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Stripe domains in thin films form through a complex competition of perpendicular anisotropy and demag-
netizing energy and are still lacking a complete micromagnetic description, despite being investigated since
50 years. This paper elucidates the formation of stripe domains with a special focus on the dependence of
stripe domain width on film thickness with varying ratio of the two major energy contributions. An overview
and review of the most established analytical models for the calculation of this dependency is given with
respect to experimental data. For this purpose, new measurements on epitaxial Fe-Co-C films with perpendicular
anisotropy have been performed. An efficient and rigorous micromagnetic simulations method is proposed,
which proved to be comparable or better than previous models in describing experimental findings, especially for
films with strongly dominating demagnetizing energy. Comprehensive simulations were performed to determine
thickness-dependent stripe width for various material parameters, which can serve as a benchmark for analytical
theories or can be used directly for comparison with experimental results. At a given combination of exchange
constant and saturation polarization there exists a specific thickness at which the stripe width is independent of
the uniaxial anisotropy.
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I. INTRODUCTION

Stripe domains are often found in ferromagnetic materials
with perpendicular anisotropy and are characterized by a mag-
netization pattern with alternating positive and negative mz

contributions (mz is the normalized magnetization component
in z direction) [1–5]. They are formed due to the interplay
of perpendicular anisotropy, demagnetization energy and ex-
change energy. While there are well known and established
models for films with dominating perpendicular anisotropy,
there is no analytical model that can fully describe domain ap-
pearance, domain width, and moment distribution for the case
of truly competing interactions. Existing models in this regime
are certainly very helpful, instructive, and quick to apply, but
they are only approximations. Micromagnetic simulations, on
the other hand, are potentially exact but time consuming and
limited by the discretization of the solid into cells of uniform
magnetization [6]. In order to describe both, already reported
experimental data and a novel stripe domain system we de-
veloped a new micromagnetic approach, which overcomes the
numerical limits and can serve as a benchmark for the existing
models. In the following paragraphs we first present exper-
imental data from a novel stripe domain system (epitaxial
Fe-Co-C films) in Sec. II, in which perpendicular anisotropy
is induced from a tetragonal distortion of the cubic Fe-Co
lattice by both epitaxial strain and interstitial C atoms [7].
In Sec. III an overview of the existing analytical models for
describing stripe domains is given. Here the focus lies on the

dependence of the stripe width on the film thickness for vari-
ous ratios Q = K1/Kd of perpendicular uniaxial anisotropy K1

and demagnetizing energy density constant Kd = 0.5μ0M2
s .

Section IV is devoted to the new micromagnetic approach.
It ensures a short computation time while at the same time
obtains results that are independent of the initial moment
distribution and the dimensions of the simulated structure. It
results in a precise 3D moment configuration in the periodic
equilibrium stripe domain state. Section V compares experi-
mental data to the already discussed analytical and numerical
stripe domain models. The comparison comprises already re-
ported domain width data for films with material Q values
ranging from Q = 1.5 to Q = 0.32, and include the mea-
sured domain data of the well characterized Fe-Co-C films.
In all cases the new numerical micromagnetic model leads
to a description of experimental data comparably or better
than the existing analytical models, especially with respect
to the considered materials parameters. Finally, in Sec. VII
the predictions of the numerical micromagnetic stripe domain
model are summarized for a large range of materials parame-
ters, uniaxial anisotropy constant K1, saturation polarization
Js, and exchange constant A. Simulations are performed to
predict the critical thickness for stripe nucleation, the detailed
square-root like thickness dependent domain width, and the
stray field profile above the sample surface. This allows a
rather complete description of stripe domains for a large range
of materials with varying ratio of competing energy terms.
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FIG. 1. Stripe domains in Fe-Co-C films with thicknesses D =
40 nm, 50 nm, and 100 nm as revealed by MFM. The average domain
width of the respective film is given in the FFT insert.

II. STRIPE DOMAINS IN TETRAGONALLY
DISTORTED Fe-Co-C FILMS

Fe0.4Co0.6 films with interstitially incorporated carbon
(Fe-Co-C) have been grown by pulsed laser deposition on
Au-Cu/Cr-buffered MgO(100) with the aim of inducing a
measurable uniaxial anisotropy in a high moment but cubic
and thus low anisotropic magnetic material system. Both,
the epitaxial relation to the Au-Cu/Cr buffer layer (a-lattice
spacing = 0.272 nm) and the incorporated C atoms lead
to a tetragonal distortion in the (001) out-of-plane direction
and hence to the desired perpendicular magnetic anisotropy
(PMA).

