h/hc1 (so-called “supercriticality”), we have
reached a value of about 10, which allowed us to detect the
second threshold at h/hc1 = 4. For example, in experiments
with permalloy films performed at 9.11 GHz, the threshold
field at FMR was 2.7 Oe [11]. Therefore, although the maxi-
mum pumping field was quite high, about 10 Oe, in the units
h/hc1 it was only 3.7.

Note that the same experimental measurements and theo-
retical analysis, as presented above in Secs. III and IV, were
also performed for another sample, a 100 nm thick Ni70Fe30

film. The data for this sample are given in the Supplemental
Material [25]. In general, the results obtained for this sample
are similar to the data just presented, where the differences are
mainly caused by the differences in the magnetic parameters,
in particular, higher Ms, Hu, and damping α. For the Ni70Fe30

film, both the first and second microwave field thresholds are
also observed (hc1≈0.2 Oe, hc2 ≈ 0.8 Oe), and Eq. (11) fits
fairly well the m2xLF(h) dependence as well, for almost the
same values of the coefficient r.

D. Difference in the power-dependent behavior of the
LF and HF peaks

In this last section, we return to the question of why there
is a difference in the power-dependent behavior for the LF and
HF peaks. The spin wave instability processes can occur only
in conditions that allow for the excitation of spin waves. These
conditions are determined by the spin wave dispersion rela-
tion, which for a thin magnetic film with uniaxial anisotropy
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has the following form [32]:

ωk = √
ωkyωkθ ,

ωky = γ [H0 cos(θH − θM ) + Hucos2θM + Dk2 + 4πMsNk],

ωkθ = γ [H0 cos(θH − θM ) + Hu cos 2θM + Dk2 + 4πMssin2θk (1 − Nk )].

(12)

Here Nk = (1 − e−kd )/kd is the demagnetization factor,
with d being the thickness of the film, and D = 2A/Ms, where
A is the exchange stiffness constant, with the typical value for
permalloy of 1×10−6 erg/cm.

Figure 7 shows the dependence of fk = ωk/2π on k cal-
culated with Eq. (12) for θk = 0◦, and the experimental
parameters of the Ni80Fe20 sample. In the graph, two lines are
drawn: The solid blue one is for the static field H0 = 10.6 Oe
and θH = 45◦, which corresponds to the LF peak, and the
dashed red one is for H0 = 46.5 Oe and θH = 43◦, corre-
sponding to the HF peak. These lines represent boundaries
below which, for a given value of H0, spin waves cannot
propagate. The field H0 of the LF peak corresponds to the
FMR at a driving frequency of f1 = 1 GHz. The frequencies
of the spin waves in the conditions of the LF peak can only
be almost equal or higher than f1. Considering the energy
transfer condition (7), we can see that in a thin magnetic film,
the lowest order of parametric instability process at FMR is
n = 2. However, for the field H0 = 46.5 Oe of the HF peak,
the spin wave spectrum is located far above the f1 frequency
rendering the second-order parametric process impossible to
occur in this case. In fact, the lowest for these conditions is
the fourth-order process, with a much higher threshold value
of microwave field.

In practice, the HF peak can serve as a reference signal
in high-power experiments. The agreement of its behavior
with the uniform magnetization precession theory will indi-
cate that (1) the measurement setup is well calibrated, and (2)
the magnetization dynamics is not affected by other factors,
for example, heating. Therefore, while this is the case, the

FIG. 7. Spin wave dispersion relation of a thin magnetic film
calculated for two values of the static field H0 corresponding to the
low-field and high-field peaks. f1 = 1 GHz is the frequency of the
experimental driving field.

peculiarities observed in the LF peak dependencies (that are
measured almost simultaneously with the HF one) are most
probably caused by the spin wave instability processes.

In this context, let us return to Fig. 4, which shows that the
LF peak field position gradually decreases from H0 = 11 Oe
at h = 0.09 Oe to H0 = 6 Oe at h = 2.8 Oe, corresponding to
the FMR frequency positive shift of 300 MHz. This is coun-
terintuitive as, based on the classic FMR theory, one would
expect that as the magnetization precession cone expands,
the FMR frequency decreases [1]. The increase of the FMR
frequency with power (or decrease of the FMR field) was ob-
served in previous works [11,14,16] and was associated with
the nonlinear interaction of spin waves [14,33]. These spin
waves can be excited both through the parametric processes
discussed above and also due to the two-magnon scattering.
Comparing the second-order magnetizations of the LF and
HF peaks’ dependencies on h (Fig. 5), we can see that at
h = 2.8 Oe, m2xHF = 5.6 emu/cm3, and its field position has
not changed. At the same time, the LF peak reaches this value
m2xLF = 5.6 emu/cm3 at h = 1.2 Oe, but at this point, its field
position is decreased by 3 Oe with respect to the initial (at
h = 0.09 Oe) value. Therefore, for the same magnetization
precession angles, in one case (where spin wave modes are
available), there is a shift, and in the other (where the spin
wave spectrum is above the driving frequency), there is not.
This fact is experimental evidence showing that the nonlinear
FMR frequency/field shift is indeed caused by the excited spin
waves.

V. CONCLUSIONS

In this paper, we have investigated second harmonic gener-
ation in a thin permalloy film at low- and high-power levels of
microwave signals, at a frequency of 1 GHz. It has been shown
that the output signal at twice the frequency of the driving
field was formed by two second-order dynamic components
of the uniform magnetization—the longitudinal one, which
has a maximum at a low static magnetic field (LF peak,
coincides with FMR field), and the transverse one, with a
maximum at the much higher field (HF peak). The experi-
mental dependence of the LF peak on the microwave field
amplitude clearly revealed the onset of the Suhl second-order
spin wave instability processes. The complicated nonlinear
behavior observed for the LF peak above the threshold field
(≈0.3 Oe) has been explained through the phase limiting
mechanism following the S theory of Zakharov, L’vov, and
Starobinets. The use of a driving field with a relatively low
frequency allowed us to observe in thin metallic films for
the LF peak the additional (second) threshold, at a moderate
microwave field amplitude (≈1.2 Oe). This second threshold
was interpreted as the evidence of the excitation of another
group of parametric spin waves, again in accordance with the
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predictions of the S theory. The apparent immunity of the HF
peak to the parametric processes was explained simply by the
fact that at the conditions of its appearance, the spin wave
band shifted far above the driving frequency of 1 GHz, to the
region where the occurrence of low-order instability processes
is prohibited. This feature of the HF peak can be used in
practice in high-power FMR experiments for the separation of
the effects in the uniform mode behavior caused by the spin
waves, in particular, parametrically excited, as was illustrated
by considering the power-dependent FMR field negative shift.
The obtained results demonstrate that the dephasing effects
caused by the interactions between pairs of parametric spin
waves play a crucial role in the above-threshold response of

thin magnetic films at FMR, and the measurement of the
second harmonic generation is an effective approach for the
study of such effects in magnetization dynamics of thin-film
magnetic samples.
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