While an appreciable (>1%) surface induced (epitaxial)
lattice strain alone cannot be conserved to thicknesses above a
few nanometers in thin films, with about 2 at.% of interstitial
C a tetragonal distortion of about 3% is maintained also for
samples of 100 nm thickness, and a uniaxial anisotropy of
(0.4 ± 0.1) MJ/m3 is obtained in the thickness range from 20
to 100 nm. This anisotropy is attributed to the modified elec-
tronic structure of the tetragonally strained bulk of the film [8],
in accordance with density functional theory calculations [9].
Surface anisotropy, which is a well-known source of perpen-
dicular anisotropy in ultrathin films, additionally contributes
with a surface anisotropy constant Ks = 1.4 mJ/m3 [8], but
accounts with less than 0.03 MJ/m3 to the average uniaxial
anisotropy for films above 50 nm.

Details on the preparation and the characterization of
magnetic properties by global magnetometry are given in
[7,8]. These films thus combine a large magnetostatic en-
ergy term Kd = 0.5μ0M2

s = 1.75 MJ/m3 (where Ms = Js/μ0

is the saturation magnetization and μ0 is the vacuum per-
meability) with an appreciable PMA (K1 = 0.4 MJ/m3, Q =
0.23, where Q = K1/Kd), and are expected to develop stripe
domains above a critical thickness. Figure 1 displays MFM
measurements for films of thicknesses 40 nm, 50 nm, and
100 nm (thicknesses determined by x-ray reflectivity to about
3 nm precision). MFM measurements have been performed
with a Bruker Dimension 3100 atomic force microscope in
standard MFM lift mode (lift height 50 nm) with phase shift
detection, employing a Nanosensors MFMR probe. Parallel
running stripes of magnetic contrast are observed, which av-
erage domain width is analyzed from the FFT of the MFM
image. With increasing film thickness, this value increased
from 45 nm to 55 nm and finally 85 nm. For films with 20 nm
thickness no stripe domains were observed.

III. ANALYTICAL DESCRIPTION OF STRIPE DOMAINS

An important parameter in the description of stripe do-
mains is the quality factor Q. It describes the ratio between
uniaxial anisotropy constant K1 and the effective shape
anisotropy constant Kd. For materials with Q < 1 there exists
a critical thickness at which a reorientation from in-plane
magnetization to a phase with stripe domains takes place. This
critical thickness decreases to zero as Q → 1. Near the criti-
cal point the perpendicular component of the magnetization
remains much smaller than Ms and the magnetization distri-
bution is assumed to be constant across the film thickness.
This phase is usually called the weak-stripe phase. As the
film thickness increases, the magnetization direction gradu-
ally tends to align more toward the out-of-plane direction, and
the system transitions into the strong stripe phase. For Q > 1,
these domains are also named band domains to indicate the
truly perpendicular character [10]. For the description of these
stripe domains there exist several models, which are devel-
oped for different Q ranges. The first steps to describe the
domain structure of thin ferromagnetic films with dominating
perpendicular anisotropy (Q > 1) were taken by Kittel [11]
in 1946. He considered the energy of different magnetic con-
figurations of thin films, which were a periodic out-of-plane
magnetization configuration, with and without flux closure,
and a homogeneous in-plane magnetization configuration. For
all three configurations, he derived an expression for the total
magnetic energy per unit area. For the closed flux structure,
this is the wall energy plus the anisotropy energy, the latter
being caused by the triangular regions where the magnetiza-
tion points normal to the easy axis. The expression for the
open flux configuration consists of the wall energy and the
demagnetization energy caused by the stray field above the
sample. For a large thickness, the closed flux configuration
is always preferred. The case of an open flux, i.e., perfectly
perpendicular domains, only occurs for very large anisotropy
constant. By minimizing the total magnetic energy of the
closed and the open flux configuration, the calculated corre-
lation between film thickness D and the stripe domain width
W is given as

W =
√

16π
√

AK1D

1.705μ0M2
s

, (1)

for the open flux structure, and

W =
√

8
√

AK1D

K1
, (2)

for the closed flux structure [11]. Thus in both cases W in-
creases as the square root of D. The open flux model of Kittel
is simplified by assuming a zero-width domain wall [12] and
by ignoring magnetostatic interactions between the upper and
lower film surface. Therefore the description is only valid
for larger thicknesses (D � W ) [13] and for materials with
Q � 1. Since then, several works have tried to loosen these
prerequisites and describe the dependence of stripe width
on film thickness, with a theory, which includes the case
of very thin films and lower Q. The most promising ones,
which have been validated by individual experiments, should
be mentioned and compared here. Based on the Kittel model
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for the areal density of the demagnetization energy, Málek
and Kamberský [14] derived a more accurate expression of
the magnetostatic interaction between the two film surfaces
that is thus also applicable for D < W , however still limited
to Q � 1. The proposed expression of the demagnetization
energy area density is

Fdemag = 4J2
s W

μ0π3

∞∑
n

1

n3

(
1 − e− nπD

W
)
. (3)

For an infinitely thick film, Eq. (3) approaches the expression
derived by Kittel [11]. With Fwall = γ D/W being the domain
wall contribution for the stripe pattern configuration, where
γ = 4

√
AK1 is the surface energy density of a Bloch wall, the

total energy density related to unit surface of a film is given
by Ftot = Fdemag + Fwall. The minimization of the energy for a
given thickness of the film ∂Ftot/∂W = 0, raises the condition:

4J2
s

μ0π3
W 2

∞∑
n

1

n3

[
1 − e− nπD

W

(
1 + nπD

W

)]
− γ D = 0 (4)

The numerical solution of this equation, with for example
Newton’s method, leads to the dependence W = W (D). The
validity of Eq. (4) was verified in comparison with exper-
imental data of MnBi films [14]. The case of Q � 1 was
studied by Kooy and Enz [15] who modified the Kittel model
to allow for a possible homogeneous tilt (μ∗ model) of the
perpendicular magnetization component into the layer plane.
The μ∗ model leads to a Q dependent modification of the
prefactor, compared to Eq. (1), in the square root dependence
of W (D), which is

W =
[

8π
√

AK1

1.705M2
s μ0

(
1 +

√
1 + 1

Q

)]1/2√
D (5)

A more recent approach, which not only includes the in-
teraction between the top and the bottom surfaces but also
explicitly includes the domain wall width, was proposed by
Virot et al. [12]. Their model expand the valid Q range from
materials with Q � 1 to also include materials with medium
anisotropy (0.5 < Q < 1). They assume inner domains with
constant magnetization separated by Bloch type domain walls.
This results in a magnetization profile of sinewave form,
which is a more realistic magnetization profile than a sim-
ple rectangular meander proposed by Kittel. They derived an
expression for the stray field energy, exchange energy, and
anisotropy energy densities, which is

Edemag = μ0W

πD

∞∑
k=1

|Ck|
k

[
1 − exp

(
− πk

D

W

)]
, (6)

with Ck = 2M0

kπ [1 − k2(δ/W )2]
cos

(
kπδ

2W

)
, (7)

Eexch = π2

W δ
A and Eaniso = δ

2W
K. (8)

The domain width W and the wall width δ was then cal-
culated by numerically minimizing the total energy Etotal =
Edemag + Eexch + Eaniso with respect to W and δ. The method
was favourably compared to experimental values of Co films
from Brandenburg et al. [16] and Hehn et al. [17] with an as-

sumed value of Q = 0.35. For the limit of Q → 0, Murayama
et al. [18] proposed the analytic expression:

W =
[
π2A

(
2

μ0M2
s

+ 1

K1

)]1/4√
D, (9)

which again implies a square root dependence. By compar-
ing this theory, with experimental results from Saito et al.
[19] on Ni-Fe films with Q ∼ 0.17, Murayama observed a
discrepancy in the prefactor of

√
D, when calculating with

the expected material parameters. The same discrepancy was
found by Leva et al. [20] for FePt films with Q = 0.23.

None of the analytical models is generally applicable for
the whole Q range, and some of them even showed discrep-
ancies with experiments on materials with the appropriate Q
value. For this reason, it is necessary to use a more universal
theory for a better understanding of the domain structure of
thin ferromagnetic layers. In our perception, micromagnetic
simulations are currently the best choice to investigate the
domain structure of thin ferromagnetic films.

IV. NUMERICAL MICROMAGNETISM

Within this section numerical micromagnetism is used to
investigate stripe domain structures, in form of micromagnetic
simulations performed with the simulation software mag-
num.fd [21]. This software is based on the theory of finite
differences [22] and has a built-in energy minimizer as well
as a time integrator using LLG.

A. Large scale

The first simulation approach is a method similar to a
method used by M. Kisielewski for the simulation of stripe
domains in epitaxial hcp cobalt films [23]. In this method,
the simulated structure is a rod like structure aligned along
the x axis and stripe domains along the y axis. As experi-
mental observations predict a homogeneous magnetization in
the direction of the stripes, only few cells in this y direction
combined with periodic boundary conditions, to simulate an
infinite sample size, are sufficient [24]. Kisielewski performed
the simulations without the use of PBC, but with x, y dimen-
sions in the size of 3000 nm × 106 nm, which also allowed
him to neglect boundary effects. In the direction normal to the
stripes (x and z axis) the cell size has to be chosen sufficiently
small to accurately resolve the structure of a domain wall.
In our case we choose a cell length of 5 nm in the x direc-
tion combined with periodic boundary conditions, and 1 nm
in the z direction. As a starting point of the magnetization
a sinusoidal-like magnetization is used with a wavelength
estimated from the experimental results. The time integra-
tion of the magnetization with the consideration of exchange,
anisotropy, and demagnetization field then leads to sinusoidal
waves. The wavelength can be calculated using either fast
Fourier transformation or simply by calculating the number
of periods over a specific length. Multiple simulations with
a x-length (Lx ) range of 4 μm − 6 μm and different starting
periods revealed two distinctive flaws of the method. The
result of the simulation depends on Lx, as the magnetization
of the structure always forms an integer number of waves.
Therefore, the periods of the stripes are potentially stretched
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FIG. 2. Relaxed Fe-Co-C structure with a thickness of D =
50 nm and a Lx of 113 nm. For the simulation the materials pa-
rameters according to line 4 in Table I are used. The Mz component
is color coded, while the white arrows symbolize the magnetization
vector.

and compressed. Another problem is the choice of the starting
period, as the system may not be able to overcome the energy
barrier associated with increasing or decreasing the number of
periods. Therefore a different approach for the simulation of
stripe domains was developed.

B. 1P method

The method used in this paper for simulating the stripe
width should have two decisive advantages over the method
described in the previous section. It should no longer de-
pendent on Lx and should also not depend on the starting
configuration of the system. Therefore, for a given film thick-
ness very short cuboids are simulated, whose x dimensions
are chosen approximately in the range of the expected sin-
gle period length. Forced by a periodic boundary condition
(PBC) in x and y direction, the relaxed magnetization in these
short cuboids forms exactly one full period of a wave and
the optimal period length can be determined by calculating
individual cuboids with different lengths Lx. The structure
having the lowest energy density is defined as the ground
state and the length of the cuboid Lx may be taken as the
correct period, for that particular thickness. For each set of
simulations, Lx is increased in the range of some nanometers
around the expected period. The geometry is discretized with
a cubic mesh with a single cell of 16 nm edge length in the
direction of the y axis but with a fine mesh of 1 nm edge
length in the z-axis direction. In the direction of the x axis,
the cell size for the shortest Lx is always set to 1 nm and then
stretched while Lx is increased. As a simulation starting point,
the magnetization component my is set to be 0.86 while mx

is 0. The perpendicular magnetization component mz is set
to be +0.5 for x � Lx

2 and −0.5 for x > Lx
2 , which steers the

magnetization to form a single waveform. Then the structure
is relaxed considering demagnetization energy, exchange, and
anisotropy field. The magnetization of the relaxed result is
used as the start configuration of the next Lx step to provide
a faster simulation time. An example of a relaxed Fe-Co-C
structure of 50 nm thickness is given in Fig. 2, where the
color coding indicates the mz component. It shows a continu-
ously varying magnetization pattern with no inner domains of
constant magnetization as they are assumed by Virot for ma-

105 110 115 120 125
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391

Lx [nm]

ε
[k

J/
m

3
]

FIG. 3. Energy density versus Lx for a Fe-Co-C structure of
50 nm thickness with a single wave period in the magnetization dis-
tribution. The length with the minimal energy indicates the optimal
period. The line is a guide to the eye.

terials with Q > 0.5. For the Fe-Co-C material with Q ≈ 0.2,
domains and domain walls are no longer distinguishable. The
magnetic moment distribution shows a sequence of vortices
with alternating rotation sense arranged in the cross section of
the film. After simulating a set of structures with different Lx

lengths and measuring their energy density ε a plot ε vs Lx can
be generated. The energy minimum of this plot will indicate
the equilibrium stripe period of the specific material. A plot of
this type for a thickness of D = 50 nm is shown in Fig. 3.

V. DISCUSSION

A. Reviewing analytical models and 1P model
with respect to existing experimental data

The methods described in Sec. III have been able to de-
scribe the experimentally obtained behavior of domain widths
as a function of the film thickness to a certain extent. In
Fig. 4 one can see a summary of various experimental W vs
D curves. The experimental results as published in the orig-
inal papers are compared to the most appropriate analytical
model for the published materials parameters (see Table I).
The graphs were supplemented with own calculations via the
1P micromagnetic approach. In Fig. 4(a), the plot contains
experimental domain width values for a Co-Pt film, which can
be well described with the Kittel open flux model [Eq. (1)],
the μ∗ model [Eq. (5)], simulations by Ghidini and to our
simulations. This shows that the case of Q > 1 is well de-
scribed by the Kittel and the μ∗ model. The exact simulation
model of Ghidini is not described in detail in the initial paper
but it can be assumed that the method is quite similar to
ours. Figure 4(b) shows data of a Co film. The initial paper
of Brandenburg [16] compared the experimental data with
Málek model [Eq. (4)], but the calculated values were too
small. Virot et al. [12] used their own model to successfully
compare it to the same experimental data, using a fixed sat-
uration magnetization of Ms = 1.43 MA/m but with K1 and
A as fit parameters. However, the best fit was obtained with
K1 = 0.82 MJ/m3 and A = 45 pJ/m, which are both unrealis-
tically large. Panel b additionally contains the analytic model
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FIG. 4. Stripe width vs film thickness for thin Co-Pt (a), Co (b),
and Fe-Pt (c) films. The plot compares experimental data (triangles),
analytically calculated values (full lines) and results of micromag-
netic simulations published by different research groups (diamonds)
with the 1P micromagnetic method (dots). The analytic models are
the Kittel model derived for Q � 1, the Virot and μ∗ model for
Q � 1 and the Murayama model for Q → 0. The material parameters
are summarized in Table I.

of Murayama and the μ∗ model. Surprisingly, the values of
the μ∗ model are closer to the experiment although this model
was developed for large Q. The 1P micromagnetical model is
based on the experimentally determined materials parameters
(Table I). It predicts the critical thickness Dcrit in the correct
range and describes the domain widths rather well, but shows
a slope, which is slightly too steep. This hints towards a
somewhat lower exchange constant, which is still a realistic
assumption. For the Fe-Pt film in panel c the experimental
data [20] is compared to the analytic model of Murayama and
the μ∗ model. Again, the values of the μ∗ model are closer
to the experiment. For D close to Dcrit our 1P micromagnetic
simulations agree very well with the experiment, but overesti-
mate the stripe domain width as D increases. In total, some
analytically models describe the experimental observations

TABLE I. Material parameter sets.

Js [T] K1 [MJ/m3] A [pJ/m] Q

Co-Pt [25] 0.754 0.345 14 1.53
Co [16] 1.8 0.45 28 0.35
Fe-Pt [20] 1.088 0.15 6 0.32
Fe-Co-C 2.1 0.4 28 0.23

reasonably well, the new numerical micromagnetic model,
however, leads to a description of experimental data, which
is comparable or better, and is not imposing any restrictions
to the magnetization structure other than a full periodicity in
the x direction and translational symmetry along the stripe
length.

B. Reviewing analytical models and 1P model with respect
to new experimental data on Fe-Co-C

The limit of the analytical methods becomes more obvious
by applying the theories to other materials, in our case to a thin
Fe-Co-C layer (Fig. 5). Analytical domain width values are
calculated with the experimentally determined material pa-
rameters of Ms = 2.1/μ0T and K1 = 0.4 MJ/m3 (Q = 0.23)
and with the reasonable assumption of A = 28 pJ/m. The
experimental values introduced in Sec. II are compared with
these analytical models and the 1P micromagnetic simula-
tions (Fig. 5). The simulations revealed that just above a
critical thickness of Dcrit = 42 nm stripe domains start form-
ing with a corresponding width of Wcrit = 48.8 nm, in very
good agreement with the experimental data. In these weak
stripes, the out-of-plane component of the magnetization re-
mains far below Ms. Above Dcrit, with increasing thickness the
magnetization tends more and more out-of-plane and strong
stripes appear, where Mz ∼ Ms, again roughly predicting the
experimental data. Concerning the analytical models, in the D
range where stripe domains are formed, the Kittel model with
flux closure domains and the μ∗ model describe the experi-

FIG. 5. Stripe width vs film thickness for a thin Fe-Co-C film.
The material parameters can be seen in Table I. The plot shows
calculated width values for various existing analytical methods in
comparison to experimental data and micromagnetic simulations.
The analytic models are Málek model Eq. (3) (yellow line) and Kittel
closed flux Eq. (2) (cyan line) for Q � 1, μ∗ model Eq. (5) (red line)
for Q � 1 and Murayama model Eq. (9) (blue line) for Q → 0.
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FIG. 6. Dcrit in units of
√

A/K1 versus Q. The black dots are
simulated values while the red line is taken from Hubert and Schäfer
[10], who adopted the theory by Müller [26]. K1 and Js values for
each dot are given in Table II.

ment best. This is unexpected as both models are developed
for Q � 1. Domain widths predicted by Murayama [18] and
Málek [14] coincide above D ∼ 53 nm, but are both signif-
icantly too small. Furthermore, Dcrit = 53 nm calculated by
the Murayama model is much larger than the experimentally
observed upper limit of Dcrit � 40 nm.

VI. SYSTEMATIC ANALYSIS OF 1P MODEL

Due to this lack of a universal analytical stripe domain
model for various materials parameters, additional simula-
tions with varying K1, A, and Ms are performed with the goal
to determine their influence on the stripe domains.

A. Critical nucleation thickness

In a first set of simulations we aimed at testing the precision
of the numerical approach by investigating materials with an
anisotropy quality factor Q ranging from 0.02 to 0.98, i.e., in
the full parameter range where stripe domains nucleate only
above a critical thickness Dcrit. This allows comparing Dcrit(Q)
with the precise analytical theory of Müller [26], although
the domain evolution above Dcrit is not described in the latter
theory. The comparison in Fig. 6 reveals a good agreement
of the 1P simulation method and the analytical theory in the
whole investigated Q range except for a slight deviation at
Q = 0.02. This shows the high degree of precision of the 1P
simulation and gives confidence in its predicting power. In
the following we test the existing analytical models against

TABLE II. Material parameters of the simulations in Fig. 6.

Q Js [T] K1 [MJ/m3] A [pJ/m]

0.02 2.5 0.05 28
0.216 2.1 0.34 28
0.412 1.8 0.53 28
0.608 1.6 0.62 28
0.804 1.5 0.72 28
0.98 1.4 0.76 28

FIG. 7. W vs D with variable A. Insets show W vs A for a fixed
thickness and a fit with P(A) = c1 · 4

√
A · √

D according to the model
of Murayama [Eq. (9)]. Other material parameters are kept constant
at Js = 2.1 T and A = 28 pJ/m.

the numerical results, which we consider the benchmark for a
correct stripe domain description.

B. W (D) behavior for modified Fe-Co-C parameters

First, calculations were performed for a full description
of the W (D) behavior of the Fe-Co-C stripe domains as a
function of K1, A, and Ms. While one parameter is varied
the other two are kept constant at the previously mentioned
value for Fe-Co-C. The results of these parameter sweeps
can be seen in Figs. 7–9. In all cases, above nucleation W
increases monotonously with film thickness, roughly follow-
ing a square root law. In order to test the accuracy of the
Murayama model—the only model intended to describe stripe
domains in low-Q materials—the width dependence on the
respective materials constant is given in an inset for two
different film thicknesses, D = 60 nm and D = 100 nm. Fol-
lowing Murayama [Eq. (9)], the W (A) dependence is fitted
with W (A) = c1 · 4

√
A · √D. We observe a good agreement

FIG. 8. W vs D with variable Js. Insets show W vs Js for a fixed
thickness and a fit with P(Js ) = 4

√
c1/J2

s + c2 · √
D according to the

model of Murayama [Eq. (9)]. Other material parameters are kept
constant at K1 = 0.4 MJ/m3 and A = 28 pJ/m.
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FIG. 9. W vs D with variable K1. Insets show W vs K1 for a fixed
thickness. Other material parameters are kept constant at Js = 2.1 T
and A = 28 pJ/m.

for the large thickness, while the A0.25 power law is less
well fulfilled for the smaller film thickness. If it comes to
varying the saturation polarization Js, the W (Js) curves for
the two thicknesses are again plotted following Murayama
with W (Js) = 4

√
c1/J2

s + c2 · √
D. The functional dependence

is well described, with again an improved accuracy for the
thicker films. Figure 9 shows W (D) calculations for K1 vary-
ing from 0.2 MJ/m3 to 0.8 MJ/m3. While all W (D) curves
possess the mentioned monotonous increase, the slope varies
in a way that W is independent of K1 for a specific film
thickness D∗ = 70 nm. This surprising observation also finds
its impact in the W (K1) plots shown in the inset. While W (K1)
increases with K1 for smaller film thickness (D = 60 nm), it
decreases for D = 100 nm. Understanding the origin of such
an additional critical thickness D∗ in stripe domains needs
additional investigations in the future.

C. Square root behavior in comparison to analytical models

So far, only the functional tendency of Js, A, and K1 on W
was discussed, without attempting a quantitative comparison

of numerical approach and existing analytical models. To
accomplish the latter, the square root dependence W ∝ √

D
predicted by all analytical models and observed to a good
degree in the numerical approach is quantitatively compared
by means of the prefactor c defined via W (D) = c · √

D. Cal-
culated W (D) curves, as displayed in Figs. 7–9 are fitted to
a square root function, and the prefactor c is summarized as
a function of the essential material parameters (Fig. 10). The
panels are supplemented with the analytically prefactor calcu-
lated with Eq. (5), which is the μ∗ model for Q � 1 (blue and
cyan lines) and with Eq. (9), which is the Murayama model for
Q 
 1 (red and green lines). In Fig. 10(a), Js is kept constant
at 2.1 T for the black dots and the red and blue line, covering
a Q range of 0.06 to 0.46. For the gray dots and the green
and cyan lines, Js = 1.5 T, covering a larger Q range of 0.39
to 0.95. The exchange constant was chosen as A = 28 pJ/m
for the entire panel (a). It can be seen that the qualitative
behavior of the simulated c for low Q (black dots) is very
similar to Murayama’s theory (red line). However, the values
quantitatively differ strongly and one can only assume that
simulation and theory coincide for Q → 0. The simulations
for larger Q (gray dots) show how c decreases from Q = 0.39
(K1 = 0.35 MJ/m3) to Q = 0.5 (K1 = 0.45 MJ/m3) and then
transitions into a behavior of increasing c as predicted in the
μ∗ model (cyan line). The quantitative comparison of the
simulations and the μ∗ model improves with increasing Q.
In Fig. 10(b) perpendicular anisotropy and exchange constant
had been set constant at K1 = 0.4 MJ/m3 and A = 28 pJ/m.
For the numerical calculations the prefactor is gently decreas-
ing with Js, which is a behavior described by Murayama (red
line) in this low Q regime. However, the values differ greatly
in quantitative terms. For higher Q values i.e., for decreasing
Js, the decrease with Js is steeper, and the c values qualitatively
and even quantitatively approach the behavior described by
the μ∗ model (blue line). In Fig. 10(c) data are summarized
for constant K1 = 0.4 MJ/m3 and Js = 2.1 T, resulting in a
fixed Q = 0.32. Both analytical models predict a dependency
of c ∝ 4

√
A, which is the behavior also suggested by the nu-

merical approach. However, both analytical models fail in
estimating the factor quantitatively. In summary, for small Q
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FIG. 10. Analytic models predict a square root dependency of the domain width with the film thickness of W = c
√

D [15] [18]. The
prefactor c depends on material parameters and is here plotted as a function of K1, Js, and A. The black and gray dots are obtained by square
root fitting W (D) curves, which are calculated with the 1P method. The black and gray lines are added to guide the eye. The blue and cyan
lines are analytically calculated with Eq. (5), which is a model for Q → 1, while the red and green lines are obtained with Eq. (9) and describe
the case of Q 
 1. The gray points and the cyan and green lines in (a) correspond to a parameter set of Js = 1.5 T and A = 28 pJ/m while all
other dots/lines are simulated/calculated with Js = 2.1 T, K1 = 0.4 MJ/m3 and A = 28 pJ/m (with one of them being the floating parameter).
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the Murayama model reconstructs the functional dependency
of c on K1, Js, and A predicted by the 1P micromagnetic
model, but quantitative agreement is poor. Only in the limit
of very small Q, where in fact the Murayama model has been
derived, the prefactor given by the analytical theory might
approach the rigorous numerical results. For larger Q values
around 0.5, the dependence of c on K1 and Js is fairly well
described by the μ∗ model. The quantitative agreement with
the numerical calculations is expected to become even better
for Q → 1. The μ∗ model seems to offer a decent quantitative
description of square root W (D) behavior of stripe domains
also well bellow Q = 1. One has to note, however, that the
simplified μ∗ model neither can predict the stripe nucleation
above a critical thickness nor the complex three-dimensional
magnetization structure of stripe domains, which is mean-
while well established by micromagnetic simulations.

D. Stray field profiles above stripe domains

Although we derived at a detailed description of W (D) as
a function of A, K , J , in case of partly unknown materials
parameters these cannot always be deduced unambiguously
from an experimental study, as the dependencies are weak
and partly opposing. Increasing, e.g., both A and Ms would
roughly keep the W (D) dependency unaltered (see Figs. 7 and
8). Thus, it is desirable to extract more quantitative predictions
from the 1P model than just the equilibrium domain width.
A stripe domain property, that can also be measured experi-
mentally, is the modulation amplitude of the stray magnetic
field above the sample. For the typically applied MFM ex-
periments, this can be accomplished by treating the measured
MFM contrast quantitative (qMFM) and is best be performed
with a tip calibrated via the tip transfer function approach [27].
To facilitate such future experiments, Fig. 11 summarizes the
simulated z component of the stray field along the x direction
for a Fe-Co-C stripe domain film with thickness D = 50 nm.
The data were analyzed in the first cell above the structure
i.e., 1 nm above the surface for different material parameters.
The insets display the modulation amplitude as a function of
the respective materials parameter. Obviously, an increase in
K1 leads to a better alignment of the magnetization in the
perpendicular direction and hence to the observed increase in
the Hz modulation amplitude [Fig. 11(a)]. An increase in Js,
however, reduces the stray field contrast [Fig. 11(b)]. Here, it
is assumed that the increased demagnetizing energy term is
avoiding a strong out-of-plane magnetization alignment. With
increasing exchange constant A [Fig. 11(c)], the modulation
amplitude decreases as well above A = 20 pJ/m. Combining
the results from Figs. 11(b) and 11(c) it becomes apparent,
that increasing both A and Js would now strongly decrease the
modulation amplitude, such that the ambiguity discussed with
the equilibrium domain width can be resolved with quantita-
tive stray field data from the sample surface.

VII. CONCLUSIONS

An overview of existing analytical models for describing
the thickness dependence of stripe domain width for films
with competing perpendicular anisotropy and demagnetizing
energy (shape anisotropy) was given. Some of them show

FIG. 11. Hz in the first cell above a structure of D = 50 nm along
the x axis. The parameters (a) K1, (b) Js, and (c) A are varied while
the other two are kept constant at the expected value for Fe-Co-C.
Insets show Hz amplitude vs material parameter.

good agreement with experimental results for certain mate-
rials including new data on spontaneously strained Fe-Co-C
films. However, a critical comparison of all data has shown
that micromagnetic simulations are currently the method of
choice for a universal description of stripe domains. There-
fore a method with relatively little computational effort was
developed to determine the width of stripe domains, indepen-
dent of the planar dimensions of the simulated structure. The
simulated thickness dependent stripe width is able to fairly
well describe most experimental findings with reasonable
materials parameters. In order to provide a more complete
description of stripe domains, calculations have been extended
to simulate the square root W (D) behavior for a large vari-
ety of materials parameters, especially in the region of Q =
K1/Kd = 0.1 to 0.5, where none of the analytical models offer
satisfying answers. An especially interesting finding of the
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rigorous numerical calculations, that is not reflected in any
of the analytical models, is that for a certain combination
of materials parameters and film thickness the equilibrium
domain width is independent of the uniaxial anisotropy. The

systematic and extensive calculations will provide means
to quantitatively evaluate intrinsic materials parameters in
stripe domain materials from measuring equilibrium domain
widths.
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